Beispiel #1
0
lr = opt_args['lr']
#initiating the GAR
gar = aggregators.gars.get(gar)
assert gar is not None

os.environ['MASTER_ADDR'] = master
os.environ['MASTER_PORT'] = '29500'
torch.manual_seed(1234)  #For reproducibility
if torch.cuda.is_available():
    torch.cuda.manual_seed_all(1234)  #For reproducibility
if bench:
    torch.backends.cudnn.benchmark = True

#convention: low ranks are reserved for parameter servers
if rank < num_ps:
    rpc.init_rpc('ps:{}'.format(rank), rank=rank, world_size=world_size)
    #Initialize a parameter server and write the training loop
    ps = Server(rank, world_size, num_workers, 1, fw, fps, 'worker:', 'ps:',
                batch, model, dataset, optimizer, **opt_args)
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        ps.optimizer, milestones=[150, 250, 350], gamma=0.1
    )  #This line shows sophisticated stuff that can be done out of the Garfield++ library
    start_time = time()
    iter_per_epoch = CIFAR_NUM_SAMPLES // (
        num_workers * batch)  #this value records how many iteration per sample
    print("One EPOCH consists of {} iterations".format(iter_per_epoch))
    sys.stdout.flush()
    for i in range(num_iter):
        if i % (
                iter_per_epoch * 30
        ) == 0 and i != 0:  #One hack for better convergence with Cifar10
Beispiel #2
0
def run_worker(rank, world_size):
    r"""
    A wrapper function that initializes RPC, calls the function, and shuts down
    RPC.
    """

    # We need to use different port numbers in TCP init_method for init_rpc and
    # init_process_group to avoid port conflicts.
    rpc_backend_options = ProcessGroupRpcBackendOptions()
    rpc_backend_options.init_method = 'tcp://localhost:29501'

    # Rank 2 is master, 3 is ps and 0 and 1 are trainers.
    if rank == 2:
        rpc.init_rpc("master",
                     rank=rank,
                     world_size=world_size,
                     rpc_backend_options=rpc_backend_options)

        # Build the embedding table on the ps.
        emb_rref = rpc.remote("ps",
                              torch.nn.EmbeddingBag,
                              args=(NUM_EMBEDDINGS, EMBEDDING_DIM),
                              kwargs={"mode": "sum"})

        # Run the training loop on trainers.
        futs = []
        for trainer_rank in [0, 1]:
            trainer_name = "trainer{}".format(trainer_rank)
            fut = rpc.rpc_async(trainer_name,
                                _run_trainer,
                                args=(emb_rref, rank))
            futs.append(fut)

        # Wait for all training to finish.
        for fut in futs:
            fut.wait()
    elif rank <= 1:
        # Initialize process group for Distributed DataParallel on trainers.
        dist.init_process_group(backend="gloo",
                                rank=rank,
                                world_size=2,
                                init_method='tcp://localhost:29500')

        # Initialize RPC.
        trainer_name = "trainer{}".format(rank)
        rpc.init_rpc(trainer_name,
                     rank=rank,
                     world_size=world_size,
                     rpc_backend_options=rpc_backend_options)

        # Trainer just waits for RPCs from master.
    else:
        rpc.init_rpc("ps",
                     rank=rank,
                     world_size=world_size,
                     rpc_backend_options=rpc_backend_options)
        # parameter server do nothing
        pass

    # block until all rpcs finish
    rpc.shutdown()
ntokens = len(vocab)  # the size of vocabulary
emsize = 4096  # embedding dimension
nhid = 4096  # the dimension of the feedforward network model in nn.TransformerEncoder
nlayers = 12  # the number of nn.TransformerEncoderLayer in nn.TransformerEncoder
nhead = 16  # the number of heads in the multiheadattention models
dropout = 0.2  # the dropout value

from torch.distributed import rpc

tmpfile = tempfile.NamedTemporaryFile()
rpc.init_rpc(
    name="worker",
    rank=0,
    world_size=1,
    rpc_backend_options=rpc.TensorPipeRpcBackendOptions(
        init_method="file://{}".format(tmpfile.name),
        # Specifying _transports and _channels is a workaround and we no longer
        # will have to specify _transports and _channels for PyTorch
        # versions >= 1.8.1
        _transports=["ibv", "uv"],
        _channels=["cuda_ipc", "cuda_basic"],
    ))

num_gpus = 2
partition_len = ((nlayers - 1) // num_gpus) + 1

# Add encoder in the beginning.
tmp_list = [Encoder(ntokens, emsize, dropout).cuda(0)]
module_list = []

# Add all the necessary transformer blocks.
for i in range(nlayers):
Beispiel #4
0
def run_worker(rank, world_size, args):
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '29500'
    if rank == 0:
        # rank0 is the agent
        rpc.init_rpc(AGENT_NAME, rank=rank, world_size=world_size)

        logdir = "./data/gac-parallel/{}/{}-seed{}-{}".format(
            args.env_name, args.env_name, args.seed, time())
        config_name = 'config.json'
        file_name = 'progress.csv'
        model_name = 'model.pt'
        if not os.path.exists(logdir):
            os.makedirs(logdir)

        config_json = json.dumps(args._asdict())
        config_json = json.loads(config_json)
        output = json.dumps(config_json,
                            separators=(',', ':\t'),
                            indent=4,
                            sort_keys=True)
        with open(os.path.join(logdir, config_name), 'w') as out:
            out.write(output)

        full_name = os.path.join(logdir, file_name)
        csvfile = open(full_name, 'w')
        writer = csv.writer(csvfile, delimiter='\t')
        writer.writerow(
            ['TotalEnvInteracts', 'AverageTestEpRet', 'AverageTestEpLen'])

        full_model_name = os.path.join(logdir, model_name)

        agent = Agent(world_size, args)

        print("Replay buffer warms up.")
        agent.run_episode(args.start_steps, True)
        print("End.")
        print(
            "================================================================="
        )

        for t1 in range(args.total_epoch):
            for t2 in range(int(args.steps_per_epoch / args.steps_per_update)):
                agent.run_episode(args.steps_per_update)
                agent.update()

            test_ret, test_len = agent.test_episode()

            t = t1 * args.steps_per_epoch + (t2 + 1) * args.steps_per_update

            print("Step {:>10}: test_ret = {:<20}, test_len = {:<20}".format(
                t, test_ret, test_len))
            print(
                "-----------------------------------------------------------")

            writer.writerow([t, test_ret, test_len])
            csvfile.flush()
            torch.save(agent.actor_critic, full_model_name)
    else:
        rpc.init_rpc(OBSERVER_NAME.format(rank),
                     rank=rank,
                     world_size=world_size)

    rpc.shutdown()
Beispiel #5
0
def run_worker():
    rpc.init_rpc(name=f"trainer_{config.rank}",
                 rank=config.rank,
                 world_size=config.world_size)
    logger.info("Logger is set - training start")

