def test_entangled_state(): """Entangled state of dimension 2 will violate PPT criterion.""" rho = bell(2) * bell(2).conj().T np.testing.assert_equal(is_ppt(rho), False)
def test_is_ppt(): """Check that PPT matrix returns True.""" mat = np.identity(9) np.testing.assert_equal(is_ppt(mat), True)
def test_is_ppt_tol(): """Check that PPT matrix returns True.""" mat = np.identity(9) np.testing.assert_equal(is_ppt(mat, 2, np.round(np.sqrt(mat.size)), 1e-10), True)
def test_is_ppt_dim_sys(): """Check that PPT matrix returns True with dim and sys specified.""" mat = np.identity(9) np.testing.assert_equal(is_ppt(mat, 2, np.round(np.sqrt(mat.size))), True)
def test_is_ppt_sys(): """Check that PPT matrix returns True with sys specified.""" mat = np.identity(9) np.testing.assert_equal(is_ppt(mat, 2), True)
def test_is_horodecki_ppt(): """Horodecki state is an example of an entangled PPT state.""" np.testing.assert_equal(is_ppt(horodecki(0.5, [3, 3])), True)
def has_symmetric_extension(rho, level=2, dim=None, ppt=True, tol=1e-4) -> bool: r""" Determine whether there exists a symmetric extension for a given quantum state. [DPS02]_. Determining whether an operator possesses a symmetric extension at some level :code:`level` can be used as a check to determine if the operator is entangled or not. This function was adapted from QETLAB. Examples ========== 2-qubit symmetric extension: In [CJKLZB14]_, it was shown that a 2-qubit state :math:`\rho_{AB}` has a symmetric extension if and only if .. math:: \text{Tr}(\rho_B^2) \geq \text{Tr}(\rho_{AB}^2) - 4 \sqrt{\text{det}(\rho_{AB})}. This closed-form equation is much quicker to check than running the semidefinite program. >>> import numpy as np >>> from toqito.state_props import has_symmetric_extension >>> rho = np.array([[1, 0, 0, -1], >>> [0, 1, 1/2, 0], >>> [0, 1/2, 1, 0], >>> [-1, 0, 0, 1]]) >>> # Show the closed-form equation holds >>> np.trace(partial_trace(rho, 1)**2) >= np.trace(rho**2) - 4 * np.sqrt(np.linalg.det(rho)) True >>> # Now show that the `has_symmetric_extension` function recognizes this case. >>> has_symmetric_extension(rho) True Higher qubit systems: Consider a density operator corresponding to one of the Bell states. .. math:: \rho = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} To make this state over more than just two qubits, let's construct the following state .. math:: \sigma = \rho \otimes \rho. As the state :math:`\sigma` is entangled, there should not exist a symmetric extension at some level. We see this being the case for a relatively low level of the hierachy. >>> import numpy as np >>> from toqito.states import bell >>> from toqito.state_props import has_symmetric_extension >>> >>> rho = bell(0) * bell(0).conj().T >>> sigma = np.kron(rho, rho) >>> has_symmetric_extension(sigma) False References ========== .. [DPS02] Doherty, Andrew C., Pablo A. Parrilo, and Federico M. Spedalieri. "Distinguishing separable and entangled states." Physical Review Letters 88.18 (2002): 187904. https://arxiv.org/abs/quant-ph/0112007 .. [CJKLZB14] Chen, J., Ji, Z., Kribs, D., Lütkenhaus, N., & Zeng, B. "Symmetric extension of two-qubit states." Physical Review A 90.3 (2014): 032318. https://arxiv.org/abs/1310.3530 :param rho: A matrix or vector. :param level: Level of the hierarchy to compute. :param dim: The default has both subsystems of equal dimension. :param ppt: If :code:`True`, this enforces that the symmetric extension must be PPT. :param tol: Tolerance when determining whether a symmetric extension exists. :return: :code:`True` if :code:`mat` has a symmetric extension; :code:`False` otherwise. """ len_mat = rho.shape[1] # Set default dimension if none was provided. if dim is None: dim = int(np.round(np.sqrt(len_mat))) # Allow the user to enter in a single integer for dimension. if isinstance(dim, int): dim = np.array([dim, len_mat / dim]) if np.abs(dim[1] - np.round(dim[1])) >= 2 * len_mat * np.finfo(float).eps: raise ValueError( "If `dim` is a scalar, it must evenly divide the length of the matrix." ) dim[1] = int(np.round(dim[1])) dim_x, dim_y = int(dim[0]), int(dim[1]) # In certain situations, we don't need semidefinite programming. if level == 1 or len_mat <= 6 and ppt: if not ppt: # In some cases, the problem is *really* trivial. return is_positive_semidefinite(rho) # In this case, all they asked for is a 1-copy PPT symmetric extension # (i.e., they're asking if the state is PPT). return is_ppt(rho, 2, dim) and is_positive_semidefinite(rho) # In the 2-qubit case, an analytic formula is known for whether or not a state has a # (2-copy, non-PPT) symmetric extension that is much faster to use than semidefinite # programming [CJKLZB14]_. if level == 2 and not ppt and dim_x == 2 and dim_y == 2: return np.trace(np.linalg.matrix_power(partial_trace(rho, 1), 2)) >= np.trace( np.linalg.matrix_power(rho, 2) ) - 4 * np.sqrt(np.linalg.det(rho)) # Otherwise, use semidefinite programming to find a symmetric extension. # If the optimal value of the symmetric extension hierarchy is equal to 1, # this indicates that there does not exist a symmetric extension at # level :code:`level`. return not np.isclose( (1 - min(symmetric_extension_hierarchy([rho], probs=None, level=level), 1)), 0, atol=tol, )