Beispiel #1
0
    def __call__(
        self,
        net: nn.Module,
        train_iter: DataLoader,
        validation_iter: Optional[DataLoader] = None,
    ) -> None:
        wandb.watch(net, log="all", log_freq=self.num_batches_per_epoch)

        optimizer = Adam(net.parameters(),
                         lr=self.learning_rate,
                         weight_decay=self.weight_decay)

        lr_scheduler = OneCycleLR(
            optimizer,
            max_lr=self.maximum_learning_rate,
            steps_per_epoch=self.num_batches_per_epoch,
            epochs=self.epochs,
        )

        for epoch_no in range(self.epochs):
            # mark epoch start time
            tic = time.time()
            avg_epoch_loss = 0.0

            with tqdm(train_iter) as it:
                for batch_no, data_entry in enumerate(it, start=1):
                    optimizer.zero_grad()
                    inputs = [v.to(self.device) for v in data_entry.values()]

                    output = net(*inputs)
                    if isinstance(output, (list, tuple)):
                        loss = output[0]
                    else:
                        loss = output

                    avg_epoch_loss += loss.item()
                    it.set_postfix(
                        ordered_dict={
                            "avg_epoch_loss": avg_epoch_loss / batch_no,
                            "epoch": epoch_no,
                        },
                        refresh=False,
                    )
                    wandb.log({"loss": loss.item()})

                    loss.backward()
                    if self.clip_gradient is not None:
                        nn.utils.clip_grad_norm_(net.parameters(),
                                                 self.clip_gradient)

                    optimizer.step()
                    lr_scheduler.step()

                    if self.num_batches_per_epoch == batch_no:
                        break

            # mark epoch end time and log time cost of current epoch
            toc = time.time()
Beispiel #2
0
    def fit(self, learning_rate: Tuple[float, float]):
        # Capture learning errors
        self.train_val_error = {"train": [], "validation": [], "lr": []}
        self._init_model(
            model=self.model_, optimizer=self.optimizer_, criterion=self.criterion_
        )

        # Setup one cycle policy
        scheduler = OneCycleLR(
            optimizer=self.optimizer,
            max_lr=learning_rate,
            steps_per_epoch=len(self.train_loader),
            epochs=self.n_epochs,
            anneal_strategy="cos",
        )

        # Iterate over epochs
        for epoch in range(self.n_epochs):
            # Training set
            self.model.train()
            train_loss = 0
            for batch_num, samples in enumerate(self.train_loader):
                # Forward pass, get loss
                loss = self._forward_pass(samples=samples)
                train_loss += loss.item()

                # Zero gradients, perform a backward pass, and update the weights.
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()

                # Update scheduler
                self.train_val_error["lr"].append(scheduler.get_lr()[0])
                # One cycle scheduler must be called per batch
                # https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.OneCycleLR
                scheduler.step()

            # Append train loss per current epoch
            train_err = train_loss / batch_num
            self.train_val_error["train"].append(train_err)

            # Validation set
            self.model.eval()
            validation_loss = 0
            for batch_num, samples in enumerate(self.valid_loader):
                # Forward pass, get loss
                loss = self._forward_pass(samples=samples)
                validation_loss += loss.item()
            # Append validation loss per current epoch
            val_err = validation_loss / batch_num
            self.train_val_error["validation"].append(val_err)

        return pd.DataFrame(data={
            'Train error' : self.train_val_error['train'],
            'Validation error': self.train_val_error['validation']
        })
Beispiel #3
0
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    pbar = tqdm(train_loader)
    correct = 0
    processed = 0
    lambda_l1 = 0.01

    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

    scheduler = OneCycleLR(optimizer,
                           max_lr=0.020,
                           epochs=20,
                           steps_per_epoch=len(train_loader))

    for batch_idx, (data, target) in enumerate(pbar):
        # get samples
        data, target = data.to(device), target.to(device)

        # Init
        optimizer.zero_grad()
        # In PyTorch, we need to set the gradients to zero before starting to do backpropragation because PyTorch accumulates the gradients on subsequent backward passes.
        # Because of this, when you start your training loop, ideally you should zero out the gradients so that you do the parameter update correctly.

        # Predict
        y_pred = model(data)

        # Calculate loss
        loss = F.nll_loss(y_pred, target)
        train_losses.append(loss)

        l1 = 0
        for p in model.parameters():
            l1 += p.abs().sum()

        #print("l1 at 1st epoch: ", l1)

        loss = loss + lambda_l1 * l1
        # Backpropagation
        loss.backward()
        optimizer.step()
        scheduler.step()

        # Update pbar-tqdm

        pred = y_pred.argmax(
            dim=1, keepdim=True)  # get the index of the max log-probability
        correct += pred.eq(target.view_as(pred)).sum().item()
        processed += len(data)

        pbar.set_description(
            desc=
            f'Loss={loss.item()} Batch_id={batch_idx} Accuracy={100*correct/processed:0.2f}'
        )
        train_acc.append(100 * correct / processed)
    return train_losses, train_acc
Beispiel #4
0
    def init_train(self, con_weight: float = 1.0):

        test_img = self.get_test_image()
        meter = AverageMeter("Loss")
        self.writer.flush()
        lr_scheduler = OneCycleLR(self.optimizer_G,
                                  max_lr=0.9999,
                                  steps_per_epoch=len(self.dataloader),
                                  epochs=self.init_train_epoch)

        for g in self.optimizer_G.param_groups:
            g['lr'] = self.init_lr

        for epoch in tqdm(range(self.init_train_epoch)):

            meter.reset()

            for i, (style, smooth, train) in enumerate(self.dataloader, 0):
                # train = transform(test_img).unsqueeze(0)
                self.G.zero_grad(set_to_none=self.grad_set_to_none)
                train = train.to(self.device)

                generator_output = self.G(train)
                # content_loss = loss.reconstruction_loss(generator_output, train) * con_weight
                content_loss = self.loss.content_loss(generator_output,
                                                      train) * con_weight
                # content_loss = F.mse_loss(train, generator_output) * con_weight
                content_loss.backward()
                self.optimizer_G.step()
                lr_scheduler.step()

                meter.update(content_loss.detach())

            self.writer.add_scalar(f"Loss : {self.init_time}",
                                   meter.sum.item(), epoch)
            self.write_weights(epoch + 1, write_D=False)
            self.eval_image(epoch, f'{self.init_time} reconstructed img',
                            test_img)

        for g in self.optimizer_G.param_groups:
            g['lr'] = self.G_lr
Beispiel #5
0
class Regularizations:
    @staticmethod
    def dropout(dropout_value):
        return nn.Dropout(int(dropout_value))

    def __init__(self,
                 optim_type,
                 model,
                 lr,
                 momentum,
                 max_lr,
                 len_loader,
                 weight_decay=0):
        self.optimizer = getattr(optim,
                                 optim_type)(getattr(model, 'parameters')(),
                                             lr=lr,
                                             momentum=momentum,
                                             weight_decay=weight_decay)
        self.scheduler = OneCycleLR(self.optimizer,
                                    max_lr=max_lr,
                                    steps_per_epoch=len_loader,
                                    epochs=50,
                                    div_factor=10,
                                    final_div_factor=1,
                                    pct_start=10 / 50)

    def loss_function(self, loss_type, preds, targets):
        return getattr(F, loss_type)(preds, targets)

    def optimizer_step(self, loss=False, step=0):
        if step == 0:
            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()
        elif step != 0:
            self.scheduler.step()
Beispiel #6
0
def _train(start_iteration, model, optimizer, device, train_dataloader,
           test_dataloader, args):
    train_loss = deque(maxlen=args.log_freq)
    test_loss = deque(maxlen=args.log_freq)
    model = model.to(device)
    start_time = time.perf_counter()
    test_iter = iter(test_dataloader)
    train_iter = iter(train_dataloader)
    loss_func = partial(_loss_func, model=model, device=device)
    oclr = OneCycleLR(optimizer,
                      args.learning_rate,
                      pct_start=0.01,
                      total_steps=1_000_000,
                      cycle_momentum=False,
                      last_epoch=start_iteration - 2)

    for iteration in range(start_iteration, 1 + args.num_training_steps):
        loss = loss_func(train_iter)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        oclr.step()
        train_loss.append(loss.detach())

        if iteration % (10 * args.log_freq) == 0:
            ckpt = f'checkpoint_{iteration:07d}.pt'
            print('Saving checkpoint', ckpt)
            torch.save(
                {
                    'iteration': iteration,
                    'model_state_dict': model.state_dict(),
                    'optimizer_state_dict': optimizer.state_dict(),
                    'args': args
                }, ckpt)

        if iteration % 20 == 0:
            with torch.no_grad():
                model.eval()
                test_loss.append(loss_func(test_iter).detach())
                model.train()