    # set default gpu device id
    torch.cuda.set_device(config.gpus[0])

    # set seed
    np.random.seed(config.seed)
    torch.manual_seed(config.seed)
    torch.cuda.manual_seed_all(config.seed)

    torch.backends.cudnn.benchmark = True

    # get data with meta info
    # input_size, input_channels, n_classes, train_data = utils.get_data(
    #     config.dataset, config.data_path, cutout_length=0, validation=False)
    #
    net_crit = nn.CrossEntropyLoss().to(device)
    # model = SearchCNNController(input_channels, config.init_channels, n_classes, config.layers,
    #                             net_crit, device_ids=config.gpus)
    # model = model.to(device)
    model = TrainerNet(net_crit)

    # weights optimizer
    # w_optim = torch.optim.SGD(model.weights(), config.w_lr, momentum=config.w_momentum,
    #                           weight_decay=config.w_weight_decay)
    w_optim = DistributedOptimizer(torch.optim.SGD,
                                   model.weights(),
                                   lr=config.w_lr,
                                   momentum=config.w_momentum,
                                   weight_decay=config.w_weight_decay)
    # alphas optimizer
    # alpha_optim = torch.optim.Adam(model.alphas(), config.alpha_lr, betas=(0.5, 0.999),
    #                                weight_decay=config.alpha_weight_decay)
    alpha_optim = DistributedOptimizer(torch.optim.Adam,
                                       model.alphas(),
                                       lr=config.alpha_lr,
                                       betas=(0.5, 0.999),
                                       weight_decay=config.alpha_weight_decay)

    # split data to train/validation
    n_train = len(train_data)
    split = n_train // 2
    world = config.world_size
    rank = config.rank
    indices = list(range(n_train))
    train_sampler = torch.utils.data.sampler.SubsetRandomSampler(
        indices[int(rank * split / world):int((rank + 1) * split / world)])
    valid_sampler = torch.utils.data.sampler.SubsetRandomSampler(
        indices[split + int(rank * (n_train - split) / world):split +
                int(int((rank + 1) * (n_train - split) / world))])
    train_loader = torch.utils.data.DataLoader(train_data,
                                               batch_size=config.batch_size,
                                               sampler=train_sampler,
                                               num_workers=config.workers,
                                               pin_memory=True)
    valid_loader = torch.utils.data.DataLoader(train_data,
                                               batch_size=config.batch_size,
                                               sampler=valid_sampler,
                                               num_workers=config.workers,
                                               pin_memory=True)

    # lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
    #     w_optim, config.epochs, eta_min=config.w_lr_min)
    lrs_rrefs = []
    for opt_rref in w_optim.remote_optimizers:
        lrs_rrefs.append(
            rpc.remote(opt_rref.owner(),
                       create_lr_scheduler,
                       args=(opt_rref, )))

    v_model = SearchCNNController(input_channels,
                                  config.init_channels,
                                  n_classes,
                                  config.layers,
                                  nn.CrossEntropyLoss().to(device),
                                  device_ids=config.gpus).to(device)
    architect = Architect(model, v_model, config.w_momentum,
                          config.w_weight_decay, noise_add)

    if noise_add:
        logger.info("Adding noise")
        for param in model.parameters():
            shape_gaussian[param.data.shape] = gaussian.MultivariateNormal(
                torch.zeros(param.data.shape), torch.eye(param.data.shape[-1]))
    else:
        logger.info("Not adding noise")

    # training loop
    best_top1 = 0.
    for epoch in range(config.epochs):

        with dist_autograd.context() as cid:
            futs = []
            for lrs_rref in lrs_rrefs:
                futs.append(
                    rpc.rpc_async(lrs_rref.owner(),
                                  lrs_step,
                                  args=(lrs_rref, )))
            [fut.wait() for fut in futs]
            lr = remote_method(get_lrs_value,
                               lrs_rrefs.owner(),
                               args=(lrs_rrefs[0], ))
        # lr_scheduler.step()
        # lr = lr_scheduler.get_lr()[0]

        # model.print_alphas(logger)

        # training
        train(train_loader, valid_loader, model, architect, w_optim,
              alpha_optim, lr, epoch)

        # validation
        cur_step = (epoch + 1) * len(train_loader)
        top1 = validate(valid_loader, model, epoch, cur_step)

        # log
        # genotype
        genotype = model.genotype()
        logger.info("genotype = {}".format(genotype))

        # genotype as a image
        plot_path = os.path.join(config.plot_path,
                                 "EP{:02d}".format(epoch + 1))
        caption = "Epoch {}".format(epoch + 1)
        plot(genotype.normal, plot_path + "-normal", caption)
        plot(genotype.reduce, plot_path + "-reduce", caption)

        # save
        if best_top1 < top1:
            best_top1 = top1
            best_genotype = genotype
            is_best = True
        else:
            is_best = False
        utils.save_checkpoint(model, config.path, is_best)
        print("")

    logger.info("Final best Prec@1 = {:.4%}".format(best_top1))
    logger.info("Best Genotype = {}".format(best_genotype))
    rpc.shutdown()
Beispiel #6
0
def dist_init(rank: int,
              world_size: int,
              filename: str,
              filename_rpc: str = "") -> bool:
    """
    Initialize torch distributed, based on a temporary file shared across ranks, which makes it possible for unrelated
    tests to be run concurrently.

    Return false if not enough GPUs present in the system.

    .. warning: This limits the usecase to all ranks being on the same node
    """

    try:
        torch.distributed.rpc.shutdown()
    except Exception:
        pass

    print(f"dist init r={rank}, world={world_size}")

    os.environ["WORLD_SIZE"] = str(world_size)
    os.environ["RANK"] = str(rank)
    url = "file://" + filename
    url_rpc = "file://" + filename_rpc

    if torch_version() >= (1, 6, 0):
        backend = "nccl" if torch.cuda.is_available() else "gloo"
        if backend == "nccl" and torch.cuda.device_count() < world_size:
            logging.warning(
                "Requested world size cannot be reached on this machine, not enough GPUs"
            )
            return False

        torch.distributed.init_process_group(backend=backend,
                                             rank=rank,
                                             world_size=world_size,
                                             init_method=url)

        tp_options = {"init_method": url_rpc}
        # Workaround for bug in torch v1.8.0. Should be fixed in v1.8.1
        if torch_version() == (1, 8, 0):
            tp_options["_transports"] = ["uv"]  # type: ignore

        rpc.init_rpc(
            f"Test{rank}",
            rank=rank,
            world_size=world_size,
            backend=rpc.BackendType.TENSORPIPE,
            rpc_backend_options=rpc.TensorPipeRpcBackendOptions(**tp_options),
        )

    else:
        if world_size > 1:
            # TensorPipe is not available in Torch 1.5
            rpc.init_rpc(
                name=f"Test{rank}",
                rank=rank,
                world_size=world_size,
                rpc_backend_options=rpc.ProcessGroupRpcBackendOptions(
                    init_method=url_rpc),
            )
        elif torch.cuda.is_available():
            torch.distributed.init_process_group(backend="nccl",
                                                 rank=rank,
                                                 world_size=world_size,
                                                 init_method=url)
        else:
            return False

    if torch.cuda.is_available() and torch.cuda.device_count():
        torch.cuda.set_device(rank % torch.cuda.device_count())

    return True
Beispiel #7
0
def _run_threads(rank, world_size, env_spawner, model, optimizer, flags):
    """Initializes RPC clients.

