def handle_one(oriImg):

    # for visualize
    canvas = np.copy(oriImg)
    imageToTest = Variable(T.transpose(
        T.transpose(T.unsqueeze(torch.from_numpy(oriImg).float(), 0), 2, 3), 1,
        2),
                           volatile=True).cuda()
    print oriImg.shape
    scale = model_['boxsize'] / float(oriImg.shape[0])
    print scale
    h = int(oriImg.shape[0] * scale)
    w = int(oriImg.shape[1] * scale)
    pad_h = 0 if (h % model_['stride']
                  == 0) else model_['stride'] - (h % model_['stride'])
    pad_w = 0 if (w % model_['stride']
                  == 0) else model_['stride'] - (w % model_['stride'])
    new_h = h + pad_h
    new_w = w + pad_w

    imageToTest = cv2.resize(oriImg, (0, 0),
                             fx=scale,
                             fy=scale,
                             interpolation=cv2.INTER_CUBIC)
    imageToTest_padded, pad = util.padRightDownCorner(imageToTest,
                                                      model_['stride'],
                                                      model_['padValue'])
    imageToTest_padded = np.transpose(
        np.float32(imageToTest_padded[:, :, :, np.newaxis]),
        (3, 2, 0, 1)) / 256 - 0.5

    feed = Variable(T.from_numpy(imageToTest_padded)).cuda()

    output1, output2 = model(feed)

    heatmap = nn.UpsamplingBilinear2d(
        (oriImg.shape[0], oriImg.shape[1])).cuda()(output2)

    paf = nn.UpsamplingBilinear2d(
        (oriImg.shape[0], oriImg.shape[1])).cuda()(output1)

    print heatmap.size()
    print paf.size()
    print type(heatmap)
    heatmap_avg = T.transpose(T.transpose(heatmap[0], 0, 1), 1,
                              2).data.cpu().numpy()
    paf_avg = T.transpose(T.transpose(paf[0], 0, 1), 1, 2).data.cpu().numpy()

    all_peaks = []
    peak_counter = 0

    #maps =
    for part in range(18):
        map_ori = heatmap_avg[:, :, part]
        map = gaussian_filter(map_ori, sigma=3)

        map_left = np.zeros(map.shape)
        map_left[1:, :] = map[:-1, :]
        map_right = np.zeros(map.shape)
        map_right[:-1, :] = map[1:, :]
        map_up = np.zeros(map.shape)
        map_up[:, 1:] = map[:, :-1]
        map_down = np.zeros(map.shape)
        map_down[:, :-1] = map[:, 1:]

        peaks_binary = np.logical_and.reduce(
            (map >= map_left, map >= map_right, map >= map_up, map >= map_down,
             map > param_['thre1']))
        #    peaks_binary = T.eq(
        #    peaks = zip(T.nonzero(peaks_binary)[0],T.nonzero(peaks_binary)[0])

        peaks = zip(np.nonzero(peaks_binary)[1],
                    np.nonzero(peaks_binary)[0])  # note reverse

        peaks_with_score = [x + (map_ori[x[1], x[0]], ) for x in peaks]
        id = range(peak_counter, peak_counter + len(peaks))
        peaks_with_score_and_id = [
            peaks_with_score[i] + (id[i], ) for i in range(len(id))
        ]

        all_peaks.append(peaks_with_score_and_id)
        peak_counter += len(peaks)

    connection_all = []
    special_k = []
    mid_num = 10

    for k in range(len(mapIdx)):
        score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
        candA = all_peaks[limbSeq[k][0] - 1]
        candB = all_peaks[limbSeq[k][1] - 1]
        nA = len(candA)
        nB = len(candB)
        indexA, indexB = limbSeq[k]
        if (nA != 0 and nB != 0):
            connection_candidate = []
            for i in range(nA):
                for j in range(nB):
                    vec = np.subtract(candB[j][:2], candA[i][:2])
                    norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
                    vec = np.divide(vec, norm)

                    startend = zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
                                   np.linspace(candA[i][1], candB[j][1], num=mid_num))

                    vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
                                      for I in range(len(startend))])
                    vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
                                      for I in range(len(startend))])