        if iteration % args.log_freq == 0:
            avg_train_loss = sum(train_loss).item() / len(train_loss)
            avg_test_loss = sum(test_loss).item() / len(test_loss)
            end_time = time.perf_counter()
            duration, start_time = end_time - start_time, end_time
            lr = oclr.get_last_lr()[0]
            with torch.no_grad():
                model.eval()
                cat = random.randrange(0, len(dataset.categories))
                sample = generate(model, device, cat)
                model.train()
            train_sample = next(train_iter)[0, :]
            test_sample = next(test_iter)[0, :]
            plot_encoded_figure(train_sample[:, 0].tolist(),
                                train_sample[0, 2], 'train_sample.png')
            plot_encoded_figure(test_sample[:, 0].tolist(), test_sample[0, 2],
                                'test_sample.png')
            plot_encoded_figure(sample, cat, 'random_sample.png')
            print(
                f'Iteration {iteration:07d}  Train loss {avg_train_loss:.3f}  Test loss {avg_test_loss:.3f}  LR {lr:.3e}  Duration {duration:.3f}'
            )
            if args.use_wandb:
                wandb.log({
                    'iteration': iteration,
                    'train loss': avg_train_loss,
                    'test loss': avg_test_loss,
                    'duration': duration,
                    'learning rate': lr,
                    'train sample': wandb.Image('train_sample.png'),
                    'test sample': wandb.Image('test_sample.png'),
                    'random sample': wandb.Image('random_sample.png'),
                })
Beispiel #7
0
def train(args, checkpoint, mid_checkpoint_location, final_checkpoint_location, best_checkpoint_location,
          actfun, curr_seed, outfile_path, filename, fieldnames, curr_sample_size, device, num_params,
          curr_k=2, curr_p=1, curr_g=1, perm_method='shuffle'):
    """
    Runs training session for a given randomized model
    :param args: arguments for this job
    :param checkpoint: current checkpoint
    :param checkpoint_location: output directory for checkpoints
    :param actfun: activation function currently being used
    :param curr_seed: seed being used by current job
    :param outfile_path: path to save outputs from training session
    :param fieldnames: column names for output file
    :param device: reference to CUDA device for GPU support
    :param num_params: number of parameters in the network
    :param curr_k: k value for this iteration
    :param curr_p: p value for this iteration
    :param curr_g: g value for this iteration
    :param perm_method: permutation strategy for our network
    :return:
    """

    resnet_ver = args.resnet_ver
    resnet_width = args.resnet_width
    num_epochs = args.num_epochs

    actfuns_1d = ['relu', 'abs', 'swish', 'leaky_relu', 'tanh']
    if actfun in actfuns_1d:
        curr_k = 1
    kwargs = {'num_workers': 1, 'pin_memory': True} if torch.cuda.is_available() else {}

    if args.one_shot:
        util.seed_all(curr_seed)
        model_temp, _ = load_model(args.model, args.dataset, actfun, curr_k, curr_p, curr_g, num_params=num_params,
                                   perm_method=perm_method, device=device, resnet_ver=resnet_ver,
                                   resnet_width=resnet_width, verbose=args.verbose)

        util.seed_all(curr_seed)
        dataset_temp = util.load_dataset(
            args,
            args.model,
            args.dataset,
            seed=curr_seed,
            validation=True,
            batch_size=args.batch_size,
            train_sample_size=curr_sample_size,
            kwargs=kwargs)

        curr_hparams = hparams.get_hparams(args.model, args.dataset, actfun, curr_seed,
                                           num_epochs, args.search, args.hp_idx, args.one_shot)
        optimizer = optim.Adam(model_temp.parameters(),
                               betas=(curr_hparams['beta1'], curr_hparams['beta2']),
                               eps=curr_hparams['eps'],
                               weight_decay=curr_hparams['wd']
                               )

        start_time = time.time()
        oneshot_fieldnames = fieldnames if args.search else None
        oneshot_outfile_path = outfile_path if args.search else None
        lr = util.run_lr_finder(
            args,
            model_temp,
            dataset_temp[0],
            optimizer,
            nn.CrossEntropyLoss(),
            val_loader=dataset_temp[3],
            show=False,
            device=device,
            fieldnames=oneshot_fieldnames,
            outfile_path=oneshot_outfile_path,
            hparams=curr_hparams
        )
        curr_hparams = {}
        print("Time to find LR: {}\n LR found: {:3e}".format(time.time() - start_time, lr))

    else:
        curr_hparams = hparams.get_hparams(args.model, args.dataset, actfun, curr_seed,
                                           num_epochs, args.search, args.hp_idx)
        lr = curr_hparams['max_lr']

        criterion = nn.CrossEntropyLoss()
        model, model_params = load_model(args.model, args.dataset, actfun, curr_k, curr_p, curr_g, num_params=num_params,
                                   perm_method=perm_method, device=device, resnet_ver=resnet_ver,
                                   resnet_width=resnet_width, verbose=args.verbose)

        util.seed_all(curr_seed)
        model.apply(util.weights_init)

        util.seed_all(curr_seed)
        dataset = util.load_dataset(
            args,
            args.model,
            args.dataset,
            seed=curr_seed,
            validation=args.validation,
            batch_size=args.batch_size,
            train_sample_size=curr_sample_size,
            kwargs=kwargs)
        loaders = {
            'aug_train': dataset[0],
            'train': dataset[1],
            'aug_eval': dataset[2],
            'eval': dataset[3],
        }
        sample_size = dataset[4]
        batch_size = dataset[5]

        if args.one_shot:
            optimizer = optim.Adam(model_params)
            scheduler = OneCycleLR(optimizer,
                                   max_lr=lr,
                                   epochs=num_epochs,
                                   steps_per_epoch=int(math.floor(sample_size / batch_size)),
                                   cycle_momentum=False
                                   )
        else:
            optimizer = optim.Adam(model_params,
                                   betas=(curr_hparams['beta1'], curr_hparams['beta2']),
                                   eps=curr_hparams['eps'],
                                   weight_decay=curr_hparams['wd']
                                   )
            scheduler = OneCycleLR(optimizer,
                                   max_lr=curr_hparams['max_lr'],
                                   epochs=num_epochs,
                                   steps_per_epoch=int(math.floor(sample_size / batch_size)),
                                   pct_start=curr_hparams['cycle_peak'],
                                   cycle_momentum=False
                                   )

        epoch = 1
        if checkpoint is not None:
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            scheduler.load_state_dict(checkpoint['scheduler'])
            epoch = checkpoint['epoch']
            model.to(device)
            print("*** LOADED CHECKPOINT ***"
                  "\n{}"
                  "\nSeed: {}"
                  "\nEpoch: {}"
                  "\nActfun: {}"
                  "\nNum Params: {}"
                  "\nSample Size: {}"
                  "\np: {}"
                  "\nk: {}"
                  "\ng: {}"
                  "\nperm_method: {}".format(mid_checkpoint_location, checkpoint['curr_seed'],
                                             checkpoint['epoch'], checkpoint['actfun'],
                                             checkpoint['num_params'], checkpoint['sample_size'],
                                             checkpoint['p'], checkpoint['k'], checkpoint['g'],
                                             checkpoint['perm_method']))

        util.print_exp_settings(curr_seed, args.dataset, outfile_path, args.model, actfun,
                                util.get_model_params(model), sample_size, batch_size, model.k, model.p, model.g,
                                perm_method, resnet_ver, resnet_width, args.optim, args.validation, curr_hparams)

        best_val_acc = 0

        if args.mix_pre_apex:
            model, optimizer = amp.initialize(model, optimizer, opt_level="O2")

        # ---- Start Training
        while epoch <= num_epochs:

            if args.check_path != '':
                torch.save({'state_dict': model.state_dict(),
                            'optimizer': optimizer.state_dict(),
                            'scheduler': scheduler.state_dict(),
                            'curr_seed': curr_seed,
                            'epoch': epoch,
                            'actfun': actfun,
                            'num_params': num_params,
                            'sample_size': sample_size,
                            'p': curr_p, 'k': curr_k, 'g': curr_g,
                            'perm_method': perm_method
                            }, mid_checkpoint_location)

            util.seed_all((curr_seed * args.num_epochs) + epoch)
            start_time = time.time()
            if args.mix_pre:
                scaler = torch.cuda.amp.GradScaler()

            # ---- Training
            model.train()
            total_train_loss, n, num_correct, num_total = 0, 0, 0, 0
            for batch_idx, (x, targetx) in enumerate(loaders['aug_train']):
                # print(batch_idx)
                x, targetx = x.to(device), targetx.to(device)
                optimizer.zero_grad()
                if args.mix_pre:
                    with torch.cuda.amp.autocast():
                        output = model(x)
                        train_loss = criterion(output, targetx)
                    total_train_loss += train_loss
                    n += 1
                    scaler.scale(train_loss).backward()
                    scaler.step(optimizer)
                    scaler.update()
                elif args.mix_pre_apex:
                    output = model(x)
                    train_loss = criterion(output, targetx)
                    total_train_loss += train_loss
                    n += 1
                    with amp.scale_loss(train_loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                    optimizer.step()
                else:
                    output = model(x)
                    train_loss = criterion(output, targetx)
                    total_train_loss += train_loss
                    n += 1
                    train_loss.backward()
                    optimizer.step()
                if args.optim == 'onecycle' or args.optim == 'onecycle_sgd':
                    scheduler.step()
                _, prediction = torch.max(output.data, 1)
                num_correct += torch.sum(prediction == targetx.data)
                num_total += len(prediction)
            epoch_aug_train_loss = total_train_loss / n
            epoch_aug_train_acc = num_correct * 1.0 / num_total

            alpha_primes = []
            alphas = []
            if model.actfun == 'combinact':
                for i, layer_alpha_primes in enumerate(model.all_alpha_primes):
                    curr_alpha_primes = torch.mean(layer_alpha_primes, dim=0)
                    curr_alphas = F.softmax(curr_alpha_primes, dim=0).data.tolist()
                    curr_alpha_primes = curr_alpha_primes.tolist()
                    alpha_primes.append(curr_alpha_primes)
                    alphas.append(curr_alphas)

            model.eval()
            with torch.no_grad():
                total_val_loss, n, num_correct, num_total = 0, 0, 0, 0
                for batch_idx, (y, targety) in enumerate(loaders['aug_eval']):
                    y, targety = y.to(device), targety.to(device)
                    output = model(y)
                    val_loss = criterion(output, targety)
                    total_val_loss += val_loss
                    n += 1
                    _, prediction = torch.max(output.data, 1)
                    num_correct += torch.sum(prediction == targety.data)
                    num_total += len(prediction)
                epoch_aug_val_loss = total_val_loss / n
                epoch_aug_val_acc = num_correct * 1.0 / num_total