    Intended use as target function for :py:func:`torch.multiprocessing.spawn()`.

    * Spawns a :py:class:`~pytorch_seed_rl.agents.Learner` as client with rank 0.
    * Spawns :py:class:`~pytorch_seed_rl.agents.Actor` as client with rank greater than 0.

    Parameters
    ----------
    rank: `int`
        The rank of the client within the multiprocessing Processgroup.
    worldsize: `int`
        The total number of clients within the multiprocessing Processgroup.
    env_spawner : :py:class:`~pytorch_seed_rl.environments.env_spawner.EnvSpawner`
        Object that spawns an environment on invoking it's
        :py:meth:`~pytorch_seed_rl.environments.env_spawner.EnvSpawner.spawn()` method.
    model : :py:class:`torch.nn.Module`
        A torch model that processes frames as returned
        by an environment spawned by :py:attr:`env_spawner`
    optimizer : :py:class:`torch.nn.Module`
        A torch optimizer that links to :py:attr:`model`
    """
    os.environ['MASTER_ADDR'] = flags.master_address
    os.environ['MASTER_PORT'] = flags.master_port

    if flags.tensorpipe:
        backend = rpc.BackendType.TENSORPIPE
    else:
        backend = rpc.BackendType.PROCESS_GROUP

    if rank == 0:

        rpc.init_rpc(
            LEARNER_NAME.format(rank),
            backend=backend,
            rank=rank,
            world_size=world_size,
        )

        learner_rref = rpc.remote(LEARNER_NAME.format(rank),
                                  Learner,
                                  args=(rank, flags.num_actors, env_spawner,
                                        model, optimizer),
                                  kwargs={
                                      'save_path':
                                      os.path.join(flags.savedir, flags.name),
                                      'pg_cost':
                                      flags.pg_cost,
                                      'baseline_cost':
                                      flags.baseline_cost,
                                      'entropy_cost':
                                      flags.entropy_cost,
                                      'discounting':
                                      flags.discounting,
                                      'grad_norm_clipping':
                                      flags.grad_norm_clipping,
                                      'reward_clipping':
                                      flags.reward_clipping == 'abs_one',
                                      'batchsize_training':
                                      flags.batchsize_training,
                                      'rollout':
                                      flags.rollout,
                                      'total_steps':
                                      flags.total_steps,
                                      'max_epoch':
                                      flags.max_epoch,
                                      'max_time':
                                      flags.max_time,
                                      'threads_prefetch':
                                      flags.threads_prefetch,
                                      'threads_inference':
                                      flags.threads_inference,
                                      'threads_store':
                                      flags.threads_store,
                                      'render':
                                      flags.render,
                                      'max_gif_length':
                                      flags.max_gif_length,
                                      'verbose':
                                      flags.verbose,
                                      'print_interval':
                                      flags.print_interval,
                                      'system_log_interval':
                                      flags.system_log_interval,
                                      'checkpoint_interval':
                                      flags.checkpoint_interval,
                                      'load_checkpoint':
                                      flags.load_checkpoint,
                                      'max_queued_batches':
                                      flags.max_queued_batches,
                                      'max_queued_drops':
                                      flags.max_queued_drops,
                                  })

        learner_rref.remote().loop()
        while not learner_rref.rpc_sync().get_shutdown():
            time.sleep(1)
    else:
        rpc.init_rpc(
            ACTOR_NAME.format(rank),
            backend=backend,
            rank=rank,
            world_size=world_size,
        )

    # block until all rpcs finish
    try:
        rpc.shutdown()
    except RuntimeError:  # RPC connection shut down
        return
Beispiel #8
0
def run_test_pipe(rank,
                  world_size,
                  filename,
                  filename_rpc,
                  skip_dist_init=False):
    pipe_world_size = 2

    if world_size == 1:
        return

    if not skip_dist_init:
        dist_init(rank, world_size, filename, filename_rpc)
    else:
        os.environ["MASTER_ADDR"] = "localhost"
        os.environ["MASTER_PORT"] = "29502"
        rpc.init_rpc(f"Test{rank}", rank=rank, world_size=world_size)

    mpu.initialize_model_parallel(world_size / pipe_world_size,
                                  pipe_world_size)
    model_parallel_size = mpu.get_model_parallel_world_size()
    if torch.distributed.get_rank() == 0:
        print(
            "> testing Sequential + MultiProcessPipe with model parallel size: {}, pipe: {}"
            .format(model_parallel_size, pipe_world_size))
    chunk_size = 4

    seed = 12345
    set_random_seed(seed)
    input_size_coeff = 3
    input_size = input_size_coeff * model_parallel_size
    output_size_coeff = 7
    output_size = output_size_coeff * model_parallel_size
    batch_size = 3 * chunk_size

    target = torch.rand((batch_size, input_size), requires_grad=True).cuda()
    print(f"target = {target}")

    identity = IdentityLayer2D(batch_size, input_size).cuda()

    pipeline_devices = mpu.get_pipeline_parallel_group()

    set_random_seed(seed)
    model = nn.Sequential(
        layers.ColumnParallelLinear(input_size,
                                    output_size,
                                    keep_master_weight_for_test=True,
                                    bias=False).cuda(),
        nn.ReLU(),
        layers.RowParallelLinear(output_size,
                                 input_size,
                                 keep_master_weight_for_test=True,
                                 bias=False).cuda(),
    )
    set_random_seed(seed)

    reference = [
        nn.Linear(input_size, output_size, bias=False).cuda(),
        nn.ReLU(),
        nn.Linear(output_size, input_size, bias=False).cuda(),
    ]

    print(
        f"setup {reference[0].weight.size()}, {model[0].weight.size()}, {(input_size, output_size)}"
    )
    print(f"setup {reference[2].weight.size()}, {(output_size, input_size)}")

    reference[0].weight = Parameter(
        model[0].get_master_weight().clone()).cuda()
    reference[2].weight = Parameter(
        model[2].get_master_weight().clone()).cuda()

