Beispiel #1
0
    def testAddSubFallback(self):
        torch._lazy.config.set_force_fallback("aten::sub")
        device = get_test_device()
        x = torch.randn(2, 3, 4, device=device)
        y = torch.randn(2, 3, 4, device=device)
        z = torch.zeros(2, 3, 4, device=device)

        device = 'lazy'
        x_lazy = x.detach().clone().to(device=device)
        y_lazy = y.detach().clone().to(device=device)
        z_lazy = z.detach().clone().to(device=device)

        for i in range(10):
            if i < 5:
                z += (x + y)
            else:
                z += (x - y)

        for i in range(10):
            if i < 5:
                z_lazy += (x_lazy + y_lazy)
            else:
                z_lazy += (x_lazy - y_lazy)
            torch._lazy.mark_step()

        torch.testing.assert_close(z.cpu(), z_lazy.cpu())
        assert metrics.counter_value(
            "IrNodeReused_torch::lazy::AddTensor") >= 8
        metrics.reset()
        torch._lazy.ir_cache.reset()
        torch._lazy.config.set_force_fallback("")
Beispiel #2
0
    def testBatchNorm(self):
        device = get_test_device()
        x = torch.randn(16, 3, 224, 224, device=device)
        weight = torch.randn(3, device=device)
        bias = torch.randn(3, device=device)

        for i in range(10):
            # BatchNorm2d does extra checks on dimensions which SymInts don't support yet
            # so we call `torch.ops.aten.native_batch_norm` to bypass the checks.
            z, _, _ = torch.ops.aten.native_batch_norm(x, weight, bias, None,
                                                       None, True, 0.1, 1e-5)

        device = "lazy"
        x_lazy = x.detach().clone().to(device=device)
        weight_lazy = weight.detach().clone().to(device=device)
        bias_lazy = bias.detach().clone().to(device=device)
        for i in range(10):
            z_lazy, _, _ = torch.ops.aten.native_batch_norm(
                x_lazy, weight_lazy, bias_lazy, None, None, True, 0.1, 1e-5)
            torch._lazy.mark_step()

        torch.testing.assert_close(z.cpu(), z_lazy.cpu())
        assert metrics.counter_value(
            "IrNodeReused_torch::lazy::TSNativeBatchNormForward") >= 7
        metrics.reset()
        torch._lazy.ir_cache.reset()
Beispiel #3
0
    def testBatchNorm(self):
        device = get_test_device()
        x = torch.randn(16, 3, 224, 224, device=device)
        bn = torch.nn.BatchNorm2d(3).to(device=device)
        for i in range(10):
            z = bn(x)

        device = "lazy"
        x_lazy = x.detach().clone().to(device=device)
        bn = bn.to(device=device)
        for i in range(10):
            z_lazy = bn(x_lazy)
            torch._lazy.mark_step()

        torch.testing.assert_close(z.cpu(), z_lazy.cpu())
        assert metrics.counter_value(
            "IrNodeReused_torch::lazy::TSNativeBatchNormForward") >= 7
        metrics.reset()
        torch._lazy.ir_cache.reset()
Beispiel #4
0
    def testAdd(self):
        device = get_test_device()
        x = torch.randn(2, 3, 4, device=device)
        y = torch.randn(2, 3, 4, device=device)
        z = torch.zeros(2, 3, 4, device=device)

        device = 'lazy'
        x_lazy = x.detach().clone().to(device=device)
        y_lazy = y.detach().clone().to(device=device)
        z_lazy = z.detach().clone().to(device=device)

        for i in range(10):
            z += (x + y)

        for i in range(10):
            z_lazy += (x_lazy + y_lazy)
            torch._lazy.mark_step()

        torch.testing.assert_close(z.cpu(), z_lazy.cpu())
        assert metrics.counter_value(
            "IrNodeReused_torch::lazy::AddTensor") >= 14
        metrics.reset()
        torch._lazy.ir_cache.reset()
def extract_compiled_graph(model: fx.GraphModule, example_inputs) -> Callable:
    """
    Optimize an eager model with LTC and returns a wrapper to execute the
    compiled graph directly without retracing. It depends on other mechanisms
    like TorchDynamo guards to guarantee the returned wrapper is only called
    when it's safe.
    """
    lazy_args = [arg.to(device="lazy") for arg in example_inputs]
    args_tensor_ids = [lazy.get_tensor_id(lazy_arg) for lazy_arg in lazy_args]
    tensor_id_to_arg_idx = {
        tensor_id: i
        for i, tensor_id in enumerate(args_tensor_ids)
    }
    lazy_model = copy.deepcopy(model).to(device=torch.device("lazy"))
    force_lazy_device(lazy_model)

    # This line executes lazy tracing and enable us extracting compiled graph later
    metrics.reset()
    lazy_out = lazy_model(*lazy_args)
    fallback_ops = get_fallback_ops()
    metrics.reset()

    if len(fallback_ops) > 0:
        raise RuntimeError(
            f"Fail to extact the compiled graph because of fallback: {','.join(fallback_ops)}"
        )

    if not isinstance(lazy_out, (tuple, list)):
        lazy_out = (lazy_out, )

    args_and_out = tuple(lazy_args) + tuple(lazy_out)
    return_value_handler = ReturnValueHandler(args_and_out)
    if debug:
        print("Fx code:\n", model.code)
        print("LTC IR:", lazy_debug.dump_ir(args_and_out, "text"))

    # TODO: this part is TS backend specific for now and will be generalized to
    # support XLA
    (
        graph_input_tensor_ids,
        graph_input_ivalues,
    ) = computation.get_tensors_ts_device_data_node(args_and_out)
    assert len(graph_input_tensor_ids) == len(graph_input_ivalues)
    graph_input_matcher = GraphInputMatcher(tensor_id_to_arg_idx,
                                            graph_input_tensor_ids,
                                            graph_input_ivalues)

    graph_hash = computation.get_graph_hash(args_and_out)

    if debug:
        print("graph_hash", graph_hash)
        print(f"args_tensor_ids {args_tensor_ids}")
        print("tensor ids from device data:", graph_input_tensor_ids)

    # sync the list of output tensors so the computation graph for these
    # tensors will be cached. Those computation graphs can be retrieved
    # by graph hash later.
    lazy.sync_multi(args_and_out, [])

    def optimized_mod(*args):
        if len(args_and_out) == 0:
            return ()
        graph_input = graph_input_matcher(args)
        res = return_value_handler.duplicate_eager_tensors(
            computation.run_cached_graph(graph_hash, graph_input))

        assert len(res) == len(args_and_out)
        for i, arg in enumerate(args):
            # only copy those tensors that get inplace updated
            if arg is not res[i]:
                arg.copy_(res[i])

        # skip the args
        return res[len(args):]

    return optimized_mod