                total_val_loss, n, num_correct, num_total = 0, 0, 0, 0
                for batch_idx, (y, targety) in enumerate(loaders['eval']):
                    y, targety = y.to(device), targety.to(device)
                    output = model(y)
                    val_loss = criterion(output, targety)
                    total_val_loss += val_loss
                    n += 1
                    _, prediction = torch.max(output.data, 1)
                    num_correct += torch.sum(prediction == targety.data)
                    num_total += len(prediction)
                epoch_val_loss = total_val_loss / n
                epoch_val_acc = num_correct * 1.0 / num_total
            lr_curr = 0
            for param_group in optimizer.param_groups:
                lr_curr = param_group['lr']
            print(
                "    Epoch {}: LR {:1.5f} ||| aug_train_acc {:1.4f} | val_acc {:1.4f}, aug {:1.4f} ||| "
                "aug_train_loss {:1.4f} | val_loss {:1.4f}, aug {:1.4f} ||| time = {:1.4f}"
                    .format(epoch, lr_curr, epoch_aug_train_acc, epoch_val_acc, epoch_aug_val_acc,
                            epoch_aug_train_loss, epoch_val_loss, epoch_aug_val_loss, (time.time() - start_time)), flush=True
            )

            if args.hp_idx is None:
                hp_idx = -1
            else:
                hp_idx = args.hp_idx

            epoch_train_loss = 0
            epoch_train_acc = 0
            if epoch == num_epochs:
                with torch.no_grad():
                    total_train_loss, n, num_correct, num_total = 0, 0, 0, 0
                    for batch_idx, (x, targetx) in enumerate(loaders['aug_train']):
                        x, targetx = x.to(device), targetx.to(device)
                        output = model(x)
                        train_loss = criterion(output, targetx)
                        total_train_loss += train_loss
                        n += 1
                        _, prediction = torch.max(output.data, 1)
                        num_correct += torch.sum(prediction == targetx.data)
                        num_total += len(prediction)
                    epoch_aug_train_loss = total_train_loss / n
                    epoch_aug_train_acc = num_correct * 1.0 / num_total

                    total_train_loss, n, num_correct, num_total = 0, 0, 0, 0
                    for batch_idx, (x, targetx) in enumerate(loaders['train']):
                        x, targetx = x.to(device), targetx.to(device)
                        output = model(x)
                        train_loss = criterion(output, targetx)
                        total_train_loss += train_loss
                        n += 1
                        _, prediction = torch.max(output.data, 1)
                        num_correct += torch.sum(prediction == targetx.data)
                        num_total += len(prediction)
                    epoch_train_loss = total_val_loss / n
                    epoch_train_acc = num_correct * 1.0 / num_total

            # Outputting data to CSV at end of epoch
            with open(outfile_path, mode='a') as out_file:
                writer = csv.DictWriter(out_file, fieldnames=fieldnames, lineterminator='\n')
                writer.writerow({'dataset': args.dataset,
                                 'seed': curr_seed,
                                 'epoch': epoch,
                                 'time': (time.time() - start_time),
                                 'actfun': model.actfun,
                                 'sample_size': sample_size,
                                 'model': args.model,
                                 'batch_size': batch_size,
                                 'alpha_primes': alpha_primes,
                                 'alphas': alphas,
                                 'num_params': util.get_model_params(model),
                                 'var_nparams': args.var_n_params,
                                 'var_nsamples': args.var_n_samples,
                                 'k': curr_k,
                                 'p': curr_p,
                                 'g': curr_g,
                                 'perm_method': perm_method,
                                 'gen_gap': float(epoch_val_loss - epoch_train_loss),
                                 'aug_gen_gap': float(epoch_aug_val_loss - epoch_aug_train_loss),
                                 'resnet_ver': resnet_ver,
                                 'resnet_width': resnet_width,
                                 'epoch_train_loss': float(epoch_train_loss),
                                 'epoch_train_acc': float(epoch_train_acc),
                                 'epoch_aug_train_loss': float(epoch_aug_train_loss),
                                 'epoch_aug_train_acc': float(epoch_aug_train_acc),
                                 'epoch_val_loss': float(epoch_val_loss),
                                 'epoch_val_acc': float(epoch_val_acc),
                                 'epoch_aug_val_loss': float(epoch_aug_val_loss),
                                 'epoch_aug_val_acc': float(epoch_aug_val_acc),
                                 'hp_idx': hp_idx,
                                 'curr_lr': lr_curr,
                                 'found_lr': lr,
                                 'hparams': curr_hparams,
                                 'epochs': num_epochs
                                 })

            epoch += 1

            if args.optim == 'rmsprop':
                scheduler.step()

            if args.checkpoints:
                if epoch_val_acc > best_val_acc:
                    best_val_acc = epoch_val_acc
                    torch.save({'state_dict': model.state_dict(),
                                'optimizer': optimizer.state_dict(),
                                'scheduler': scheduler.state_dict(),
                                'curr_seed': curr_seed,
                                'epoch': epoch,
                                'actfun': actfun,
                                'num_params': num_params,
                                'sample_size': sample_size,
                                'p': curr_p, 'k': curr_k, 'g': curr_g,
                                'perm_method': perm_method
                                }, best_checkpoint_location)

                torch.save({'state_dict': model.state_dict(),
                            'optimizer': optimizer.state_dict(),
                            'scheduler': scheduler.state_dict(),
                            'curr_seed': curr_seed,
                            'epoch': epoch,
                            'actfun': actfun,
                            'num_params': num_params,
                            'sample_size': sample_size,
                            'p': curr_p, 'k': curr_k, 'g': curr_g,
                            'perm_method': perm_method
                            }, final_checkpoint_location)
Beispiel #8
0
class Learner:
    def __init__(self, model, train_loader, valid_loader, fold, config, seed):
        self.config = config
        self.seed = seed
        self.device = self.config.device
        self.train_loader = train_loader
        self.valid_loader = valid_loader
        self.model = model.to(self.device)

        self.fold = fold
        self.logger = init_logger(
            config.log_dir, f'train_seed{self.seed}_fold{self.fold}.log')
        self.tb_logger = init_tb_logger(
            config.log_dir, f'train_seed{self.seed}_fold{self.fold}')
        if self.fold == 0:
            self.log('\n'.join(
                [f"{k} = {v}" for k, v in self.config.__dict__.items()]))

        self.criterion = SmoothBCEwLogits(smoothing=self.config.smoothing)
        self.evaluator = nn.BCEWithLogitsLoss()
        self.summary_loss = AverageMeter()
        self.history = {'train': [], 'valid': []}

        self.optimizer = Adam(self.model.parameters(),
                              lr=config.lr,
                              weight_decay=self.config.weight_decay)
        self.scheduler = OneCycleLR(optimizer=self.optimizer,
                                    pct_start=0.1,
                                    div_factor=1e3,
                                    max_lr=1e-2,
                                    epochs=config.n_epochs,
                                    steps_per_epoch=len(train_loader))
        self.scaler = GradScaler() if config.fp16 else None

        self.epoch = 0
        self.best_epoch = 0
        self.best_loss = np.inf

    def train_one_epoch(self):
        self.model.train()
        self.summary_loss.reset()
        iters = len(self.train_loader)
        for step, (g_x, c_x, cate_x, labels,
                   non_labels) in enumerate(self.train_loader):
            self.optimizer.zero_grad()
            # self.tb_logger.add_scalar('Train/lr', self.optimizer.param_groups[0]['lr'],
            #                           iters * self.epoch + step)
            labels = labels.to(self.device)
            non_labels = non_labels.to(self.device)
            g_x = g_x.to(self.device)
            c_x = c_x.to(self.device)
            cate_x = cate_x.to(self.device)
            batch_size = labels.shape[0]

            with ExitStack() as stack:
                if self.config.fp16:
                    auto = stack.enter_context(autocast())
                outputs = self.model(g_x, c_x, cate_x)
                loss = self.criterion(outputs, labels)

            if self.config.fp16:
                self.scaler.scale(loss).backward()
                self.scaler.step(self.optimizer)
                self.scaler.update()
            else:
                loss.backward()
                self.optimizer.step()

            self.summary_loss.update(loss.item(), batch_size)
            if self.scheduler.__class__.__name__ != 'ReduceLROnPlateau':
                self.scheduler.step()

        self.history['train'].append(self.summary_loss.avg)
        return self.summary_loss.avg

    def validation(self):
        self.model.eval()
        self.summary_loss.reset()
        iters = len(self.valid_loader)
        for step, (g_x, c_x, cate_x, labels,
                   non_labels) in enumerate(self.valid_loader):
            with torch.no_grad():
                labels = labels.to(self.device)
                g_x = g_x.to(self.device)
                c_x = c_x.to(self.device)
                cate_x = cate_x.to(self.device)
                batch_size = labels.shape[0]
                outputs = self.model(g_x, c_x, cate_x)
                loss = self.evaluator(outputs, labels)

                self.summary_loss.update(loss.detach().item(), batch_size)

        self.history['valid'].append(self.summary_loss.avg)
        return self.summary_loss.avg

    def fit(self, epochs):
        self.log(f'Start training....')
        for e in range(epochs):
            t = time.time()
            loss = self.train_one_epoch()

            # self.log(f'[Train] \t Epoch: {self.epoch}, loss: {loss:.6f}, time: {(time.time() - t):.2f}')
            self.tb_logger.add_scalar('Train/Loss', loss, self.epoch)

            t = time.time()
            loss = self.validation()