    reference = nn.Sequential(*reference)

    def grad_graph(depth, grad):
        result = depth * " " + str(grad)
        if grad:
            for x in grad.next_functions:
                result += "\n" + grad_graph(depth + 1, x[0])
        return result

    def check_weights(x, y, key: str, index=None):
        for i in [2, 0]:
            if index is not None and i != index:
                continue
            left = x[i].get_master_weight()
            right = y[i].weight.data
            if not torch.allclose(left, right,
                                  atol=1.0e-6) or index is not None:
                print(
                    f"check_weights {key}-{i}: left = {left}, \nright = {right}"
                )
            if not torch.equal(left, right):
                print(
                    f"check_weights NOT_EQUAL {key}-{i}: left = {left}, \nright = {right}"
                )
            assert torch.allclose(left, right, atol=1.0e-6)

    def dump_opt_params(opt):
        for i, group in enumerate(opt.param_groups):
            for j, p in enumerate(group["params"]):
                print(f"{torch.distributed.get_rank()}:param {(i,j)} = {p}")
                print(
                    f"{torch.distributed.get_rank()}:param.grad {(i,j)} = {p.grad}"
                )

    def forward_model(model_, target, step=False):
        optimizer = torch.optim.SGD(model_.parameters(), lr=0.01, momentum=0.9)
        optimizer.zero_grad()
        model_.zero_grad()
        output = model_(identity())
        loss = nn.MSELoss()
        model_.zero_grad()
        if step:
            loss(output, target).backward()
            saved_weight_0 = model_[0].weight.data.clone()
            saved_weight_2 = model_[2].weight.data.clone()
            dump_opt_params(optimizer)
            optimizer.step()
            assert not torch.allclose(
                saved_weight_0, model_[0].weight.data, atol=1.0e-6)
            assert not torch.allclose(
                saved_weight_2, model_[2].weight.data, atol=1.0e-6)
        return output

    output = forward_model(model, target)
    reference_output = forward_model(reference, target)

    error = reference_output.sub(output).max()
    torch.distributed.barrier()
    assert error < 1.0e-6

    output = forward_model(model, target)
    error = reference_output.sub(output).max()
    torch.distributed.barrier()
    assert error < 1.0e-6

    output = forward_model(model, target)
    error = reference_output.sub(output).max()
    torch.distributed.barrier()
    assert error < 1.0e-6

    check_weights(model, reference, "before")
    saved_weight_0 = model[0].weight.data.clone()
    saved_weight_2 = model[2].weight.data.clone()
    output = forward_model(model, target, step=True)
    error = reference_output.sub(output).max()
    assert error < 1.0e-6
    model[0].weight.data = saved_weight_0
    model[2].weight.data = saved_weight_2

    worker_map = {
        i: f"Test{i}"
        for i in range(torch.distributed.get_world_size())
    }

    if pipe_world_size == 2:
        print(f"actually doing pipe stuff now")
        assert torch.equal(saved_weight_0, model[0].weight.data)
        assert torch.equal(saved_weight_2, model[2].weight.data)
        pipe_model = MultiProcessPipe(
            model,
            [2, 1],
            group=pipeline_devices,
            worker_map=worker_map,
            input_device=torch.cuda.current_device(),
            chunks=chunk_size,
            pipelined_backward=True,
        ).cuda()
        torch.distributed.barrier()
        pipe_rank = torch.distributed.get_rank(
            group=mpu.get_pipeline_parallel_group())
        print(f"pipe rank is {pipe_rank}")
        if pipe_rank == 0:
            assert torch.equal(saved_weight_0, pipe_model[0].weight.data)
        else:
            if not torch.equal(saved_weight_2, pipe_model[0].weight.data):
                print(
                    f"ne {pipe_rank}: left\n{saved_weight_2}\nright:\n{pipe_model[0].weight.data}"
                )
                assert torch.equal(saved_weight_2, pipe_model[0].weight.data)
        optimizer = torch.optim.SGD(pipe_model.parameters(),
                                    lr=0.01,
                                    momentum=0.9)
        optimizer.zero_grad()
        if pipe_rank == 0:
            assert torch.equal(saved_weight_0, pipe_model[0].weight.data)
            print(f"runner {rank}:\n{pipe_model[0].weight.data}")
        else:
            assert torch.equal(saved_weight_2, pipe_model[0].weight.data)
            print(f"runner {rank}:\n{pipe_model[0].weight.data}")

        if torch.distributed.get_rank(mpu.get_pipeline_parallel_group()) == 1:
            check_weights(model, reference, "pre-pipe", index=2)
        else:
            check_weights(model, reference, "pre-pipe", index=0)

        pipe_output = pipe_model(identity())
        print(f"exited pipe for {rank}")
        forward_model(reference, target, step=True)

        print(f"pipe_output {rank} = {pipe_output}")
        print(f"reference_output {rank} = {reference_output}")

        torch.distributed.barrier()

        if torch.distributed.get_rank(mpu.get_pipeline_parallel_group()) == 1:
            error = reference_output.sub(pipe_output.cuda()).max()
            if error >= 1.0e-6:
                print(f"error bad {error}")
            assert error < 1.0e-6

            loss = nn.MSELoss()
            failed = False
            pipe_output.retain_grad()
            with torch.autograd.profiler.profile() as prof:
                try:
                    loss(pipe_output, target).backward()
                except Exception as e:
                    failed = True
                    print(f"got {e} while doing backward, deadlock?")
            if failed:
                raise RuntimeError("failed somehow")
            dump_opt_params(optimizer)
            optimizer.step()

            print(f"calling check_weights on master")
            check_weights(model, reference, "pipe", index=2)
            print(f"waiting for barrier on master, pid={os.getpid()}")
        else:
            print(f"calling backwards on slave, pid={os.getpid()}")
            failed = False
            with torch.autograd.profiler.profile() as prof:
                try:
                    pipe_model.back_helper(pipe_output)
                except Exception as e:
                    failed = True
                    print(f"got {e} while doing backward, deadlock?")
            if failed:
                raise RuntimeError("failed somehow")
            dump_opt_params(optimizer)
            print(f"calling step on slave")
            optimizer.step()
            print(f"calling check_weights on slave")
            check_weights(model, reference, "pipe", index=0)
            print(f"waiting for barrier on slave")

        pipe_model.zero_grad()
        torch.distributed.barrier()

        pipe_model.eval()
        pipe_output = pipe_model(identity())
        updated_ref_output = forward_model(reference, target)
        if torch.distributed.get_rank(mpu.get_pipeline_parallel_group()) == 1:
            error = updated_ref_output.sub(pipe_output.cuda()).max()
            print(
                f"outputs are ref:\n{updated_ref_output}\npipe:\n{pipe_output}"
            )
            assert error < 1.0e-6
        torch.distributed.barrier()

        print(f"finished waiting for barrier on, pid={os.getpid()}")

    print(f"really exited pipe for {rank}")

    rpc.shutdown()
    torch.distributed.destroy_process_group()
Beispiel #9
0
import os
import torch
import torch.distributed.rpc as rpc

os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '7030'