                    score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(
                        vec_y, vec[1])
                    score_with_dist_prior = sum(
                        score_midpts) / len(score_midpts) + min(
                            0.5 * oriImg.shape[0] / norm - 1, 0)
                    criterion1 = len(
                        np.nonzero(score_midpts > param_['thre2'])
                        [0]) > 0.8 * len(score_midpts)
                    criterion2 = score_with_dist_prior > 0
                    if criterion1 and criterion2:
                        connection_candidate.append([
                            i, j, score_with_dist_prior,
                            score_with_dist_prior + candA[i][2] + candB[j][2]
                        ])

            connection_candidate = sorted(connection_candidate,
                                          key=lambda x: x[2],
                                          reverse=True)
            connection = np.zeros((0, 5))
            for c in range(len(connection_candidate)):
                i, j, s = connection_candidate[c][0:3]
                if (i not in connection[:, 3] and j not in connection[:, 4]):
                    connection = np.vstack(
                        [connection, [candA[i][3], candB[j][3], s, i, j]])
                    if (len(connection) >= min(nA, nB)):
                        break

            connection_all.append(connection)
        else:
            special_k.append(k)
            connection_all.append([])

    # last number in each row is the total parts number of that person
    # the second last number in each row is the score of the overall configuration
    subset = -1 * np.ones((0, 20))
    candidate = np.array([item for sublist in all_peaks for item in sublist])

    for k in range(len(mapIdx)):
        if k not in special_k:
            partAs = connection_all[k][:, 0]
            partBs = connection_all[k][:, 1]
            indexA, indexB = np.array(limbSeq[k]) - 1

            for i in range(len(connection_all[k])):  #= 1:size(temp,1)
                found = 0
                subset_idx = [-1, -1]
                for j in range(len(subset)):  #1:size(subset,1):
                    if subset[j][indexA] == partAs[i] or subset[j][
                            indexB] == partBs[i]:
                        subset_idx[found] = j
                        found += 1

                if found == 1:
                    j = subset_idx[0]
                    if (subset[j][indexB] != partBs[i]):
                        subset[j][indexB] = partBs[i]
                        subset[j][-1] += 1
                        subset[j][-2] += candidate[partBs[i].astype(int),
                                                   2] + connection_all[k][i][2]
                elif found == 2:  # if found 2 and disjoint, merge them
                    j1, j2 = subset_idx
                    print "found = 2"
                    membership = ((subset[j1] >= 0).astype(int) +
                                  (subset[j2] >= 0).astype(int))[:-2]
                    if len(np.nonzero(membership == 2)[0]) == 0:  #merge
                        subset[j1][:-2] += (subset[j2][:-2] + 1)
                        subset[j1][-2:] += subset[j2][-2:]
                        subset[j1][-2] += connection_all[k][i][2]
                        subset = np.delete(subset, j2, 0)
                    else:  # as like found == 1
                        subset[j1][indexB] = partBs[i]
                        subset[j1][-1] += 1
                        subset[j1][-2] += candidate[
                            partBs[i].astype(int), 2] + connection_all[k][i][2]

                # if find no partA in the subset, create a new subset
                elif not found and k < 17:
                    row = -1 * np.ones(20)
                    row[indexA] = partAs[i]
                    row[indexB] = partBs[i]
                    row[-1] = 2
                    row[-2] = sum(
                        candidate[connection_all[k][i, :2].astype(int),
                                  2]) + connection_all[k][i][2]
                    subset = np.vstack([subset, row])

    # delete some rows of subset which has few parts occur
    deleteIdx = []
    for i in range(len(subset)):
        if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
            deleteIdx.append(i)
    subset = np.delete(subset, deleteIdx, axis=0)

    #    canvas = cv2.imread(test_image) # B,G,R order
    for i in range(18):
        for j in range(len(all_peaks[i])):
            cv2.circle(canvas,
                       all_peaks[i][j][0:2],
                       4,
                       colors[i],
                       thickness=-1)

    stickwidth = 4

    for i in range(17):
        for n in range(len(subset)):
            index = subset[n][np.array(limbSeq[i]) - 1]
            if -1 in index:
                continue
            cur_canvas = canvas.copy()
            Y = candidate[index.astype(int), 0]
            X = candidate[index.astype(int), 1]
            mX = np.mean(X)
            mY = np.mean(Y)
            length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5
            angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
            polygon = cv2.ellipse2Poly(
                (int(mY), int(mX)), (int(length / 2), stickwidth), int(angle),
                0, 360, 1)
            cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
            canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)

    return canvas
def handle_one(oriImg):
    