            # self.log(f'[Valid] \t Epoch: {self.epoch}, loss: {loss:.6f}, time: {(time.time() - t):.2f}')
            self.tb_logger.add_scalar('Valid/Loss', loss, self.epoch)
            self.post_processing(loss)

            self.epoch += 1
        self.log(f'best epoch: {self.best_epoch}, best loss: {self.best_loss}')
        return self.history

    def post_processing(self, loss):
        if loss < self.best_loss:
            self.best_loss = loss
            self.best_epoch = self.epoch

            self.model.eval()
            torch.save(
                {
                    'model_state_dict': self.model.state_dict(),
                    'optimizer_state_dict': self.optimizer.state_dict(),
                    'scheduler_state_dict': self.scheduler.state_dict(),
                    'best_loss': self.best_loss,
                    'epoch': self.epoch,
                },
                f'{os.path.join(self.config.log_dir, f"{self.config.name}_seed{self.seed}_fold{self.fold}.pth")}'
            )
            self.log(f'best model: {self.epoch} epoch - loss: {loss:.6f}')

    def load(self, path):
        checkpoint = torch.load(path,
                                map_location=lambda storage, loc: storage)
        self.model.load_state_dict(checkpoint['model_state_dict'])
        self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
        self.scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
        self.best_loss = checkpoint['best_loss']
        self.epoch = checkpoint['epoch'] + 1

    def log(self, text):
        self.logger.info(text)
Beispiel #9
0
            # move data to gpu
            img_cpu, label_cpu = batch
            img = img_cpu.to(device)
            label = label_cpu.to(device)

            # let model predict results
            output = model(img)

            # calc loss
            loss = nllloss(output, label)
            mean_loss.append(loss.cpu().item())

            # backpropagate loss & adjust model
            loss.backward()
            optimizer.step()
            scheduler.step()

            # collect data for the f1 score
            lables_cat = torch.cat((lables_cat, label_cpu))
            output_cat = torch.cat((output_cat, output.argmax(axis=1).cpu()))

        # calculate the f1 score
        train_f1 = f1_score(lables_cat, output_cat, average='macro')

        lables_cat = torch.empty(0, dtype=torch.long)
        output_cat = torch.empty(0, dtype=torch.long)
        for batch in tqdm(testloader, desc=f"Test {epoch}", leave=False):
            img_cpu, label_cpu = batch
            img = img_cpu.to(device)
            label_1hot = []
Beispiel #10
0
def train(args, training_features, model, tokenizer):
    """ Train the model """
    wandb.init(project=os.getenv("WANDB_PROJECT", "huggingface"),
               config=args,
               name=args.run_name)
    wandb.watch(model)

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
    else:
        amp = None

    # model recover
    recover_step = utils.get_max_epoch_model(args.output_dir)

    # if recover_step:
    #     model_recover_checkpoint = os.path.join(args.output_dir, "model.{}.bin".format(recover_step))
    #     logger.info(" ** Recover model checkpoint in %s ** ", model_recover_checkpoint)
    #     model_state_dict = torch.load(model_recover_checkpoint, map_location='cpu')
    #     optimizer_recover_checkpoint = os.path.join(args.output_dir, "optim.{}.bin".format(recover_step))
    #     checkpoint_state_dict = torch.load(optimizer_recover_checkpoint, map_location='cpu')
    #     checkpoint_state_dict['model'] = model_state_dict
    # else:
    checkpoint_state_dict = None

    model.to(args.device)
    model, optimizer = prepare_for_training(args,
                                            model,
                                            checkpoint_state_dict,
                                            amp=amp)

    if args.n_gpu == 0 or args.no_cuda:
        per_node_train_batch_size = args.per_gpu_train_batch_size * args.gradient_accumulation_steps
    else:
        per_node_train_batch_size = args.per_gpu_train_batch_size * args.n_gpu * args.gradient_accumulation_steps

    train_batch_size = per_node_train_batch_size * (
        torch.distributed.get_world_size() if args.local_rank != -1 else 1)
    global_step = recover_step if recover_step else 0

    if args.num_training_steps == -1:
        args.num_training_steps = int(args.num_training_epochs *
                                      len(training_features) /
                                      train_batch_size)

    if args.warmup_portion:
        args.num_warmup_steps = args.warmup_portion * args.num_training_steps

    if args.scheduler == "linear":
        scheduler = get_linear_schedule_with_warmup(
            optimizer,
            num_warmup_steps=args.num_warmup_steps,
            num_training_steps=args.num_training_steps,
            last_epoch=-1)

    elif args.scheduler == "constant":
        scheduler = get_constant_schedule(optimizer, last_epoch=-1)

    elif args.scheduler == "1cycle":
        scheduler = OneCycleLR(optimizer,
                               max_lr=args.learning_rate,
                               total_steps=args.num_training_steps,
                               pct_start=args.warmup_portion,
                               anneal_strategy=args.anneal_strategy,
                               final_div_factor=1e4,
                               last_epoch=-1)

    else:
        assert False

    if checkpoint_state_dict:
        scheduler.load_state_dict(checkpoint_state_dict["lr_scheduler"])

    train_dataset = utils.Seq2seqDatasetForBert(
        features=training_features,
        max_source_len=args.max_source_seq_length,
        max_target_len=args.max_target_seq_length,
        vocab_size=tokenizer.vocab_size,
        cls_id=tokenizer.cls_token_id,
        sep_id=tokenizer.sep_token_id,
        pad_id=tokenizer.pad_token_id,
        mask_id=tokenizer.mask_token_id,
        random_prob=args.random_prob,
        keep_prob=args.keep_prob,
        offset=train_batch_size * global_step,
        num_training_instances=train_batch_size * args.num_training_steps,
    )

    logger.info("Check dataset:")
    for i in range(5):
        source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens = train_dataset.__getitem__(
            i)
        logger.info("Instance-%d" % i)
        logger.info("Source tokens = %s" %
                    " ".join(tokenizer.convert_ids_to_tokens(source_ids)))
        logger.info("Target tokens = %s" %
                    " ".join(tokenizer.convert_ids_to_tokens(target_ids)))

    logger.info("Mode = %s" % str(model))

    # Train!
    logger.info("  ***** Running training *****  *")
    logger.info("  Num examples = %d", len(training_features))
    logger.info("  Num Epochs = %.2f",
                len(train_dataset) / len(training_features))
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info("  Batch size per node = %d", per_node_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        train_batch_size)
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", args.num_training_steps)

    if args.num_training_steps <= global_step:
        logger.info(
            "Training is done. Please use a new dir or clean this dir!")
    else:
        # The training features are shuffled
        train_sampler = SequentialSampler(train_dataset) \
            if args.local_rank == -1 else DistributedSampler(train_dataset, shuffle=False)
        train_dataloader = DataLoader(
            train_dataset,
            sampler=train_sampler,
            batch_size=per_node_train_batch_size //
            args.gradient_accumulation_steps,
            collate_fn=utils.batch_list_to_batch_tensors)

        train_iterator = tqdm.tqdm(train_dataloader,
                                   initial=global_step,
                                   desc="Iter (loss=X.XXX, lr=X.XXXXXXX)",
                                   disable=args.local_rank not in [-1, 0])

        model.train()
        model.zero_grad()

        tr_loss, logging_loss = 0.0, 0.0

        for step, batch in enumerate(train_iterator):
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                'source_ids': batch[0],
                'target_ids': batch[1],
                'pseudo_ids': batch[2],
                'num_source_tokens': batch[3],
                'num_target_tokens': batch[4]
            }
            loss = model(**inputs)
            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel (not distributed) training

            train_iterator.set_description(
                'Iter (loss=%5.3f) lr=%9.7f' %
                (loss.item(), scheduler.get_last_lr()[0]))

            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            logging_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)

                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [
                        -1, 0
                ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    wandb.log(
                        {
                            'lr': scheduler.get_last_lr()[0],
                            'loss': logging_loss / args.logging_steps
                        },
                        step=global_step)

                    logger.info(" Step [%d ~ %d]: %.2f",
                                global_step - args.logging_steps, global_step,
                                logging_loss)
                    logging_loss = 0.0

                if args.local_rank in [-1, 0] and args.save_steps > 0 and \
                        (global_step % args.save_steps == 0 or global_step == args.num_training_steps):

                    save_path = os.path.join(args.output_dir,
                                             "ckpt-%d" % global_step)
                    os.makedirs(save_path, exist_ok=True)
                    model_to_save = model.module if hasattr(
                        model, "module") else model
                    model_to_save.save_pretrained(save_path)

                    # optim_to_save = {
                    #     "optimizer": optimizer.state_dict(),
                    #     "lr_scheduler": scheduler.state_dict(),
                    # }
                    # if args.fp16:
                    #     optim_to_save["amp"] = amp.state_dict()
                    # torch.save(
                    #     optim_to_save, os.path.join(args.output_dir, 'optim.{}.bin'.format(global_step)))

                    logger.info("Saving model checkpoint %d into %s",
                                global_step, save_path)

    wandb.save(f'{save_path}/*')
Beispiel #11
0
class Maskv3Agent:
    def __init__(self, config):
        self.config = config

        # Train on device
        target_device = config['train']['device']
        if torch.cuda.is_available():
            torch.backends.cudnn.benchmark = True
            self.device = target_device
        else:
            self.device = "cpu"