# FIXME: 函数的定义必须在master和worker中都有,类似存根的概念;
def hello():
    print("hello!")
    return "hi, shuang"


# FIXME: rank数量还没达到 world size,程序会block;
rpc.init_rpc("master", rank=0, world_size=2)

rpc.shutdown()
Beispiel #10
0
        ps		the local server object
        gar		GAR used for aggregation
        aggr_grad	the initial aggregated gradient
        num_iter	the number of iterations to be done; should be log2(t)
        num_wait_ps	the number of servers that should be waited for
  """
    for _ in range(num_iter):
        ps.latest_aggr_grad = aggr_grad
        aggr_grads = ps.get_aggr_grads(num_wait_ps)
        aggr_grad = gar(gradients=aggr_grads, f=f)
    return aggr_grad


#No branching here! All nodes are created equal: no PS and no workers
#Basically, each node has one PS object and one worker object
rpc.init_rpc('node:{}'.format(rank), rank=rank, world_size=world_size)
#rpc._set_rpc_timeout(100000)
#initialize a worker here...the worker is created first because the server relies on the worker creation
Worker(rank, world_size, n, batch, model, dataset, loss)
#Initialize a parameter server
ps = Server(rank, world_size, n, n, f, f, 'node:', 'node:', batch, model,
            dataset, optimizer, **opt_args)
sleep(20)  #works as a synchronization step
scheduler = torch.optim.lr_scheduler.MultiStepLR(
    ps.optimizer, milestones=[150, 250, 350], gamma=0.1
)  #This line shows sophisticated stuff that can be done out of the Garfield++ library
start_time = time()
iter_per_epoch = CIFAR_NUM_SAMPLES // (
    n * batch)  #this value records how many iteration per sample
print("One EPOCH consists of {} iterations".format(iter_per_epoch))
sys.stdout.flush()
Beispiel #11
0
def run_worker(rank, world_size):
    r"""
   A wrapper function that initializes RPC, calls the function, and shuts down
   RPC.
   """

    # Using different port numbers in TCP init_method for init_rpc and
    # init_process_group to avoid port conflicts.
    rpc_backend_options = TensorPipeRpcBackendOptions()
    rpc_backend_options.init_method = "tcp://localhost:29500"

    # Rank 16. Master
    if rank == (NUM_TRAINERS + NUM_PS):

        rpc.init_rpc(
            "master",
            rank=rank,
            backend=BackendType.TENSORPIPE,  # type: ignore[attr-defined]
            world_size=world_size)

        # Build the Embedding tables on the Parameter Servers.
        emb_rref_list = []
        index = 0
        while index < NUM_PS:
            ps_name = "ps{}".format(index)
            emb_rref = rpc.remote(
                ps_name,
                torch.nn.EmbeddingBag,
                args=(NUM_EMBEDDINGS, EMBEDDING_DIM),
                kwargs={"mode": "sum"},
            )
            emb_rref_list.append(emb_rref)
            index += 1

        # Run training loop on the trainers.
        futs = []
        for trainer_rank in range(NUM_TRAINERS):
            trainer_name = "trainer{}".format(trainer_rank)
            fut = rpc.rpc_async(trainer_name,
                                _run_trainer,
                                args=(emb_rref_list, trainer_rank))
            futs.append(fut)

        _print_header()

        measurements_all_trainers = []
        batch_size_all_trainers = 0
        # Wait for all training to finish.
        for fut in futs:
            rank, measurements, batch_size = fut.wait()
            _print_benchmark("Trainer{}".format(rank), batch_size,
                             measurements)
            batch_size_all_trainers += batch_size
            measurements_all_trainers.append(measurements)

        _print_benchmark("All", batch_size_all_trainers,
                         measurements_all_trainers)

    # Rank 0-7. Trainers
    elif rank >= 0 and rank < NUM_PS:

        # Initialize process group for Distributed DataParallel on trainers.
        dist.init_process_group(
            backend=dist.Backend.GLOO,
            rank=rank,
            world_size=NUM_TRAINERS,
            init_method="tcp://localhost:29501",
        )

        # Initialize RPC. Trainer just waits for RPCs from master.
        trainer_name = "trainer{}".format(rank)
        rpc.init_rpc(
            trainer_name,
            rank=rank,
            world_size=world_size,
            rpc_backend_options=rpc_backend_options,
        )

    # Rank 8-15. Parameter Servers
    elif rank >= NUM_TRAINERS and rank < NUM_TRAINERS + NUM_PS:
        ps_name = "ps{}".format(rank - NUM_TRAINERS)
        rpc.init_rpc(
            ps_name,
            rank=rank,
            world_size=world_size,
            backend=BackendType.TENSORPIPE,  # type: ignore[attr-defined]
            rpc_backend_options=rpc_backend_options,
        )
        # parameter server do nothing
        pass

    # block until all rpcs finish
    rpc.shutdown()
Beispiel #12
0
    def __init__(self,
                 world_size: int,
                 current_rank: int,
                 roles: Dict[str, Tuple[type, int]],
                 init_method: str = "tcp://localhost:9100",
                 rpc_timeout: int = 60,
                 rpc_threads: int = 4,
                 rpc_role_dispatcher: Any = None):
        """
        Args:
            world_size:   Size of distributed world.
            current_rank: A unique rank of current process.
            roles: A list of roles executed by all processes.
            init_method:  Backend initialization method.
            rpc_timeout:  Global rpc call timeout in seconds.
            rpc_threads:  Rpc recv/send thread num.
            rpc_role_dispatcher: Rpc role dispatch, by default it is
                :class:`~machin.parallel.distributed.\
RoleDispatcherElection` and uses :class:`machin.parallel.\
distributed.ElectionGroupStableRpc` as its internal election implementation.
        """
        self.world_size = world_size
        self.role_dict = roles
        # Maps role Tuple[str, int] to threads
        self.role_threads = {}

        self.current_rank = current_rank
        self.ranks = [i for i in range(world_size)]
        self.real_names = ["{}".format(i) for i in range(world_size)]
        self.groups = {}
        if rpc_role_dispatcher is not None:
            self.rpc_role_dispatcher = rpc_role_dispatcher
        else:
            role_names = list(roles.keys())
            role_nums = [val[1] for val in roles.values()]
            self.rpc_role_dispatcher = RoleDispatcherElection(
                current_rank, world_size, role_names, role_nums,
                ElectionGroupStableRpc(name="global",
                                       member_ranks=self.ranks,
                                       rank=current_rank,
                                       timeout=rpc_timeout))

