Beispiel #1
0
def transpose(a: TensorLikeType, dim0: int, dim1: int) -> TensorLikeType:
    _dim0, _dim1 = utils.canonicalize_dims(a.ndim, (dim0, dim1))  # type: ignore[misc]

    if a.ndim <= 1:
        return a

    _permutation = list(range(0, a.ndim))
    _permutation[_dim0] = _dim1
    _permutation[_dim1] = _dim0
    return prims.transpose(a, _permutation)
Beispiel #2
0
def matrix_norm(
    A: TensorLikeType,
    ord: Union[float, str] = "fro",
    dim: DimsType = (-2, -1),
    keepdim: bool = False,
    *,
    dtype: Optional[torch.dtype] = None,
) -> TensorLikeType:
    # shape
    check_is_matrix(A, "linalg.matrix_norm")
    # dim
    dim = utils.canonicalize_dims(A.ndim, dim)
    if isinstance(dim, int):
        dim = (dim, )  # type: ignore[assignment]
    check(
        len(dim) == 2,
        lambda: "linalg.matrix_norm: dim must be a 2-tuple. Got {dim}")
    check(
        dim[0] != dim[1],
        lambda:
        "linalg.matrix_norm: dims must be different. Got ({dim[0]}, {dim[1]})",
    )
    # dtype arg
    check_norm_dtype(dtype, A.dtype, "linalg.matrix_norm")

    if isinstance(ord, str):
        # ord
        check(
            ord in ("fro", "nuc"),
            lambda: "linalg.matrix_norm: Order {ord} not supported.",
        )
        # dtype
        check_fp_or_complex(A.dtype,
                            "linalg.matrix_norm",
                            allow_low_precision_dtypes=ord != "nuc")

        if ord == "fro":
            return vector_norm(A, 2, dim, keepdim, dtype=dtype)
        else:  # ord == "nuc"
            if dtype is not None:
                A = prims.convert_element_type(A, dtype)
            perm = backshift_permutation(dim[0], dim[1], A.ndim)
            result = torch.sum(svdvals(prims.transpose(A, perm)), -1, keepdim)
            if keepdim:
                inv_perm = inverse_permutation(perm)
                result = prims.transpose(torch.unsqueeze(result, -1), inv_perm)
            return result
    else:
        # ord
        abs_ord = abs(ord)
        check(
            abs_ord in (2, 1, float("inf")),
            lambda: "linalg.matrix_norm: Order {ord} not supported.",
        )
        # dtype
        check_fp_or_complex(A.dtype,
                            "linalg.matrix_norm",
                            allow_low_precision_dtypes=ord != 2)

        max_min = partial(torch.amax if ord > 0.0 else torch.amin,
                          keepdim=keepdim)

        if abs_ord == 2.0:
            if dtype is not None:
                A = prims.convert_element_type(A, dtype)
            perm = backshift_permutation(dim[0], dim[1], A.ndim)
            result = max_min(svdvals(prims.transpose(A, perm)), dim=-1)
            if keepdim:
                inv_perm = inverse_permutation(perm)
                result = prims.transpose(torch.unsqueeze(result, -1), inv_perm)
            return result
        else:  # 1, -1, inf, -inf
            dim0, dim1 = dim
            if abs_ord == float("inf"):
                dim0, dim1 = dim1, dim0
            if not keepdim and (dim0 < dim1):
                dim1 -= 1
            return max_min(
                vector_norm(A, 1.0, dim=dim0, keepdim=keepdim, dtype=dtype),
                dim1)
Beispiel #3
0
def permute(a: TensorLikeType, dims: DimsSequenceType) -> TensorLikeType:
    _permutation = utils.canonicalize_dims(a.ndim, dims)
    return prims.transpose(a, _permutation)