    # for visualize
    canvas = np.copy(oriImg)
    imageToTest = Variable(T.transpose(T.transpose(T.unsqueeze(torch.from_numpy(oriImg).float(),0),2,3),1,2),volatile=True).cuda()
    print oriImg.shape
    scale = model_['boxsize'] / float(oriImg.shape[0])
    print scale
    h = int(oriImg.shape[0]*scale)
    w = int(oriImg.shape[1]*scale)
    pad_h = 0 if (h%model_['stride']==0) else model_['stride'] - (h % model_['stride']) 
    pad_w = 0 if (w%model_['stride']==0) else model_['stride'] - (w % model_['stride'])
    new_h = h+pad_h
    new_w = w+pad_w

    imageToTest = cv2.resize(oriImg, (0,0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
    imageToTest_padded, pad = util.padRightDownCorner(imageToTest, model_['stride'], model_['padValue'])
    imageToTest_padded = np.transpose(np.float32(imageToTest_padded[:,:,:,np.newaxis]), (3,2,0,1))/256 - 0.5

    feed = Variable(T.from_numpy(imageToTest_padded)).cuda()      

    output1,output2 = model(feed)

    heatmap = nn.UpsamplingBilinear2d((oriImg.shape[0], oriImg.shape[1])).cuda()(output2)

    paf = nn.UpsamplingBilinear2d((oriImg.shape[0], oriImg.shape[1])).cuda()(output1)       
    
    print heatmap.size()
    print paf.size()
    print type(heatmap)
    heatmap_avg = T.transpose(T.transpose(heatmap[0],0,1),1,2).data.cpu().numpy()
    paf_avg = T.transpose(T.transpose(paf[0],0,1),1,2).data.cpu().numpy()
        
    all_peaks = []
    peak_counter = 0

    #maps = 
    for part in range(18):
        map_ori = heatmap_avg[:,:,part]
        map = gaussian_filter(map_ori, sigma=3)
        
        map_left = np.zeros(map.shape)
        map_left[1:,:] = map[:-1,:]
        map_right = np.zeros(map.shape)
        map_right[:-1,:] = map[1:,:]
        map_up = np.zeros(map.shape)
        map_up[:,1:] = map[:,:-1]
        map_down = np.zeros(map.shape)
        map_down[:,:-1] = map[:,1:]
        
        peaks_binary = np.logical_and.reduce((map>=map_left, map>=map_right, map>=map_up, map>=map_down, map > param_['thre1']))
    #    peaks_binary = T.eq(
    #    peaks = zip(T.nonzero(peaks_binary)[0],T.nonzero(peaks_binary)[0])
        
        peaks = zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]) # note reverse
        
        peaks_with_score = [x + (map_ori[x[1],x[0]],) for x in peaks]
        id = range(peak_counter, peak_counter + len(peaks))
        peaks_with_score_and_id = [peaks_with_score[i] + (id[i],) for i in range(len(id))]

        all_peaks.append(peaks_with_score_and_id)
        peak_counter += len(peaks)
        
        
        
        
        
    connection_all = []
    special_k = []
    mid_num = 10

    for k in range(len(mapIdx)):
        score_mid = paf_avg[:,:,[x-19 for x in mapIdx[k]]]
        candA = all_peaks[limbSeq[k][0]-1]
        candB = all_peaks[limbSeq[k][1]-1]
        nA = len(candA)
        nB = len(candB)
        indexA, indexB = limbSeq[k]
        if(nA != 0 and nB != 0):
            connection_candidate = []
            for i in range(nA):
                for j in range(nB):
                    vec = np.subtract(candB[j][:2], candA[i][:2])
                    norm = math.sqrt(vec[0]*vec[0] + vec[1]*vec[1])
                    vec = np.divide(vec, norm)
                    