        # "<rank-number>" is used as the unique name.
        rpc.init_rpc("{}".format(self.current_rank),
                     rank=current_rank,
                     world_size=world_size,
                     rpc_backend_options=rpc.ProcessGroupRpcBackendOptions(
                         init_method=init_method,
                         num_send_recv_threads=rpc_threads,
                         rpc_timeout=timedelta(seconds=rpc_timeout)))

        # Start role dispatching.
        self.rpc_role_dispatcher.start()
        while True:
            self.rpc_role_dispatcher.get_role_update_cond().wait()
            for role in self.rpc_role_dispatcher.get_roles():
                if role not in self.role_threads:
                    role_class = self.role_dict[role[0]][0]
                    role_thread = Thread(target=_exec_role,
                                         args=(role_class(role[1]), ))
                    role_thread.start()
                    self.role_threads[role] = role_thread
Beispiel #13
0
        hid_dim=args.hid_dim,
        block_type=args.block_type,
        batch_size=args.batch_size,
        input_factory=name_to_input[args.block_type],
        workers=[f'worker{rank}' for rank in range(1, args.world_size)])

    avg_throughput, std_throughput = measure_func(ModelParallelRPC)
    print(f'ModelParallel:\t{avg_throughput:.2f}±{std_throughput:.2f}')


if __name__ == '__main__':
    parser = ArgumentParser()
    parser.add_argument('--hid-dim', type=int, default=1024)
    parser.add_argument('--batches-for-latency', type=int, default=10)
    parser.add_argument('--batches-for-throughput', type=int, default=100)
    parser.add_argument('--batch-size', type=int, default=2048)
    parser.add_argument('--throughput-runs', type=int, default=10)
    parser.add_argument('--rank', type=int, required=True)
    parser.add_argument('--world-size', type=int, required=True)
    parser.add_argument('--layers-per-gpu', type=int, default=56)
    parser.add_argument('--block-type',
                        choices=name_to_block.keys(),
                        required=True)
    args = parser.parse_args()
    rpc.init_rpc(f"worker{args.rank}",
                 rank=args.rank,
                 world_size=args.world_size)
    if args.rank == 0:
        main(args)
    rpc.shutdown()
Beispiel #14
0
    def new_test_method(self, *arg, **kwargs):
        # Setting _ignore_rref_leak to make sure OwnerRRefs are properly deleted
        # in tests.
        import torch.distributed.rpc.api as api
        api._ignore_rref_leak = False

        self.worker_id = self.rank

        if setup_rpc:
            global _ALL_NODE_NAMES
            _ALL_NODE_NAMES = {
                "worker{}".format(rank)
                for rank in range(self.world_size)
            }

            rpc.init_rpc(
                name="worker%d" % self.rank,
                backend=self.rpc_backend,
                rank=self.rank,
                world_size=self.world_size,
                rpc_backend_options=self.rpc_backend_options,
            )

        return_value = old_test_method(self, *arg, **kwargs)

        if setup_rpc:
            if clean_shutdown:
                # Follower reports done.
                if self.rank == MASTER_RANK:
                    on_master_follower_report_done(
                        "worker{}".format(MASTER_RANK))
                else:
                    rpc.rpc_async(
                        "worker{}".format(MASTER_RANK),
                        on_master_follower_report_done,
                        args=("worker{}".format(self.rank), ),
                    )

                # Master waits for followers to report done.
                # Follower waits for master's termination command.
                _TERMINATION_SIGNAL.wait()
                if self.rank == MASTER_RANK:
                    # Master sends termination command.
                    futs = []
                    for dst_rank in range(self.world_size):
                        # torch.distributed.rpc module does not support sending to self.
                        if dst_rank == MASTER_RANK:
                            continue
                        dst_name = "worker{}".format(dst_rank)
                        fut = rpc.rpc_async(dst_name,
                                            set_termination_signal,
                                            args=())
                        futs.append(fut)
                    for fut in futs:
                        assert fut.wait(
                        ) is None, "Sending termination signal failed."

            # Close RPC. Need to do this even if we don't have a clean shutdown
            # since we need to shutdown the RPC agent. If we don't shutdown the
            # RPC agent, tests would fail since RPC agent threads, locks and
            # condition variables are not properly terminated.
            rpc.wait_all_workers()

        return return_value
Beispiel #15
0
def run_parameter_server(rank, world_size):
    print(f"PS master initializing RPC, rank {rank}, world size {world_size}")
    rpc.init_rpc(name="parameter_server", rank=rank, world_size=world_size)
    print("Parameter server done initializing RPC")
    rpc.shutdown()
    print("RPC shutdown on parameter server")
Beispiel #16
0
 def init_rpc_connection(self, global_rank: int, world_size: int) -> None:
     os.environ['MASTER_PORT'] = os.getenv('RPC_MASTER_PORT', '15000')
     rpc.init_rpc(f"worker{global_rank}",
                  rank=global_rank,
                  world_size=world_size)
     self.rpc_initialized = True
Beispiel #17
0
def run_worker(rank, world_size):
    print(f"Worker initializing RPC, rank {rank}, world size {world_size}")
    rpc.init_rpc(name=f"trainer_{rank}", rank=rank, world_size=world_size)
    print(f"Worker {rank} done initializing RPC")
    rpc.shutdown()
    print(f"RPC shutdown on Worker {rank}.")
Beispiel #18
0
    def __init__(
        self,
        name: str,
        rank: int = -1,
        world_size: int = -1,
        init_dist: bool = True,
        init_rpc: bool = True,
        dist_backend: str = "gloo",
        dist_init_method: str = "tcp://localhost:9100",
        rpc_init_method: str = "tcp://localhost:9101",
        dist_timeout: float = 60,
        rpc_timeout: float = 60,
    ):
        """
        Args:
            name: A unique name to identify current process.
            rank: A unique rank of the current process. You do not need to specify
                it if you are using `torch.distributed.launch` or `torchelastic`
            world_size:   Size of the distributed world. You do not need to specify
                it if you are using `torch.distributed.launch` or `torchelastic`
            dist_timeout: Distributed package timeout in seconds.
            rpc_timeout:  Global rpc call timeout in seconds.
        """
        self.world_size = world_size
        self.rank = rank
        self.name = name
        self.groups = {}
        self.group_create_signals = {}

        if init_dist:
            dist.init_process_group(
                backend=dist_backend,
                init_method=dist_init_method,
                timeout=timedelta(seconds=dist_timeout),
                rank=rank,
                world_size=world_size,
            )
        if init_rpc:
            rpc.init_rpc(
                self.name,
                rank=rank,
                world_size=world_size,
                rpc_backend_options=rpc.TensorPipeRpcBackendOptions(
                    init_method=rpc_init_method, rpc_timeout=rpc_timeout
                ),
            )