        # Load dataset
        train_transform = get_yolo_transform(config['dataset']['size'],
                                             mode='train')
        valid_transform = get_yolo_transform(config['dataset']['size'],
                                             mode='test')
        train_dataset = YOLOMaskDataset(
            csv_file=config['dataset']['train']['csv'],
            img_dir=config['dataset']['train']['img_root'],
            mask_dir=config['dataset']['train']['mask_root'],
            anchors=config['dataset']['anchors'],
            scales=config['dataset']['scales'],
            n_classes=config['dataset']['n_classes'],
            transform=train_transform)
        valid_dataset = YOLOMaskDataset(
            csv_file=config['dataset']['valid']['csv'],
            img_dir=config['dataset']['valid']['img_root'],
            mask_dir=config['dataset']['valid']['mask_root'],
            anchors=config['dataset']['anchors'],
            scales=config['dataset']['scales'],
            n_classes=config['dataset']['n_classes'],
            transform=valid_transform)
        # DataLoader
        self.train_loader = DataLoader(
            dataset=train_dataset,
            batch_size=config['dataloader']['batch_size'],
            num_workers=config['dataloader']['num_workers'],
            collate_fn=maskv3_collate_fn,
            pin_memory=True,
            shuffle=True,
            drop_last=False)
        self.valid_loader = DataLoader(
            dataset=valid_dataset,
            batch_size=config['dataloader']['batch_size'],
            num_workers=config['dataloader']['num_workers'],
            collate_fn=maskv3_collate_fn,
            pin_memory=True,
            shuffle=False,
            drop_last=False)
        # Model
        model = Maskv3(
            # Detection Branch
            in_channels=config['model']['in_channels'],
            num_classes=config['model']['num_classes'],
            # Prototype Branch
            num_masks=config['model']['num_masks'],
            num_features=config['model']['num_features'],
        )
        self.model = model.to(self.device)
        # Faciliated Anchor boxes with model
        torch_anchors = torch.tensor(config['dataset']['anchors'])  # (3, 3, 2)
        torch_scales = torch.tensor(config['dataset']['scales'])  # (3,)
        scaled_anchors = (  # (3, 3, 2)
            torch_anchors *
            (torch_scales.unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)))
        self.scaled_anchors = scaled_anchors.to(self.device)

        # Optimizer
        self.scaler = torch.cuda.amp.GradScaler()
        self.optimizer = optim.Adam(
            params=self.model.parameters(),
            lr=config['optimizer']['lr'],
            weight_decay=config['optimizer']['weight_decay'],
        )
        # Scheduler
        self.scheduler = OneCycleLR(
            self.optimizer,
            max_lr=config['optimizer']['lr'],
            epochs=config['train']['n_epochs'],
            steps_per_epoch=len(self.train_loader),
        )
        # Loss function
        self.loss_fn = YOLOMaskLoss(num_classes=config['model']['num_classes'],
                                    num_masks=config['model']['num_masks'])

        # Tensorboard
        self.logdir = config['train']['logdir']
        self.board = SummaryWriter(logdir=config['train']['logdir'])

        # Training State
        self.current_epoch = 0
        self.current_map = 0

    def resume(self):
        checkpoint_path = osp.join(self.logdir, 'best.pth')
        checkpoint = torch.load(checkpoint_path)
        self.model.load_state_dict(checkpoint['model'])
        self.optimizer.load_state_dict(checkpoint['optimizer'])
        self.scheduler.load_state_dict(checkpoint['scheduler'])
        self.current_map = checkpoint['current_map']
        self.current_epoch = checkpoint['current_epoch']
        print("Restore checkpoint at '{}'".format(self.current_epoch))

    def train(self):
        for epoch in range(self.current_epoch + 1,
                           self.config['train']['n_epochs'] + 1):
            self.current_epoch = epoch
            self._train_one_epoch()
            self._validate()
            accs = self._check_accuracy()

            if self.current_epoch < self.config['valid']['when']:
                self._save_checkpoint()

            if (self.current_epoch >= self.config['valid']['when']
                    and self.current_epoch % 5 == 0):
                mAP50 = self._check_map()
                if mAP50 > self.current_map:
                    self.current_map = mAP50
                    self._save_checkpoint()

    def finalize(self):
        self._check_map()

    def _train_one_epoch(self):
        n_epochs = self.config['train']['n_epochs']
        current_epoch = self.current_epoch
        current_lr = self.optimizer.param_groups[0]['lr']
        loop = tqdm(self.train_loader,
                    leave=True,
                    desc=(f"Train Epoch:{current_epoch}/{n_epochs}"
                          f", LR: {current_lr:.5f}"))
        obj_losses = []
        box_losses = []
        noobj_losses = []
        class_losses = []
        total_losses = []
        segment_losses = []
        self.model.train()
        for batch_idx, (imgs, masks, targets) in enumerate(loop):
            # Move device
            imgs = imgs.to(self.device)  # (N, 3, 416, 416)
            masks = [m.to(self.device) for m in masks]  # (nM_g, H, W)
            target_s1 = targets[0].to(self.device)  # (N, 3, 13, 13, 6)
            target_s2 = targets[1].to(self.device)  # (N, 3, 26, 26, 6)
            target_s3 = targets[2].to(self.device)  # (N, 3, 52, 52, 6)
            # Model prediction
            with torch.cuda.amp.autocast():
                outs, prototypes = self.model(imgs)
                s1_loss = self.loss_fn(
                    outs[0],
                    target_s1,
                    self.scaled_anchors[0],  # Detection Branch
                    prototypes,
                    masks,  # Prototype Branch
                )
                s2_loss = self.loss_fn(
                    outs[1],
                    target_s2,
                    self.scaled_anchors[1],  # Detection Branch
                    prototypes,
                    masks,  # Prototype Branch
                )
                s3_loss = self.loss_fn(
                    outs[2],
                    target_s3,
                    self.scaled_anchors[2],  # Detection Branch
                    prototypes,
                    masks,  # Prototype Branch
                )
            # Aggregate loss
            obj_loss = s1_loss['obj_loss'] + s2_loss['obj_loss'] + s3_loss[
                'obj_loss']
            box_loss = s1_loss['box_loss'] + s2_loss['box_loss'] + s3_loss[
                'box_loss']
            noobj_loss = s1_loss['noobj_loss'] + s2_loss[
                'noobj_loss'] + s3_loss['noobj_loss']
            class_loss = s1_loss['class_loss'] + s2_loss[
                'class_loss'] + s3_loss['class_loss']
            segment_loss = s1_loss['segment_loss'] + s2_loss[
                'segment_loss'] + s3_loss['segment_loss']
            total_loss = s1_loss['total_loss'] + s2_loss[
                'total_loss'] + s3_loss['total_loss']
            # Moving average loss
            total_losses.append(total_loss.item())
            obj_losses.append(obj_loss.item())
            noobj_losses.append(noobj_loss.item())
            box_losses.append(box_loss.item())
            class_losses.append(class_loss.item())
            segment_losses.append(segment_loss.item())
            # Update Parameters
            self.optimizer.zero_grad()
            self.scaler.scale(total_loss).backward()
            self.scaler.step(self.optimizer)
            self.scaler.update()
            self.scheduler.step()
            # Upadte progress bar
            mean_total_loss = sum(total_losses) / len(total_losses)
            mean_obj_loss = sum(obj_losses) / len(obj_losses)
            mean_noobj_loss = sum(noobj_losses) / len(noobj_losses)
            mean_box_loss = sum(box_losses) / len(box_losses)
            mean_class_loss = sum(class_losses) / len(class_losses)
            mean_segment_loss = sum(segment_losses) / len(segment_losses)
            loop.set_postfix(
                loss=mean_total_loss,
                cls=mean_class_loss,
                box=mean_box_loss,
                obj=mean_obj_loss,
                noobj=mean_noobj_loss,
                segment=mean_segment_loss,
            )
        # Logging (epoch)
        epoch_total_loss = sum(total_losses) / len(total_losses)
        epoch_obj_loss = sum(obj_losses) / len(obj_losses)
        epoch_noobj_loss = sum(noobj_losses) / len(noobj_losses)
        epoch_box_loss = sum(box_losses) / len(box_losses)
        epoch_class_loss = sum(class_losses) / len(class_losses)
        epoch_segment_loss = sum(segment_losses) / len(segment_losses)
        self.board.add_scalar('Epoch Train Loss',
                              epoch_total_loss,
                              global_step=self.current_epoch)
        self.board.add_scalar('Epoch Train BOX Loss',
                              epoch_box_loss,
                              global_step=self.current_epoch)
        self.board.add_scalar('Epoch Train OBJ Loss',
                              epoch_obj_loss,
                              global_step=self.current_epoch)
        self.board.add_scalar('Epoch Train NOOBJ Loss',
                              epoch_noobj_loss,
                              global_step=self.current_epoch)
        self.board.add_scalar('Epoch Train CLASS Loss',
                              epoch_class_loss,
                              global_step=self.current_epoch)
        self.board.add_scalar('Epoch Train SEGMENT Loss',
                              epoch_segment_loss,
                              global_step=self.current_epoch)