                    startend = zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
                                   np.linspace(candA[i][1], candB[j][1], num=mid_num))
                    
                    vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
                                      for I in range(len(startend))])
                    vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
                                      for I in range(len(startend))])

                    score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
                    score_with_dist_prior = sum(score_midpts)/len(score_midpts) + min(0.5*oriImg.shape[0]/norm-1, 0)
                    criterion1 = len(np.nonzero(score_midpts > param_['thre2'])[0]) > 0.8 * len(score_midpts)
                    criterion2 = score_with_dist_prior > 0
                    if criterion1 and criterion2:
                        connection_candidate.append([i, j, score_with_dist_prior, score_with_dist_prior+candA[i][2]+candB[j][2]])

            connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
            connection = np.zeros((0,5))
            for c in range(len(connection_candidate)):
                i,j,s = connection_candidate[c][0:3]
                if(i not in connection[:,3] and j not in connection[:,4]):
                    connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
                    if(len(connection) >= min(nA, nB)):
                        break

            connection_all.append(connection)
        else:
            special_k.append(k)
            connection_all.append([])

    # last number in each row is the total parts number of that person
    # the second last number in each row is the score of the overall configuration
    subset = -1 * np.ones((0, 20))
    candidate = np.array([item for sublist in all_peaks for item in sublist])

    for k in range(len(mapIdx)):
        if k not in special_k:
            partAs = connection_all[k][:,0]
            partBs = connection_all[k][:,1]
            indexA, indexB = np.array(limbSeq[k]) - 1

            for i in range(len(connection_all[k])): #= 1:size(temp,1)
                found = 0
                subset_idx = [-1, -1]
                for j in range(len(subset)): #1:size(subset,1):
                    if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
                        subset_idx[found] = j
                        found += 1
                
                if found == 1:
                    j = subset_idx[0]
                    if(subset[j][indexB] != partBs[i]):
                        subset[j][indexB] = partBs[i]
                        subset[j][-1] += 1
                        subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
                elif found == 2: # if found 2 and disjoint, merge them
                    j1, j2 = subset_idx
                    print "found = 2"
                    membership = ((subset[j1]>=0).astype(int) + (subset[j2]>=0).astype(int))[:-2]
                    if len(np.nonzero(membership == 2)[0]) == 0: #merge
                        subset[j1][:-2] += (subset[j2][:-2] + 1)
                        subset[j1][-2:] += subset[j2][-2:]
                        subset[j1][-2] += connection_all[k][i][2]
                        subset = np.delete(subset, j2, 0)
                    else: # as like found == 1
                        subset[j1][indexB] = partBs[i]
                        subset[j1][-1] += 1
                        subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]

                # if find no partA in the subset, create a new subset
                elif not found and k < 17:
                    row = -1 * np.ones(20)
                    row[indexA] = partAs[i]
                    row[indexB] = partBs[i]
                    row[-1] = 2
                    row[-2] = sum(candidate[connection_all[k][i,:2].astype(int), 2]) + connection_all[k][i][2]
                    subset = np.vstack([subset, row])

    # delete some rows of subset which has few parts occur
    deleteIdx = [];
    for i in range(len(subset)):
        if subset[i][-1] < 4 or subset[i][-2]/subset[i][-1] < 0.4:
            deleteIdx.append(i)
    subset = np.delete(subset, deleteIdx, axis=0)

#    canvas = cv2.imread(test_image) # B,G,R order
    for i in range(18):
        for j in range(len(all_peaks[i])):
            cv2.circle(canvas, all_peaks[i][j][0:2], 4, colors[i], thickness=-1)

    stickwidth = 4

    for i in range(17):
        for n in range(len(subset)):
            index = subset[n][np.array(limbSeq[i])-1]
            if -1 in index:
                continue
            cur_canvas = canvas.copy()
            Y = candidate[index.astype(int), 0]
            X = candidate[index.astype(int), 1]
            mX = np.mean(X)
            mY = np.mean(Y)
            length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
            angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
            polygon = cv2.ellipse2Poly((int(mY),int(mX)), (int(length/2), stickwidth), int(angle), 0, 360, 1)
            cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
            canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)

