Beispiel #1
0
    def from_float(cls, mod):
        r"""Create a quantized sparse dynamic module from a float module.

        We only care about the convert at this stage, no need for observers just yet.
        """
        assert type(mod) == cls._FLOAT_MODULE, ' nnq.' + cls.__name__ + '.from_float only works for ' + \
            cls._FLOAT_MODULE.__name__
        # TODO: Need to add options to qconfig to avoid the calibration.
        # TODO: Add calibration for the sparsity
        assert hasattr(
            mod, 'qconfig'), 'Input float module must have qconfig defined'
        if type(mod) == nni.LinearReLU:
            mod = mod[0]
        if mod.qconfig is not None and mod.qconfig.weight is not None:
            weight_observer = mod.qconfig.weight()
        else:
            # We have the circular import issues if we import the qconfig in the beginning of this file:
            # https://github.com/pytorch/pytorch/pull/24231. The current workaround is to postpone the
            # import until we need it.
            from torch.ao.quantization.qconfig import default_dynamic_qconfig
            weight_observer = default_dynamic_qconfig.weight()

        # It is important to multiply by the mask BEFORE calling the `weight_observer`
        # TODO (zaf): Mask might not be part of the qconfig (T83295194)
        weight = mod.weight
        if getattr(mod.qconfig, 'mask', False):
            weight = mod.qconfig.mask * mod.weight

        weight_observer(weight)
        dtype = weight_observer.dtype
        assert dtype == torch.qint8, 'Weight observer must have dtype torch.qint8'
        w_sc, w_zp = weight_observer.calculate_qparams()
        if isinstance(w_zp, torch.Tensor):
            assert not torch.any(
                w_zp.bool()), "All weight zero points must map to 0"
        else:
            assert w_zp == 0, 'Weight zero point must map to 0'
        qweight = _quantize_weight(weight.float(), weight_observer)

        row_block_size, col_block_size = LinearBlockSparsePattern.block_size()
        qlinear = cls(mod.in_features,
                      mod.out_features,
                      row_block_size,
                      col_block_size,
                      dtype=dtype)
        qlinear.set_weight_bias(qweight, mod.bias, row_block_size,
                                col_block_size)
        return qlinear
Beispiel #2
0
    def from_float(cls, mod):
        r"""Create a quantized sparse module from a float module.

        We only care about the convert at this stage, no need for observers just yet.

        TODO: Need to figure out how to store the block shapes in the mod
        """
        assert type(mod) == cls._FLOAT_MODULE, cls._get_name() + \
            '.from_float only works for ' + cls._FLOAT_MODULE.__name__
        # TODO: Need to add options to qconfig to avoid the calibration.
        # TODO: Add calibration for the sparsity
        assert hasattr(
            mod, 'qconfig'), 'Input float module must have qconfig defined'
        activation_post_process = mod.activation_post_process
        weight_post_process = mod.qconfig.weight()

        # Assumption is that the weight is already sparsified by the
        # `sparsifier.convert`
        weight = mod.weight

        weight_post_process(weight)
        dtype = weight_post_process.dtype
        act_scale, act_zp = activation_post_process.calculate_qparams()
        assert dtype == torch.qint8, 'Weight observer must have dtype torch.qint8'
        w_sc, w_zp = weight_post_process.calculate_qparams()
        if isinstance(w_zp, torch.Tensor):
            assert not torch.any(
                w_zp.bool()), "All weight zero points must map to 0"
        else:
            assert w_zp == 0, 'Weight zero point must map to 0'
        qweight = _quantize_weight(weight.float(), weight_post_process)

        row_block_size, col_block_size = LinearBlockSparsePattern.block_size()
        qlinear = cls(mod.in_features,
                      mod.out_features,
                      row_block_size,
                      col_block_size,
                      dtype=dtype)
        qlinear.set_weight_bias(qweight, mod.bias, row_block_size,
                                col_block_size)
        qlinear.scale = float(act_scale)
        qlinear.zero_point = int(act_zp)
        return qlinear
Beispiel #3
0
    def test_sparse_qlinear_serdes(self):
        batch_size = 12
        input_channels = 4
        output_channels = 7
        model = self.SparseQuantizedModel(input_channels, output_channels)

        # For sparse kernels both the activation and weight ZP = 0
        X_scale = 0.2
        X_zp = 0
        W_scale = 1e-2
        W_zp = 0

        with override_cpu_allocator_for_qnnpack(qengine_is_qnnpack()):
            X_fp32 = torch.randn(batch_size,
                                 input_channels,
                                 dtype=torch.float32)
            float_bias = torch.randn(output_channels, dtype=torch.float32)

