Beispiel #1
0
    def forward(self, x):
        # shape: (bsize, channels, height, width)

        assert x.dim() == 4, \
            "Expected input with 4 dimensions (bsize, channels, height, width)"

        if not self.training or self.drop_prob == 0.:
            return x
        else:
            # sample from a mask
            mask_reduction = self.block_size // 2
            mask_height = x.shape[-2] - mask_reduction
            mask_width = x.shape[-1] - mask_reduction
            mask_sizes = [mask_height, mask_width]

            if any([x <= 0 for x in mask_sizes]):
                raise ValueError(
                    'Input of shape {} is too small for block_size {}'.format(
                        tuple(x.shape), self.block_size))
            # get gamma value
            gamma = self._compute_gamma(x, mask_sizes)
            # sample mask
            mask = Bernoulli(gamma).sample((x.shape[0], *mask_sizes))

            # place mask on input device
            mask = mask.to(x.device)  # mask.cuda()

            # compute block mask
            block_mask = self._compute_block_mask(mask)
            channel_mask = self._compute_channel_mask(x, block_mask)
            # apply block mask
            out = x * channel_mask

            return out
Beispiel #2
0
    def forward(self, x):
        # shape: (bsize, channels, height, width)

        assert x.dim() == 4, \
            "Expected input with 4 dimensions (bsize, channels, height, width)"

        if not self.training or self.drop_prob == 0.:
            return x
        else:
            # get gamma value
            gamma = self._compute_gamma(feat_size=x.shape[1])

            # sample from a mask
            mask_reduction = self.block_size // 2
            mask_height = x.shape[2] - mask_reduction
            mask_width = x.shape[3] - mask_reduction
            mask = Bernoulli(gamma).sample(
                (x.shape[0], mask_height, mask_width))

            # place mask on input device
            mask = mask.to(x.device)

            # compute block mask
            block_mask = self._compute_block_mask(mask)

            # apply block mask
            out = x * block_mask[:, None, :, :]

            # scale output
            out = out * block_mask.numel() / block_mask.sum()

            return out
    def forward(ctx, x, p, is_training):
        """
        The forward function.
        Zero out entries of x with probability p.

        Parameters
        ----------
        ctx: torch.autograd.function
            the context object in which to store stuff.
        x: torch.FloatTensor
            the input tensor.
        p: float
            the probability of zeroing out elements.
        is_training: bool
            whether the model is in training mode.

        Returns
        -------
        o: torch.FloatTensor
            the ReLU activated tensor.
        """

        if is_training:
            mask = Bernoulli(1 - p).sample(x.shape)
            mask = mask * (1 / (1 - p))
        else:
            mask = Bernoulli(1).sample(x.shape)

        if x.is_cuda:
            mask = mask.to('cuda')

        ctx.save_for_backward(mask)

        o = x * mask
        return o
Beispiel #4
0
    def forward(self, x):
        # shape: (bsize, channels, height, width)

        assert x.dim() == 4, \
            "Expected input with 4 dimensions (bsize, channels, height, width)"

        if not self.training or self.drop_prob == 0.:
            return x
        else:
            # sample from a mask
            mask_reduction = self.block_size // 2
            mask_height = x.shape[-2] - mask_reduction
            mask_width = x.shape[-1] - mask_reduction
            mask_sizes = [mask_height, mask_width]

            if any([x <= 0 for x in mask_sizes]):
                raise ValueError(
                    'Input of shape {} is too small for block_size {}'.format(
                        tuple(x.shape), self.block_size))

            # get gamma value
            gamma = self._compute_gamma(x, mask_sizes)
            if self.att:
                x_norm = self.normalize(x)
                x_mask = (x_norm > 0.8).float()
                gamma = 1 - (1 - gamma)**(x.shape[-1] * x.shape[-2] *
                                          x_mask.sum() / x_mask.numel())
                gamma = torch.min(gamma.float(), torch.tensor(0.25))

                mask = Bernoulli(1 - gamma).sample(
                    (x.shape[0], x.shape[1])).byte().to(x.device)

                x_mask[mask, :, :] = 0
                block_mask = 1 - x_mask
                out = x * block_mask
            else:
                # sample mask
                mask = Bernoulli(gamma).sample(
                    (x.shape[0], *mask_sizes)).float()