    return canvas
Beispiel #3
0
def handle_one(oriImg, dont_draw=False, dont_resize=False):

    oriImg = np.squeeze(oriImg)
    oriImg = np.copy(oriImg)
    canvas = np.copy(oriImg)

    scale = model_['boxsize'] / float(oriImg.shape[0])
    h = int(oriImg.shape[0] * scale)
    w = int(oriImg.shape[1] * scale)

    pad_h = 0 if (h % model_['stride']
                  == 0) else model_['stride'] - (h % model_['stride'])
    pad_w = 0 if (w % model_['stride']
                  == 0) else model_['stride'] - (w % model_['stride'])
    new_h = h + pad_h
    new_w = w + pad_w

    if dont_resize:
        imageToTest = oriImg
    else:
        imageToTest = cv2.resize(
            oriImg,
            (int(scale * oriImg.shape[0]), int(scale * oriImg.shape[1])),
            interpolation=cv2.INTER_CUBIC)

    imageToTest_padded, pad = util.padRightDownCorner(imageToTest,
                                                      model_['stride'],
                                                      model_['padValue'])

    imageToTest_padded = np.transpose(
        np.float32(imageToTest_padded[:, :, :, np.newaxis]),
        (3, 2, 0, 1)) / 255.0 - 0.5

    feed = Variable(T.from_numpy(imageToTest_padded), volatile=True).cuda()

    p = time.time()
    output1, output2 = model(feed)

    heatmap = nn.UpsamplingBilinear2d(
        (oriImg.shape[0], oriImg.shape[1])).cuda()(output2)

    paf = nn.UpsamplingBilinear2d(
        (oriImg.shape[0], oriImg.shape[1])).cuda()(output1)

    pool_t = time.time()
    map_ori = heatmap[0][:N_JOINTS]

    map_max = max_erode(
        F.avg_pool2d(map_ori, 3, stride=1, padding=1)
    )  # torch.eq(blurred_avg_tensor, max_tensor).float() * blurred_avg_tensor

    peaks_binary = map_max > param_['thre1']
    all_peak_idxs = torch.nonzero(peaks_binary.data)

    if all_peak_idxs.size() == ():
        return None

    all_peak_idxs = all_peak_idxs.cpu().numpy()

    nonzero_vals = map_ori[peaks_binary].data.cpu().numpy()

    paf_avg = paf[0].data.cpu().numpy()

    return post_process(oriImg, canvas, paf_avg, all_peak_idxs, nonzero_vals,
                        dont_draw)
def process_image(oriImg, model, model_params, jjac_info):
    # for visualize
    t0 = time.time()
    canvas = np.copy(oriImg)
    #imageToTest = Variable(T.transpose(T.transpose(T.unsqueeze(torch.from_numpy(oriImg).float(), 0), 2, 3), 1, 2),
    #                       volatile=True).cuda()
    #print oriImg.shape
    tic = time.time()
    scale = model_params['model_']['boxsize'] / float(oriImg.shape[0])
    #print scale
    h = int(oriImg.shape[0] * scale)
    w = int(oriImg.shape[1] * scale)
    pad_h = 0 if (h % model_params['model_']['stride']
                  == 0) else model_params['model_']['stride'] - (
                      h % model_params['model_']['stride'])
    pad_w = 0 if (w % model_params['model_']['stride']
                  == 0) else model_params['model_']['stride'] - (
                      w % model_params['model_']['stride'])
    new_h = h + pad_h
    new_w = w + pad_w
    #print 'scaled width and height ({}, {})'.format(h, w)

    imageToTest = cv2.resize(oriImg, (0, 0),
                             fx=scale,
                             fy=scale,
                             interpolation=cv2.INTER_CUBIC)
    imageToTest_padded, pad = util.padRightDownCorner(
        imageToTest, model_params['model_']['stride'],
        model_params['model_']['padValue'])
    imageToTest_padded = np.transpose(
        np.float32(imageToTest_padded[:, :, :, np.newaxis]),
        (3, 2, 0, 1)) / 256 - 0.5

    feed = Variable(T.from_numpy(imageToTest_padded)).cuda()

    output1, output2 = model(feed)