    def _validate(self):
        n_epochs = self.config['train']['n_epochs']
        current_epoch = self.current_epoch
        current_lr = self.optimizer.param_groups[0]['lr']
        loop = tqdm(self.valid_loader,
                    leave=True,
                    desc=(f"Valid Epoch:{current_epoch}/{n_epochs}"
                          f", LR: {current_lr:.5f}"))
        obj_losses = []
        box_losses = []
        noobj_losses = []
        class_losses = []
        total_losses = []
        segment_losses = []
        self.model.eval()
        for batch_idx, (imgs, masks, targets) in enumerate(loop):
            # Move device
            imgs = imgs.to(self.device)  # (N, 3, 416, 416)
            masks = [m.to(self.device) for m in masks]  # (nM_g, H, W)
            target_s1 = targets[0].to(self.device)  # (N, 3, 13, 13, 6)
            target_s2 = targets[1].to(self.device)  # (N, 3, 26, 26, 6)
            target_s3 = targets[2].to(self.device)  # (N, 3, 52, 52, 6)
            # Model Prediction
            with torch.no_grad():
                with torch.cuda.amp.autocast():
                    outs, prototypes = self.model(imgs)
                    s1_loss = self.loss_fn(
                        outs[0],
                        target_s1,
                        self.scaled_anchors[0],  # Detection Branch
                        prototypes,
                        masks,  # Prototype Branch
                    )
                    s2_loss = self.loss_fn(
                        outs[1],
                        target_s2,
                        self.scaled_anchors[1],  # Detection Branch
                        prototypes,
                        masks,  # Prototype Branch
                    )
                    s3_loss = self.loss_fn(
                        outs[2],
                        target_s3,
                        self.scaled_anchors[2],  # Detection Branch
                        prototypes,
                        masks,  # Prototype Branch
                    )
            # Aggregate loss
            obj_loss = s1_loss['obj_loss'] + s2_loss['obj_loss'] + s3_loss[
                'obj_loss']
            box_loss = s1_loss['box_loss'] + s2_loss['box_loss'] + s3_loss[
                'box_loss']
            noobj_loss = s1_loss['noobj_loss'] + s2_loss[
                'noobj_loss'] + s3_loss['noobj_loss']
            class_loss = s1_loss['class_loss'] + s2_loss[
                'class_loss'] + s3_loss['class_loss']
            segment_loss = s1_loss['segment_loss'] + s2_loss[
                'segment_loss'] + s3_loss['segment_loss']
            total_loss = s1_loss['total_loss'] + s2_loss[
                'total_loss'] + s3_loss['total_loss']
            # Moving average loss
            obj_losses.append(obj_loss.item())
            box_losses.append(box_loss.item())
            noobj_losses.append(noobj_loss.item())
            class_losses.append(class_loss.item())
            total_losses.append(total_loss.item())
            segment_losses.append(segment_loss.item())
            # Upadte progress bar
            mean_total_loss = sum(total_losses) / len(total_losses)
            mean_obj_loss = sum(obj_losses) / len(obj_losses)
            mean_noobj_loss = sum(noobj_losses) / len(noobj_losses)
            mean_box_loss = sum(box_losses) / len(box_losses)
            mean_class_loss = sum(class_losses) / len(class_losses)
            mean_segment_loss = sum(segment_losses) / len(segment_losses)
            loop.set_postfix(
                loss=mean_total_loss,
                cls=mean_class_loss,
                box=mean_box_loss,
                obj=mean_obj_loss,
                noobj=mean_noobj_loss,
                segment=mean_segment_loss,
            )
        # Logging (epoch)
        epoch_total_loss = sum(total_losses) / len(total_losses)
        epoch_obj_loss = sum(obj_losses) / len(obj_losses)
        epoch_noobj_loss = sum(noobj_losses) / len(noobj_losses)
        epoch_box_loss = sum(box_losses) / len(box_losses)
        epoch_class_loss = sum(class_losses) / len(class_losses)
        epoch_segment_loss = sum(segment_losses) / len(segment_losses)
        self.board.add_scalar('Epoch Valid Loss',
                              epoch_total_loss,
                              global_step=self.current_epoch)
        self.board.add_scalar('Epoch Valid BOX Loss',
                              epoch_box_loss,
                              global_step=self.current_epoch)
        self.board.add_scalar('Epoch Valid OBJ Loss',
                              epoch_obj_loss,
                              global_step=self.current_epoch)
        self.board.add_scalar('Epoch Valid NOOBJ Loss',
                              epoch_noobj_loss,
                              global_step=self.current_epoch)
        self.board.add_scalar('Epoch Valid CLASS Loss',
                              epoch_class_loss,
                              global_step=self.current_epoch)
        self.board.add_scalar('Epoch Valid SEGMENT Loss',
                              epoch_segment_loss,
                              global_step=self.current_epoch)

    def _check_accuracy(self):
        tot_obj = 0
        tot_noobj = 0
        correct_obj = 0
        correct_noobj = 0
        correct_class = 0
        self.model.eval()
        loop = tqdm(self.valid_loader, leave=True, desc=f"Check ACC")
        for batch_idx, (imgs, masks, targets) in enumerate(loop):
            batch_size = imgs.size(0)
            # Move device
            imgs = imgs.to(self.device)  # (N, 3, 416, 416)
            target_s1 = targets[0].to(self.device)  # (N, 3, 13, 13, 6)
            target_s2 = targets[1].to(self.device)  # (N, 3, 26, 26, 6)
            target_s3 = targets[2].to(self.device)  # (N, 3, 52, 52, 6)
            targets = [target_s1, target_s2, target_s3]
            # Model Prediction
            with torch.no_grad():
                with torch.cuda.amp.autocast():
                    outs, prototypes = self.model(imgs)
            for scale_idx in range(len(outs)):
                # Get output
                pred = outs[scale_idx]
                target = targets[scale_idx]
                # Get mask
                obj_mask = target[..., 4] == 1
                noobj_mask = target[..., 4] == 0
                # Count objects
                tot_obj += torch.sum(obj_mask)
                tot_noobj += torch.sum(noobj_mask)
                # Exception Handling
                if torch.sum(obj_mask) == 0:
                    obj_pred = torch.sigmoid(
                        pred[..., 4]) > self.config['valid']['conf_threshold']
                    correct_noobj += torch.sum(
                        obj_pred[noobj_mask] == target[..., 4][noobj_mask])
                    continue
                # Count number of correct classified object
                correct_class += torch.sum((torch.argmax(
                    pred[...,
                         5:5 + self.config['model']['num_classes']][obj_mask],
                    dim=-1) == target[..., 5][obj_mask]))
                # Count number of correct objectness & non-objectness
                obj_pred = torch.sigmoid(
                    pred[..., 4]) > self.config['valid']['conf_threshold']
                correct_obj += torch.sum(
                    obj_pred[obj_mask] == target[..., 4][obj_mask])
                correct_noobj += torch.sum(
                    obj_pred[noobj_mask] == target[..., 4][noobj_mask])
        # Aggregation Result
        acc_obj = (correct_obj / (tot_obj + 1e-6)) * 100
        acc_cls = (correct_class / (tot_obj + 1e-6)) * 100
        acc_noobj = (correct_noobj / (tot_noobj + 1e-6)) * 100
        accs = {
            'cls': acc_cls.item(),
            'obj': acc_obj.item(),
            'noobj': acc_noobj.item()
        }
        print(f"Epoch {self.current_epoch} [Accs]: {accs}")
        return accs

    def _check_map(self):
        sample_idx = 0
        all_pred_bboxes = []
        all_true_bboxes = []
        self.model.eval()
        loop = tqdm(self.valid_loader, leave=True, desc="Check mAP")
        for batch_idx, (imgs, masks, targets) in enumerate(loop):
            batch_size = imgs.size(0)
            # Move device
            imgs = imgs.to(self.device)  # (N, 3, 416, 416)
            target_s1 = targets[0].to(self.device)  # (N, 3, 13, 13, 6)
            target_s2 = targets[1].to(self.device)  # (N, 3, 26, 26, 6)
            target_s3 = targets[2].to(self.device)  # (N, 3, 52, 52, 6)
            targets = [target_s1, target_s2, target_s3]
            # Model Forward
            with torch.no_grad():
                with torch.cuda.amp.autocast():
                    preds, prototypes = self.model(imgs)
            # Convert cells to bboxes
            # =================================================================
            true_bboxes = [[] for _ in range(batch_size)]
            pred_bboxes = [[] for _ in range(batch_size)]
            for scale_idx, (pred, target) in enumerate(zip(preds, targets)):
                scale = pred.size(2)
                anchors = self.scaled_anchors[scale_idx]  # (3, 2)
                anchors = anchors.reshape(1, 3, 1, 1, 2)  # (1, 3, 1, 1, 2)
                # Convert prediction to correct format
                pred[..., 0:2] = torch.sigmoid(pred[...,
                                                    0:2])  # (N, 3, S, S, 2)
                pred[..., 2:4] = torch.exp(
                    pred[..., 2:4]) * anchors  # (N, 3, S, S, 2)
                pred[..., 4:5] = torch.sigmoid(pred[...,
                                                    4:5])  # (N, 3, S, S, 1)
                pred_cls_probs = F.softmax(
                    pred[..., 5:5 + self.config['model']['num_classes']],
                    dim=-1)  # (N, 3, S, S, C)
                _, indices = torch.max(pred_cls_probs, dim=-1)  # (N, 3, S, S)
                indices = indices.unsqueeze(-1)  # (N, 3, S, S, 1)
                pred = torch.cat([pred[..., :5], indices],
                                 dim=-1)  # (N, 3, S, S, 6)
                # Convert coordinate system to normalized format (xywh)
                pboxes = cells_to_boxes(cells=pred,
                                        scale=scale)  # (N, 3, S, S, 6)
                tboxes = cells_to_boxes(cells=target,
                                        scale=scale)  # (N, 3, S, S, 6)
                # Filter out bounding boxes from all cells
                for idx, cell_boxes in enumerate(pboxes):
                    obj_mask = cell_boxes[
                        ..., 4] > self.config['valid']['conf_threshold']
                    boxes = cell_boxes[obj_mask]
                    pred_bboxes[idx] += boxes.tolist()
                # Filter out bounding boxes from all cells
                for idx, cell_boxes in enumerate(tboxes):
                    obj_mask = cell_boxes[..., 4] > 0.99
                    boxes = cell_boxes[obj_mask]
                    true_bboxes[idx] += boxes.tolist()
            # Perform NMS batch-by-batch
            # =================================================================
            for batch_idx in range(batch_size):
                pbboxes = torch.tensor(pred_bboxes[batch_idx])
                tbboxes = torch.tensor(true_bboxes[batch_idx])
                # Perform NMS class-by-class
                for c in range(self.config['model']['num_classes']):
                    # Filter pred boxes of specific class
                    nms_pred_boxes = nms_by_class(
                        target=c,
                        bboxes=pbboxes,
                        iou_threshold=self.config['valid']
                        ['nms_iou_threshold'])
                    nms_true_boxes = nms_by_class(
                        target=c,
                        bboxes=tbboxes,
                        iou_threshold=self.config['valid']
                        ['nms_iou_threshold'])
                    all_pred_bboxes.extend([[sample_idx] + box
                                            for box in nms_pred_boxes])
                    all_true_bboxes.extend([[sample_idx] + box
                                            for box in nms_true_boxes])
                sample_idx += 1
        # Compute [email protected] & [email protected]
        # =================================================================
        # The format of the bboxes is (idx, x1, y1, x2, y2, conf, class)
        all_pred_bboxes = torch.tensor(all_pred_bboxes)  # (J, 7)
        all_true_bboxes = torch.tensor(all_true_bboxes)  # (K, 7)
        eval50 = mean_average_precision(
            all_pred_bboxes,
            all_true_bboxes,
            iou_threshold=0.5,
            n_classes=self.config['dataset']['n_classes'])
        eval75 = mean_average_precision(
            all_pred_bboxes,
            all_true_bboxes,
            iou_threshold=0.75,
            n_classes=self.config['dataset']['n_classes'])
        print((
            f"Epoch {self.current_epoch}:\n"
            f"\t-[[email protected]]={eval50['mAP']:.3f}, [Recall]={eval50['recall']:.3f}, [Precision]={eval50['precision']:.3f}\n"
            f"\t-[[email protected]]={eval75['mAP']:.3f}, [Recall]={eval75['recall']:.3f}, [Precision]={eval75['precision']:.3f}\n"
        ))
        return eval50['mAP']