            X_q = torch.quantize_per_tensor(X_fp32,
                                            scale=X_scale,
                                            zero_point=X_zp,
                                            dtype=torch.quint8)
            X_fp32 = X_q.dequantize()

            W_fp32 = torch.randn(output_channels,
                                 input_channels,
                                 dtype=torch.float32)
            mask = torch.randint(0, 2, W_fp32.shape)
            W_fp32 *= mask
            W_q = torch.quantize_per_tensor(W_fp32, W_scale, W_zp, torch.qint8)

            model.linear.weight = nn.Parameter(W_q.dequantize())
            model.linear.sparse_params = {'sparse_block_shape': (1, 4)}
            model.eval()

            # Note: At the moment, for sparse kernels
            # fbgemm supports only static quantized sparse linear
            # qnnpack supports only dynamically quantized sparse linear
            # Hence we have two different tests.
            # fbgemm tests static flow, qnnpack tests dynamic.
            # Should be unified later on and tests should be fixed
            # appropriately.
            if qengine_is_fbgemm():
                model.qconfig = tq.get_default_qconfig('fbgemm')
                qmodel = copy.deepcopy(model)
                sqmodel = copy.deepcopy(model)

                tq.prepare(qmodel, inplace=True)
                tq.prepare(sqmodel, inplace=True)

                with torch.no_grad():
                    qmodel(X_fp32)
                    sqmodel(X_fp32)

                # Make sure the quantization parameters are computed the same way
                qparams = qmodel.linear.qconfig.weight().calculate_qparams()
                sqparams = sqmodel.linear.qconfig.weight().calculate_qparams()
                self.assertEqual(qparams, sqparams)

                # Make sure mapping of sparse kernels does not affect the non-sparse
                sparse_mapping = tq.get_default_static_quant_module_mappings()
                sparse_mapping[nn.Linear] = ao_nn_sq.Linear
                tq.convert(sqmodel, inplace=True, mapping=sparse_mapping)
                tq.convert(qmodel, inplace=True)

                assert isinstance(sqmodel.linear,
                                  ao_nn_sq.Linear), "Convert failed"
                assert isinstance(qmodel.linear,
                                  nn.quantized.Linear), "Mapping failed"

                scripted_sqmodel = torch.jit.script(sqmodel)
                scripted_sqmodel.eval()
                buffer = io.BytesIO()
                torch.jit.save(scripted_sqmodel, buffer)
                buffer.seek(0)
                sqmodel = torch.jit.load(buffer)

                # Make sure numerics are right
                Y_ref = qmodel(X_q)
                Y_hat = sqmodel(X_q)
                self.assertEqual(Y_ref.dequantize(), Y_hat.dequantize())

            elif qengine_is_qnnpack():
                qconfig = {nn.Linear: tq.qconfig.default_dynamic_qconfig}
                dqmodel = copy.deepcopy(model)
                sdqmodel = copy.deepcopy(model)

                tq.propagate_qconfig_(dqmodel, qconfig)
                tq.propagate_qconfig_(sdqmodel, qconfig)

                # Make sure the quantization parameters are computed the same way
                qparams = dqmodel.linear.qconfig.weight().calculate_qparams()
                sqparams = sdqmodel.linear.qconfig.weight().calculate_qparams()
                self.assertEqual(qparams, sqparams)

                # Make sure mapping of sparse kernels does not affect the non-sparse
                sparse_mapping = copy.deepcopy(
                    tq.get_default_dynamic_quant_module_mappings())
                sparse_mapping[nn.Linear] = ao_nn_sq.dynamic.Linear
                with LinearBlockSparsePattern(1, 4):
                    tq.convert(sdqmodel, inplace=True, mapping=sparse_mapping)
                tq.convert(
                    dqmodel,
                    mapping=tq.get_default_dynamic_quant_module_mappings(),
                    inplace=True)

                assert isinstance(sdqmodel.linear,
                                  ao_nn_sq.dynamic.Linear), "Convert failed"
                assert isinstance(
                    dqmodel.linear,
                    nn.quantized.dynamic.Linear), "Mapping failed"

                scripted_sdqmodel = torch.jit.script(sdqmodel)
                scripted_sdqmodel.eval()
                buffer = io.BytesIO()
                torch.jit.save(scripted_sdqmodel, buffer)
                buffer.seek(0)
                sdqmodel = torch.jit.load(buffer)

                # Make sure numerics are right
                Y_ref = dqmodel(X_fp32)
                Y_hat = sdqmodel(X_fp32)
                self.assertEqual(Y_ref, Y_hat)