    heatmap = nn.UpsamplingBilinear2d(
        (oriImg.shape[0], oriImg.shape[1])).cuda()(output2)

    paf = nn.UpsamplingBilinear2d(
        (oriImg.shape[0], oriImg.shape[1])).cuda()(output1)

    toc = time.time()
    model_running_time = toc - tic
    #print heatmap.size() # (360, 640, 3)
    #print paf.size()
    #print type(heatmap)

    tic = time.time()
    heatmap_avg = T.transpose(T.transpose(heatmap[0], 0, 1), 1,
                              2).data.cpu().numpy()
    #paf_avg = T.transpose(T.transpose(paf[0], 0, 1), 1, 2).data.cpu().numpy()

    all_peaks = []
    peak_counter = 0
    # 13-17 are head
    # 10, 11, 12, 13 are legs
    # hand_parts = [5, 6, 7, 8, 15, 16]

    # 4 is right hand

    # todo is it actually left elbow below because inverse? confirm
    # 5 was left elbow
    # 6 was left shoulder
    # 7 is left hand. Right hand only?
    # 15 is head. right part of head
    body_part_index_to_name = {
        '4': 'Right Hand',
        '5': 'Left Elbow',
        '6': 'Left Shoulder',
        '7': 'Left Hand',
        '15': 'Left Eye',
        '14': '1',
        '16': '2',
        '17': '3'
    }
    hand_parts = [4, 7, 15, 16, 17]
    # hand_parts = list(range(18))
    # for part in range(18):
    for part in hand_parts:
        map_ori = heatmap_avg[:, :, part]
        map = gaussian_filter(map_ori, sigma=3)

        map_left = np.zeros(map.shape)
        map_left[1:, :] = map[:-1, :]
        map_right = np.zeros(map.shape)
        map_right[:-1, :] = map[1:, :]
        map_up = np.zeros(map.shape)
        map_up[:, 1:] = map[:, :-1]
        map_down = np.zeros(map.shape)
        map_down[:, :-1] = map[:, 1:]

        peaks_binary = np.logical_and.reduce(
            (map >= map_left, map >= map_right, map >= map_up, map >= map_down,
             map > model_params['param_']['thre1']))
        #    peaks_binary = T.eq(
        #    peaks = zip(T.nonzero(peaks_binary)[0],T.nonzero(peaks_binary)[0])

        peaks = zip(np.nonzero(peaks_binary)[1],
                    np.nonzero(peaks_binary)[0])  # note reverse

        peaks_with_score = [x + (map_ori[x[1], x[0]], ) for x in peaks]
        id = range(peak_counter, peak_counter + len(peaks))
        peaks_with_score_and_id = [
            peaks_with_score[i] + (id[i], ) for i in range(len(id))
        ]

        all_peaks.append(peaks_with_score_and_id)
        # print peaks_with_score_and_id
        peak_counter += len(peaks)

    #print 'heat map peak stuff time is %.5f' % (time.time() - tic)

    # connection_all = []
    # special_k = []
    # mid_num = 10

    # for k in range(len(mapIdx)):
    #     score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
    #     candA = all_peaks[limbSeq[k][0] - 1]
    #     candB = all_peaks[limbSeq[k][1] - 1]
    #     nA = len(candA)
    #     nB = len(candB)
    #     indexA, indexB = limbSeq[k]
    #     if (nA != 0 and nB != 0):
    #         connection_candidate = []
    #         for i in range(nA):
    #             for j in range(nB):
    #                 vec = np.subtract(candB[j][:2], candA[i][:2])
    #                 norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
    #                 vec = np.divide(vec, norm)
    #
    #                 startend = zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
    #                                np.linspace(candA[i][1], candB[j][1], num=mid_num))
    #
    #                 vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
    #                                   for I in range(len(startend))])
    #                 vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
    #                                   for I in range(len(startend))])
    #
    #                 score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
    #                 score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
    #                     0.5 * oriImg.shape[0] / norm - 1, 0)
    #                 criterion1 = len(np.nonzero(score_midpts > param_['thre2'])[0]) > 0.8 * len(score_midpts)
    #                 criterion2 = score_with_dist_prior > 0
    #                 if criterion1 and criterion2:
    #                     connection_candidate.append(
    #                         [i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
    #
    #         connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
    #         connection = np.zeros((0, 5))
    #         for c in range(len(connection_candidate)):
    #             i, j, s = connection_candidate[c][0:3]
    #             if (i not in connection[:, 3] and j not in connection[:, 4]):
    #                 connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
    #                 if (len(connection) >= min(nA, nB)):
    #                     break
    #
    #         connection_all.append(connection)
    #     else:
    #         special_k.append(k)
    #         connection_all.append([])