    def _save_checkpoint(self):
        checkpoint = {
            'model': self.model.state_dict(),
            'optimizer': self.optimizer.state_dict(),
            'scheduler': self.scheduler.state_dict(),
            'current_map': self.current_map,
            'current_epoch': self.current_epoch
        }
        checkpoint_path = osp.join(self.logdir, 'best.pth')
        torch.save(checkpoint, checkpoint_path)
        print("Save checkpoint at '{}'".format(checkpoint_path))
Beispiel #12
0
    def __call__(
        self,
        net: nn.Module,
        train_iter: DataLoader,
        validation_iter: Optional[DataLoader] = None,
    ) -> None:
        wandb.watch(net, log="all", log_freq=self.num_batches_per_epoch)

        optimizer = Adam(net.parameters(),
                         lr=self.learning_rate,
                         weight_decay=self.weight_decay)

        lr_scheduler = OneCycleLR(
            optimizer,
            max_lr=self.maximum_learning_rate,
            steps_per_epoch=self.num_batches_per_epoch,
            epochs=self.epochs,
        )

        for epoch_no in range(self.epochs):
            # mark epoch start time
            tic = time.time()
            avg_epoch_loss = 0.0

            if validation_iter is not None:
                avg_epoch_loss_val = 0.0

            train_iter_obj = list(
                zip(range(1, train_iter.batch_size + 1), tqdm(train_iter)))
            if validation_iter is not None:
                val_iter_obj = list(
                    zip(range(1, validation_iter.batch_size + 1),
                        tqdm(validation_iter)))

            with tqdm(train_iter) as it:
                for batch_no, data_entry in train_iter_obj:

                    optimizer.zero_grad()

                    # Strong assumption that validation_iter and train_iter are same iter size
                    if validation_iter is not None:
                        with torch.no_grad():
                            val_data_entry = val_iter_obj[batch_no - 1][1]
                            inputs_val = [
                                v.to(self.device)
                                for v in val_data_entry.values()
                            ]
                            output_val = net(*inputs_val)

                            if isinstance(output_val, (list, tuple)):
                                loss_val = output_val[0]
                            else:
                                loss_val = output_val

                            avg_epoch_loss_val += loss_val.item()

                    inputs = [v.to(self.device) for v in data_entry.values()]
                    output = net(*inputs)

                    if isinstance(output, (list, tuple)):
                        loss = output[0]
                    else:
                        loss = output

                    avg_epoch_loss += loss.item()
                    if validation_iter is not None:
                        post_fix_dict = ordered_dict = {
                            "avg_epoch_loss": avg_epoch_loss / batch_no,
                            "avg_epoch_loss_val":
                            avg_epoch_loss_val / batch_no,
                            "epoch": epoch_no,
                        }
                        wandb.log({"loss_val": loss_val.item()})
                    else:
                        post_fix_dict = {
                            "avg_epoch_loss": avg_epoch_loss / batch_no,
                            "epoch": epoch_no,
                        }

                    wandb.log({"loss": loss.item()})

                    it.set_postfix(post_fix_dict, refresh=False)

                    loss.backward()
                    if self.clip_gradient is not None:
                        nn.utils.clip_grad_norm_(net.parameters(),
                                                 self.clip_gradient)

                    optimizer.step()
                    lr_scheduler.step()

                    if self.num_batches_per_epoch == batch_no:
                        break

            # mark epoch end time and log time cost of current epoch
            toc = time.time()
Beispiel #13
0
class Trainer():
    def __init__(self, alphabets_, list_ngram):

        self.vocab = Vocab(alphabets_)
        self.synthesizer = SynthesizeData(vocab_path="")
        self.list_ngrams_train, self.list_ngrams_valid = self.train_test_split(
            list_ngram, test_size=0.1)
        print("Loaded data!!!")
        print("Total training samples: ", len(self.list_ngrams_train))
        print("Total valid samples: ", len(self.list_ngrams_valid))

        INPUT_DIM = self.vocab.__len__()
        OUTPUT_DIM = self.vocab.__len__()

        self.device = DEVICE
        self.num_iters = NUM_ITERS
        self.beamsearch = BEAM_SEARCH

        self.batch_size = BATCH_SIZE
        self.print_every = PRINT_PER_ITER
        self.valid_every = VALID_PER_ITER

        self.checkpoint = CHECKPOINT
        self.export_weights = EXPORT
        self.metrics = MAX_SAMPLE_VALID
        logger = LOG

        if logger:
            self.logger = Logger(logger)

        self.iter = 0

        self.model = Seq2Seq(input_dim=INPUT_DIM,
                             output_dim=OUTPUT_DIM,
                             encoder_embbeded=ENC_EMB_DIM,
                             decoder_embedded=DEC_EMB_DIM,
                             encoder_hidden=ENC_HID_DIM,
                             decoder_hidden=DEC_HID_DIM,
                             encoder_dropout=ENC_DROPOUT,
                             decoder_dropout=DEC_DROPOUT)

        self.optimizer = AdamW(self.model.parameters(),
                               betas=(0.9, 0.98),
                               eps=1e-09)
        self.scheduler = OneCycleLR(self.optimizer,
                                    total_steps=self.num_iters,
                                    pct_start=PCT_START,
                                    max_lr=MAX_LR)

        self.criterion = LabelSmoothingLoss(len(self.vocab),
                                            padding_idx=self.vocab.pad,
                                            smoothing=0.1)

        self.train_gen = self.data_gen(self.list_ngrams_train,
                                       self.synthesizer,
                                       self.vocab,
                                       is_train=True)
        self.valid_gen = self.data_gen(self.list_ngrams_valid,
                                       self.synthesizer,
                                       self.vocab,
                                       is_train=False)

        self.train_losses = []

        # to device
        self.model.to(self.device)
        self.criterion.to(self.device)

    def train_test_split(self, list_phrases, test_size=0.1):
        list_phrases = list_phrases
        train_idx = int(len(list_phrases) * (1 - test_size))
        list_phrases_train = list_phrases[:train_idx]
        list_phrases_valid = list_phrases[train_idx:]
        return list_phrases_train, list_phrases_valid

    def data_gen(self, list_ngrams_np, synthesizer, vocab, is_train=True):
        dataset = AutoCorrectDataset(list_ngrams_np,
                                     transform_noise=synthesizer,
                                     vocab=vocab,
                                     maxlen=MAXLEN)

        shuffle = True if is_train else False
        gen = DataLoader(dataset,
                         batch_size=BATCH_SIZE,
                         shuffle=shuffle,
                         drop_last=False)

        return gen

    def step(self, batch):
        self.model.train()

        batch = self.batch_to_device(batch)
        src, tgt = batch['src'], batch['tgt']
        src, tgt = src.transpose(1, 0), tgt.transpose(
            1, 0)  # batch x src_len -> src_len x batch

        outputs = self.model(
            src, tgt)  # src : src_len x B, outpus : B x tgt_len x vocab

        #        loss = self.criterion(rearrange(outputs, 'b t v -> (b t) v'), rearrange(tgt_output, 'b o -> (b o)'))
        outputs = outputs.view(-1, outputs.size(2))  # flatten(0, 1)

        tgt_output = tgt.transpose(0, 1).reshape(
            -1)  # flatten()   # tgt: tgt_len xB , need convert to B x tgt_len

        loss = self.criterion(outputs, tgt_output)

        self.optimizer.zero_grad()

        loss.backward()

        torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1)

        self.optimizer.step()
        self.scheduler.step()

        loss_item = loss.item()

        return loss_item

    def train(self):
        print("Begin training from iter: ", self.iter)
        total_loss = 0

        total_loader_time = 0
        total_gpu_time = 0
        best_acc = -1

        data_iter = iter(self.train_gen)
        for i in range(self.num_iters):
            self.iter += 1

            start = time.time()

            try:
                batch = next(data_iter)
            except StopIteration:
                data_iter = iter(self.train_gen)
                batch = next(data_iter)

            total_loader_time += time.time() - start

            start = time.time()
            loss = self.step(batch)
            total_gpu_time += time.time() - start

            total_loss += loss
            self.train_losses.append((self.iter, loss))

            if self.iter % self.print_every == 0:
                info = 'iter: {:06d} - train loss: {:.3f} - lr: {:.2e} - load time: {:.2f} - gpu time: {:.2f}'.format(
                    self.iter, total_loss / self.print_every,
                    self.optimizer.param_groups[0]['lr'], total_loader_time,
                    total_gpu_time)

                total_loss = 0
                total_loader_time = 0
                total_gpu_time = 0
                print(info)
                self.logger.log(info)