                # place mask on input device
                mask = mask.to(x.device)

                # compute block mask
                block_mask = self._compute_block_mask(mask)

                # apply block mask
                out = x * block_mask[:, None, :, :]

            # scale output
            out = out * block_mask.numel() / block_mask.sum()

            return out
    def forward(self, x):
        # shape: (bsize, channels, height, width)

        assert x.dim() == 4, \
            "Expected input with 4 dimensions (bsize, channels, height, width)"

        if not self.training or self.drop_prob[0] == 0.:
            return x
        else:
            # sample from a mask
            mask_reduction = self.block_size // 2
            mask_height = x.shape[-2] - mask_reduction
            mask_width = x.shape[-1] - mask_reduction
            mask_sizes = [mask_height, mask_width]

            if any([size <= 0 for size in mask_sizes]):
                raise ValueError(
                    'Input of shape {} is too small for block_size {}'.format(
                        tuple(x.shape), self.block_size))

            # get gamma value
            gamma = self._compute_gamma(x, mask_sizes)

            # sample mask
            # modified by Riheng 2018/12/06
            #mask = Bernoulli(gamma).sample((x.shape[0], *mask_sizes))  # *mask_sizes for python3
            mask = Bernoulli(gamma).sample(
                (x.shape[0], mask_height,
                 mask_width))  # can not run in torch0.3.1

            # place mask on input device
            mask = mask.to(x.device)

            # compute block mask
            block_mask = self._compute_block_mask(mask)

            # apply block mask
            out = x * block_mask[:, None, :, :]

            # scale output
            out = out * block_mask.numel() / block_mask.sum()

            return out
Beispiel #6
0
    def forward(self, x):
        # shape: (bsize, channels, depth, height, width)

        assert x.dim() == 5, \
            "Expected input with 5 dimensions (bsize, channels, depth, height, width)"

        if not self.training or self.drop_prob == 0.:
            return x
        else:
            mask_reduction = self.block_size // 2
            mask_depth = x.shape[-3] - mask_reduction
            mask_height = x.shape[-2] - mask_reduction
            mask_width = x.shape[-1] - mask_reduction
            mask_sizes = [mask_depth, mask_height, mask_width]

            if any([x <= 0 for x in mask_sizes]):
                raise ValueError(
                    'Input of shape {} is too small for block_size {}'.format(
                        tuple(x.shape), self.block_size))

            # get gamma value
            gamma = self._compute_gamma(x, mask_sizes)

            # sample mask
            mask = Bernoulli(gamma).sample((x.shape[0], *mask_sizes))

            # place mask on input device
            mask = mask.to(x.device)

            # compute block mask
            block_mask = self._compute_block_mask(mask)

            # apply block mask
            out = x * block_mask[:, None, :, :, :]

            # scale output
            out = out * block_mask.numel() / block_mask.sum()

            return out
 def collate_ae(self, data, train_p=0.75):
     fname, batch = data
     batch = torch.stack(batch)
     bs = batch.size(0)
     sl = batch.size(2)
     ts = batch[:, 0]
     ys = batch[:, 1].unsqueeze(-1)
     p = torch.FloatTensor([train_p])
     mask_train = Bernoulli(p).sample(torch.Size([bs, sl]))
     y_train = ys * mask_train
     y_pred = ys
     batch_dict = {
         'observed_data': y_train.to(device),
         'observed_tp': ts[0].view(-1).to(device),
         'data_to_predict': y_pred.to(device),
         'tp_to_predict': ts[0].view(-1).to(device),
         'observed_mask': mask_train.to(device),
         'mask_predicted_data': None,
         'labels': None,
         'mode': 'interp'
     }
     return batch_dict