    # last number in each row is the total parts number of that person
    # the second last number in each row is the score of the overall configuration
    # subset = -1 * np.ones((0, 20))
    # candidate = np.array([item for sublist in all_peaks for item in sublist])
    #
    # for k in range(len(mapIdx)):
    #     if k not in special_k:
    #         partAs = connection_all[k][:, 0]
    #         partBs = connection_all[k][:, 1]
    #         indexA, indexB = np.array(limbSeq[k]) - 1
    #
    #         for i in range(len(connection_all[k])):  # = 1:size(temp,1)
    #             found = 0
    #             subset_idx = [-1, -1]
    #             for j in range(len(subset)):  # 1:size(subset,1):
    #                 if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
    #                     subset_idx[found] = j
    #                     found += 1
    #
    #             if found == 1:
    #                 j = subset_idx[0]
    #                 if (subset[j][indexB] != partBs[i]):
    #                     subset[j][indexB] = partBs[i]
    #                     subset[j][-1] += 1
    #                     subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
    #             elif found == 2:  # if found 2 and disjoint, merge them
    #                 j1, j2 = subset_idx
    #                 print "found = 2"
    #                 membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
    #                 if len(np.nonzero(membership == 2)[0]) == 0:  # merge
    #                     subset[j1][:-2] += (subset[j2][:-2] + 1)
    #                     subset[j1][-2:] += subset[j2][-2:]
    #                     subset[j1][-2] += connection_all[k][i][2]
    #                     subset = np.delete(subset, j2, 0)
    #                 else:  # as like found == 1
    #                     subset[j1][indexB] = partBs[i]
    #                     subset[j1][-1] += 1
    #                     subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
    #
    #             # if find no partA in the subset, create a new subset
    #             elif not found and k < 17:
    #                 row = -1 * np.ones(20)
    #                 row[indexA] = partAs[i]
    #                 row[indexB] = partBs[i]
    #                 row[-1] = 2
    #                 row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
    #                 subset = np.vstack([subset, row])
    #
    # # delete some rows of subset which has few parts occur
    # deleteIdx = [];
    # for i in range(len(subset)):
    #     if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
    #         deleteIdx.append(i)
    # subset = np.delete(subset, deleteIdx, axis=0)

    #    canvas = cv2.imread(test_image) # B,G,R order
    found_hand = False
    found_head = False
    found_2_hands = False