        # get rank-name mapping
        self.rank_name_map = {}
        for wi in rpc._get_current_rpc_agent().get_worker_infos():
            self.rank_name_map[wi.id] = wi.name

        # Start role dispatching.
        self.started = True
        self.rpc_timeout = rpc_timeout

        # map for paired values and registered services
        self.value_lut = {}
        self.service_lut = {}
        self.lut_lock = Lock()
        self.lut_manager = self.rank_name_map[0]
Beispiel #19
0
def run_worker(rank, world_size):

    ######################################################################
    # Load and batch data
    # -------------------
    #

    ######################################################################
    # The training process uses Wikitext-2 dataset from ``torchtext``. The
    # vocab object is built based on the train dataset and is used to numericalize
    # tokens into tensors. Starting from sequential data, the ``batchify()``
    # function arranges the dataset into columns, trimming off any tokens remaining
    # after the data has been divided into batches of size ``batch_size``.
    # For instance, with the alphabet as the sequence (total length of 26)
    # and a batch size of 4, we would divide the alphabet into 4 sequences of
    # length 6:
    #
    # .. math::
    #   \begin{bmatrix}
    #   \text{A} & \text{B} & \text{C} & \ldots & \text{X} & \text{Y} & \text{Z}
    #   \end{bmatrix}
    #   \Rightarrow
    #   \begin{bmatrix}
    #   \begin{bmatrix}\text{A} \\ \text{B} \\ \text{C} \\ \text{D} \\ \text{E} \\ \text{F}\end{bmatrix} &
    #   \begin{bmatrix}\text{G} \\ \text{H} \\ \text{I} \\ \text{J} \\ \text{K} \\ \text{L}\end{bmatrix} &
    #   \begin{bmatrix}\text{M} \\ \text{N} \\ \text{O} \\ \text{P} \\ \text{Q} \\ \text{R}\end{bmatrix} &
    #   \begin{bmatrix}\text{S} \\ \text{T} \\ \text{U} \\ \text{V} \\ \text{W} \\ \text{X}\end{bmatrix}
    #   \end{bmatrix}
    #
    # These columns are treated as independent by the model, which means that
    # the dependence of ``G`` and ``F`` can not be learned, but allows more
    # efficient batch processing.
    #

    # In 'run_worker'
    def print_with_rank(msg):
        print('[RANK {}]: {}'.format(rank, msg))

    import io
    from torchtext.utils import download_from_url, extract_archive
    from torchtext.data.utils import get_tokenizer
    from torchtext.vocab import build_vocab_from_iterator

    url = 'https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip'
    test_filepath, valid_filepath, train_filepath = extract_archive(
        download_from_url(url, root=".data{}".format(rank)))
    tokenizer = get_tokenizer('basic_english')
    vocab = build_vocab_from_iterator(
        map(tokenizer, iter(io.open(train_filepath, encoding="utf8"))))

    def data_process(raw_text_iter):
        data = [
            torch.tensor([vocab[token] for token in tokenizer(item)],
                         dtype=torch.long) for item in raw_text_iter
        ]
        return torch.cat(tuple(filter(lambda t: t.numel() > 0, data)))

    train_data = data_process(iter(io.open(train_filepath, encoding="utf8")))
    val_data = data_process(iter(io.open(valid_filepath, encoding="utf8")))
    test_data = data_process(iter(io.open(test_filepath, encoding="utf8")))
    device = torch.device(2 * rank)

    def batchify(data, bsz, rank, world_size, is_train=False):
        # Divide the dataset into bsz parts.
        nbatch = data.size(0) // bsz
        # Trim off any extra elements that wouldn't cleanly fit (remainders).
        data = data.narrow(0, 0, nbatch * bsz)
        # Evenly divide the data across the bsz batches.
        data = data.view(bsz, -1).t().contiguous()
        # Divide the data across the ranks only for training data.
        if is_train:
            data_per_rank = data.size(0) // world_size
            data = data[rank * data_per_rank:(rank + 1) * data_per_rank]
        return data.to(device)

    batch_size = 20
    eval_batch_size = 10
    train_data = batchify(train_data, batch_size, rank, world_size, True)
    val_data = batchify(val_data, eval_batch_size, rank, world_size)
    test_data = batchify(test_data, eval_batch_size, rank, world_size)

    ######################################################################
    # Functions to generate input and target sequence
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    #

    ######################################################################
    # ``get_batch()`` function generates the input and target sequence for
    # the transformer model. It subdivides the source data into chunks of
    # length ``bptt``. For the language modeling task, the model needs the
    # following words as ``Target``. For example, with a ``bptt`` value of 2,
    # we’d get the following two Variables for ``i`` = 0:
    #
    # .. image:: ../_static/img/transformer_input_target.png
    #
    # It should be noted that the chunks are along dimension 0, consistent
    # with the ``S`` dimension in the Transformer model. The batch dimension
    # ``N`` is along dimension 1.
    #

    # In 'run_worker'
    bptt = 35

    def get_batch(source, i):
        seq_len = min(bptt, len(source) - 1 - i)
        data = source[i:i + seq_len]
        target = source[i + 1:i + 1 + seq_len].view(-1)
        return data, target

######################################################################
# Model scale and Pipe initialization
# -----------------------------------
#

######################################################################
# To demonstrate training large Transformer models using pipeline parallelism,
# we scale up the Transformer layers appropriately. We use an embedding
# dimension of 4096, hidden size of 4096, 16 attention heads and 8 total
# transformer layers (``nn.TransformerEncoderLayer``). This creates a model with
# **~1 billion** parameters.
#
# We need to initialize the `RPC Framework <https://pytorch.org/docs/stable/rpc.html>`__
# since Pipe depends on the RPC framework via `RRef <https://pytorch.org/docs/stable/rpc.html#rref>`__
# which allows for future expansion to cross host pipelining. We need to
# initialize the RPC framework with only a single worker since we're using a
# single process to drive multiple GPUs.
#
# The pipeline is then initialized with 8 transformer layers on one GPU and 8
# transformer layers on the other GPU. One pipe is setup across GPUs 0 and 1 and
# another across GPUs 2 and 3. Both pipes are then replicated using DistributedDataParallel.