    tic = time.time()
    # for i in range(18):
    for i in range(len(hand_parts)):
        for j in range(len(all_peaks[i])):
            #cv2.circle(canvas, all_peaks[i][j][0:2], 4, colors[i], thickness=-1)
            # Right hand is first in loop. so if it fails we have backup
            if body_part_index_to_name[str(hand_parts[i])] == 'Right Hand':  #
                # BGR order. So blue is below
                # cv2.circle(canvas, all_peaks[i][j][0:2], 4, (255, 0, 0), thickness=-1)
                #print 'Hand position:', all_peaks[i][j][0:2]
                found_hand = True
                hand_position = all_peaks[i][j][0:2]
            elif body_part_index_to_name[str(hand_parts[i])] == 'Left Hand':
                # cv2.circle(canvas, all_peaks[i][j][0:2], 4, (0, 255, 0), thickness=-1)
                if not found_hand:
                    print 'Did not find Right hand but found left hand!'
                    found_hand = True
                    hand_position = all_peaks[i][j][0:2]
                else:
                    print 'Found two hands'
                    found_2_hands = True
                    second_hand_position = all_peaks[i][j][0:2]
                #hand_position = all_peaks[i][j][0:2]
            elif body_part_index_to_name[str(hand_parts[i])] == 'Left Eye':
                # BGR order. So red is below
                # cv2.circle(canvas, all_peaks[i][j][0:2], 4, (0, 0, 255), thickness=-1)
                #print 'Head position:', all_peaks[i][j][0:2]
                found_head = True
                head_position = all_peaks[i][j][0:2]
                jjac_info['last_x_head_pos'].append(head_position[1])
                if len(jjac_info['last_x_head_pos']) > 10:
                    jjac_info['last_x_head_pos'].pop()
                    biggest_diff = max(jjac_info['last_x_head_pos']) - min(
                        jjac_info['last_x_head_pos'])
                    if biggest_diff > jjac_info['biggest_diff']:
                        jjac_info['biggest_diff'] = biggest_diff
                        # espeak_command = 'Largest y range from last_x_head_pos: {}'.format(biggest_diff)
                        espeak_command = 'Largest range from last positions: {}'.format(
                            biggest_diff)
                        print espeak_command
                        # os.system(espeak_command)
                # jjac_info['head_y_range']
            elif body_part_index_to_name[str(hand_parts[i])] == '1':
                cv2.circle(canvas,
                           all_peaks[i][j][0:2],
                           4, (0, 0, 255),
                           thickness=-1)
            elif body_part_index_to_name[str(hand_parts[i])] == '2':
                cv2.circle(canvas,
                           all_peaks[i][j][0:2],
                           4, (0, 255, 255),
                           thickness=-1)
            elif body_part_index_to_name[str(hand_parts[i])] == '3':
                cv2.circle(canvas,
                           all_peaks[i][j][0:2],
                           4, (255, 255, 255),
                           thickness=-1)
            else:
                # cv2.circle(canvas, all_peaks[i][j][0:2], 4, colors[i], thickness=-1)
                cv2.circle(canvas,
                           all_peaks[i][j][0:2],
                           4, (128, 128, 128),
                           thickness=-1)

    #global how_many_times_hands_went_over_head, hands_over_head

    if found_hand and found_head:
        # both hands over head or 1 hand over head
        if (found_2_hands and hand_position[1] < head_position[1]
                and second_hand_position[1] < head_position[1]
            ) or hand_position[1] < head_position[1]:

            print 'Hand is higher than head {} < {}'.format(
                hand_position[1], head_position[1])
            # if first time hand over head, then increase jumping jack count
            if not jjac_info['hands_over_head']:
                jjac_info['hands_over_head'] = True
                jjac_info['num_jumping_jacks'] += 1
                print 'Number of jumping jacks:', jjac_info[
                    'num_jumping_jacks']
                # speak speech command example
                # espeak '1 Jumping Jack'
                espeak_command = "espeak {}".format(
                    '\'{} Jumping jack{}\''.format(
                        jjac_info['num_jumping_jacks'],
                        's' if jjac_info['num_jumping_jacks'] > 1 else ''))
                # os.system(espeak_command) # slows it down?
        else:
            jjac_info['hands_over_head'] = False
            print 'hand is lower than head {} > {}'.format(
                hand_position[1], head_position[1])
        #print 'Drawing circles time is %.5f' % (time.time() - tic)

    cv2.putText(
        canvas,
        "No. Jumping Jacks: {} ".format(jjac_info['num_jumping_jacks']),
        (0, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, 255)
    cv2.putText(
        canvas, "Hands over head: {}".format(
            'Yes' if jjac_info['hands_over_head'] else 'No'), (0, 45),
        cv2.FONT_HERSHEY_SIMPLEX, 0.6, 255)

    # stickwidth = 4

    # for i in range(17):
    #     for n in range(len(subset)):
    #         index = subset[n][np.array(limbSeq[i]) - 1]
    #         if -1 in index:
    #             continue
    #         cur_canvas = canvas.copy()
    #         Y = candidate[index.astype(int), 0]
    #         X = candidate[index.astype(int), 1]
    #         mX = np.mean(X)
    #         mY = np.mean(Y)
    #         length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
    #         angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
    #         polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
    #         cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
    #         canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)

    print 'cv and print: %.5f, Model time: %.5f, Full processing time is %.5f.' % (
        time.time() - tic, model_running_time, time.time() - t0)
    return canvas