# In 'run_worker'

    ntokens = len(vocab.stoi)  # the size of vocabulary
    emsize = 4096  # embedding dimension
    nhid = 4096  # the dimension of the feedforward network model in nn.TransformerEncoder
    nlayers = 8  # the number of nn.TransformerEncoderLayer in nn.TransformerEncoder
    nhead = 16  # the number of heads in the multiheadattention models
    dropout = 0.2  # the dropout value

    from torch.distributed import rpc
    tmpfile = tempfile.NamedTemporaryFile()
    rpc.init_rpc(
        name="worker",
        rank=0,
        world_size=1,
        rpc_backend_options=rpc.TensorPipeRpcBackendOptions(
            init_method="file://{}".format(tmpfile.name),
            # Specifying _transports and _channels is a workaround and we no longer
            # will have to specify _transports and _channels for PyTorch
            # versions >= 1.8.1
            _transports=["ibv", "uv"],
            _channels=["cuda_ipc", "cuda_basic"],
        ))

    # Num gpus for model parallelism.
    num_gpus = 2
    partition_len = ((nlayers - 1) // num_gpus) + 1

    # Add encoder in the beginning.
    tmp_list = [Encoder(ntokens, emsize, dropout).cuda(2 * rank)]
    module_list = []

    # Add all the necessary transformer blocks.
    for i in range(nlayers):
        transformer_block = TransformerEncoderLayer(emsize, nhead, nhid,
                                                    dropout)
        if i != 0 and i % (partition_len) == 0:
            module_list.append(nn.Sequential(*tmp_list))
            tmp_list = []
        device = i // (partition_len)
        tmp_list.append(transformer_block.to(2 * rank + device))

    # Add decoder in the end.
    tmp_list.append(Decoder(ntokens, emsize).cuda(2 * rank + num_gpus - 1))
    module_list.append(nn.Sequential(*tmp_list))

    # Need to use 'checkpoint=never' since as of PyTorch 1.8, Pipe checkpointing
    # doesn't work with DDP.
    from torch.distributed.pipeline.sync import Pipe
    model = Pipe(torch.nn.Sequential(*module_list),
                 chunks=8,
                 checkpoint="never")

    # Initialize process group and wrap model in DDP.
    from torch.nn.parallel import DistributedDataParallel
    import torch.distributed as dist
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '29500'
    dist.init_process_group(backend="nccl", rank=rank, world_size=world_size)
    model = DistributedDataParallel(model)

    def get_total_params(module: torch.nn.Module):
        total_params = 0
        for param in module.parameters():
            total_params += param.numel()
        return total_params

    print_with_rank('Total parameters in model: {:,}'.format(
        get_total_params(model)))

    ######################################################################
    # Run the model
    # -------------
    #

    ######################################################################
    # `CrossEntropyLoss <https://pytorch.org/docs/master/nn.html?highlight=crossentropyloss#torch.nn.CrossEntropyLoss>`__
    # is applied to track the loss and
    # `SGD <https://pytorch.org/docs/master/optim.html?highlight=sgd#torch.optim.SGD>`__
    # implements stochastic gradient descent method as the optimizer. The initial
    # learning rate is set to 5.0. `StepLR <https://pytorch.org/docs/master/optim.html?highlight=steplr#torch.optim.lr_scheduler.StepLR>`__ is
    # applied to adjust the learn rate through epochs. During the
    # training, we use
    # `nn.utils.clip_grad_norm\_ <https://pytorch.org/docs/master/nn.html?highlight=nn%20utils%20clip_grad_norm#torch.nn.utils.clip_grad_norm_>`__
    # function to scale all the gradient together to prevent exploding.
    #

    # In 'run_worker'
    criterion = nn.CrossEntropyLoss()
    lr = 5.0  # learning rate
    optimizer = torch.optim.SGD(model.parameters(), lr=lr)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)

    import time

    def train():
        model.train()  # Turn on the train mode
        total_loss = 0.
        start_time = time.time()
        ntokens = len(vocab.stoi)

        # Train only for 50 batches to keep script execution time low.
        nbatches = min(50 * bptt, train_data.size(0) - 1)

        for batch, i in enumerate(range(0, nbatches, bptt)):
            data, targets = get_batch(train_data, i)
            optimizer.zero_grad()
            # Since the Pipe is only within a single host and process the ``RRef``
            # returned by forward method is local to this node and can simply
            # retrieved via ``RRef.local_value()``.
            output = model(data).local_value()
            # Need to move targets to the device where the output of the
            # pipeline resides.
            loss = criterion(output.view(-1, ntokens),
                             targets.cuda(2 * rank + 1))
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
            optimizer.step()

            total_loss += loss.item()
            log_interval = 10
            if batch % log_interval == 0 and batch > 0:
                cur_loss = total_loss / log_interval
                elapsed = time.time() - start_time
                print_with_rank('| epoch {:3d} | {:5d}/{:5d} batches | '
                                'lr {:02.2f} | ms/batch {:5.2f} | '
                                'loss {:5.2f} | ppl {:8.2f}'.format(
                                    epoch, batch, nbatches // bptt,
                                    scheduler.get_lr()[0],
                                    elapsed * 1000 / log_interval, cur_loss,
                                    math.exp(cur_loss)))
                total_loss = 0
                start_time = time.time()

    def evaluate(eval_model, data_source):
        eval_model.eval()  # Turn on the evaluation mode
        total_loss = 0.
        ntokens = len(vocab.stoi)
        # Evaluate only for 50 batches to keep script execution time low.
        nbatches = min(50 * bptt, data_source.size(0) - 1)
        with torch.no_grad():
            for i in range(0, nbatches, bptt):
                data, targets = get_batch(data_source, i)
                output = eval_model(data).local_value()
                output_flat = output.view(-1, ntokens)
                # Need to move targets to the device where the output of the
                # pipeline resides.
                total_loss += len(data) * criterion(
                    output_flat, targets.cuda(2 * rank + 1)).item()
        return total_loss / (len(data_source) - 1)

######################################################################
# Loop over epochs. Save the model if the validation loss is the best
# we've seen so far. Adjust the learning rate after each epoch.

# In 'run_worker'

    best_val_loss = float("inf")
    epochs = 3  # The number of epochs
    best_model = None

    for epoch in range(1, epochs + 1):
        epoch_start_time = time.time()
        train()
        val_loss = evaluate(model, val_data)
        print_with_rank('-' * 89)
        print_with_rank(
            '| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
            'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
                                       val_loss, math.exp(val_loss)))
        print_with_rank('-' * 89)

        if val_loss < best_val_loss:
            best_val_loss = val_loss
            best_model = model

        scheduler.step()

######################################################################
# Evaluate the model with the test dataset
# -------------------------------------
#
# Apply the best model to check the result with the test dataset.

# In 'run_worker'
    test_loss = evaluate(best_model, test_data)
    print_with_rank('=' * 89)
    print_with_rank(
        '| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
            test_loss, math.exp(test_loss)))
    print_with_rank('=' * 89)
Beispiel #20
0
def worker_loop(a):
    rpc.init_rpc('worker1', rank=1, world_size=2)
    rpc.shutdown()