            if self.iter % self.valid_every == 0:
                val_loss, preds, actuals, inp_sents = self.validate()
                acc_full_seq, acc_per_char, cer = self.precision(self.metrics)

                info = 'iter: {:06d} - valid loss: {:.3f} - acc full seq: {:.4f} - acc per char: {:.4f} - CER: {:.4f} '.format(
                    self.iter, val_loss, acc_full_seq, acc_per_char, cer)
                print(info)
                print("--- Sentence predict ---")
                for pred, inp, label in zip(preds, inp_sents, actuals):
                    infor_predict = 'Pred: {} - Inp: {} - Label: {}'.format(
                        pred, inp, label)
                    print(infor_predict)
                    self.logger.log(infor_predict)
                self.logger.log(info)

                if acc_full_seq > best_acc:
                    self.save_weights(self.export_weights)
                    best_acc = acc_full_seq
                self.save_checkpoint(self.checkpoint)

    def validate(self):
        self.model.eval()

        total_loss = []
        max_step = self.metrics / self.batch_size
        with torch.no_grad():
            for step, batch in enumerate(self.valid_gen):
                batch = self.batch_to_device(batch)
                src, tgt = batch['src'], batch['tgt']
                src, tgt = src.transpose(1, 0), tgt.transpose(1, 0)

                outputs = self.model(src, tgt, 0)  # turn off teaching force

                outputs = outputs.flatten(0, 1)
                tgt_output = tgt.flatten()
                loss = self.criterion(outputs, tgt_output)

                total_loss.append(loss.item())

                preds, actuals, inp_sents, probs = self.predict(5)

                del outputs
                del loss
                if step > max_step:
                    break

        total_loss = np.mean(total_loss)
        self.model.train()

        return total_loss, preds[:3], actuals[:3], inp_sents[:3]

    def predict(self, sample=None):
        pred_sents = []
        actual_sents = []
        inp_sents = []

        for batch in self.valid_gen:
            batch = self.batch_to_device(batch)

            if self.beamsearch:
                translated_sentence = batch_translate_beam_search(
                    batch['src'], self.model)
                prob = None
            else:
                translated_sentence, prob = translate(batch['src'], self.model)

            pred_sent = self.vocab.batch_decode(translated_sentence.tolist())
            actual_sent = self.vocab.batch_decode(batch['tgt'].tolist())
            inp_sent = self.vocab.batch_decode(batch['src'].tolist())

            pred_sents.extend(pred_sent)
            actual_sents.extend(actual_sent)
            inp_sents.extend(inp_sent)

            if sample is not None and len(pred_sents) > sample:
                break

        return pred_sents, actual_sents, inp_sents, prob

    def precision(self, sample=None):

        pred_sents, actual_sents, _, _ = self.predict(sample=sample)

        acc_full_seq = compute_accuracy(actual_sents,
                                        pred_sents,
                                        mode='full_sequence')
        acc_per_char = compute_accuracy(actual_sents,
                                        pred_sents,
                                        mode='per_char')
        cer = compute_accuracy(actual_sents, pred_sents, mode='CER')

        return acc_full_seq, acc_per_char, cer

    def visualize_prediction(self,
                             sample=16,
                             errorcase=False,
                             fontname='serif',
                             fontsize=16):

        pred_sents, actual_sents, img_files, probs = self.predict(sample)

        if errorcase:
            wrongs = []
            for i in range(len(img_files)):
                if pred_sents[i] != actual_sents[i]:
                    wrongs.append(i)

            pred_sents = [pred_sents[i] for i in wrongs]
            actual_sents = [actual_sents[i] for i in wrongs]
            img_files = [img_files[i] for i in wrongs]
            probs = [probs[i] for i in wrongs]

        img_files = img_files[:sample]

        fontdict = {'family': fontname, 'size': fontsize}

    def visualize_dataset(self, sample=16, fontname='serif'):
        n = 0
        for batch in self.train_gen:
            for i in range(self.batch_size):
                img = batch['img'][i].numpy().transpose(1, 2, 0)
                sent = self.vocab.decode(batch['tgt_input'].T[i].tolist())

                n += 1
                if n >= sample:
                    return

    def load_checkpoint(self, filename):
        checkpoint = torch.load(filename)

        self.optimizer.load_state_dict(checkpoint['optimizer'])
        self.scheduler.load_state_dict(checkpoint['scheduler'])
        self.model.load_state_dict(checkpoint['state_dict'])
        self.iter = checkpoint['iter']

        self.train_losses = checkpoint['train_losses']

    def save_checkpoint(self, filename):
        state = {
            'iter': self.iter,
            'state_dict': self.model.state_dict(),
            'optimizer': self.optimizer.state_dict(),
            'train_losses': self.train_losses,
            'scheduler': self.scheduler.state_dict()
        }

        path, _ = os.path.split(filename)
        os.makedirs(path, exist_ok=True)

        torch.save(state, filename)

    def load_weights(self, filename):
        state_dict = torch.load(filename,
                                map_location=torch.device(self.device))

        for name, param in self.model.named_parameters():
            if name not in state_dict:
                print('{} not found'.format(name))
            elif state_dict[name].shape != param.shape:
                print('{} missmatching shape, required {} but found {}'.format(
                    name, param.shape, state_dict[name].shape))
                del state_dict[name]

        self.model.load_state_dict(state_dict, strict=False)

    def save_weights(self, filename):
        path, _ = os.path.split(filename)
        os.makedirs(path, exist_ok=True)

        torch.save(self.model.state_dict(), filename)

    def batch_to_device(self, batch):

        src = batch['src'].to(self.device, non_blocking=True)
        tgt = batch['tgt'].to(self.device, non_blocking=True)

        batch = {'src': src, 'tgt': tgt}

        return batch
Beispiel #14
0
def train(experiment_no: int,
          experiment_type: str,
          train_dataloader: DataLoader,
          val_dataloader: DataLoader,
          model: nn.Module,
          loss_func: Callable,
          lr: float,
          epochs: int,
          rho: float,
          params_to_train: Optional[int] = None,
          k: Optional[int] = None) -> None:
    """
    Trainer for model using SAM + SGD with once cycle lr schedule on single gpu
    :param experiment_no: uid for saving outputs into log and saving model checkpoint
    :param experiment_type:
    :param val_dataloader: validation dataloader
    :param train_dataloader: train dataloader
    :param model:
    :param loss_func:
    :param lr: learning rate
    :param rho: rho param for SAM
    :param epochs: number of epochs to train for
    :param params_to_train: Optional - number of layers to train, if 1 - just the top layer
    :param k: Optional - top-k for evaluation (default is 5)
    :return: nothing
    """
    log = TrainLogger(experiment_type=experiment_type,
                      experiment_no=experiment_no)

    # log hyperparams
    log.log_hyperparameters(lr=lr,
                            rho=rho,
                            epochs=epochs,
                            batch_size=train_dataloader.batch_size,
                            model_name=type(model).__name__,
                            params_to_train=params_to_train)

    torch.manual_seed(0)

    device = ("cuda" if torch.cuda.is_available() else "cpu")
    total_params = sum(p.numel() for p in model.parameters())

    if params_to_train:
        # set only the last params_to_train params to be trainable
        count = 0
        for param in model.parameters():
            if total_params - count > params_to_train + 1:
                param.requires_grad = False
            count += 1

    model = model.to(device)

    trainable_params = [p for p in model.parameters() if p.requires_grad]

    base_optimizer = optim.SGD

    optimizer = SAM(trainable_params,
                    base_optimizer,
                    rho=rho,
                    lr=lr,
                    momentum=0.9,
                    weight_decay=1e-5)

    lr_sched = OneCycleLR(optimizer=optimizer,
                          max_lr=lr,
                          epochs=epochs,
                          steps_per_epoch=len(train_dataloader))

    log.log_hyperparameters(optimizer=type(optimizer).__name__,
                            lr_sched=type(lr_sched).__name__)

    for epoch in range(epochs):
        train_dataloader = tqdm(train_dataloader)
        running_loss = 0
        for i, data in enumerate(train_dataloader):
            model.train()
            images, labels = (d.to(device) for d in data)

            # first forward-backward step
            outputs = model(images)
            loss = loss_func(outputs, labels)
            loss.mean().backward()
            optimizer.first_step(zero_grad=True)

            # second forward-backward step
            outputs2 = model(images)
            loss2 = loss_func(outputs2, labels)
            loss2.mean().backward()
            optimizer.second_step(zero_grad=True)

            running_loss = loss.mean() + loss2.mean()

            lr_sched.step()

        train_result = f"Train loss after {epoch + 1} epochs: {running_loss}"
        print(train_result)
        log.log_result(train_result, model=model, epoch=epoch)

        evaluate_classifier(val_dataloader=val_dataloader,
                            device=device,
                            model=model,
                            k=k,
                            logger=log)
Beispiel #15
0
def train(args, writer):

    # 1.数据处理
    # 获得预定义的fields,划分过的训练数据集
    # train_dataset中的每一行是一个torchtext.data.Example对象,这个对象的'id': ,'category': ,'news_text': 这三个属性保存了原来csv中每一行的数据
    # 此时还未数字化,要等到构造迭代器的时候才数字化
    fields, train_dataset = build_and_cache_dataset(args, mode='train')

    # NEWS_TEXT,CATEGORY是要存词汇表的,之后构造迭代器的时候会用上
    ID, CATEGORY, NEWS_TEXT = fields
    # 词向量
    vectors = Vectors(name=args.embed_path, cache=args.data_dir)

    # import gensim
    # word2vec = gensim.models.KeyedVectors.load_word2vec_format(args.embed_path, binary=True)

    # 创建数据集的词汇表,同时加载预训练的词向量
    # 创建词汇表,作为一个Vocab对象,存在Field对象NEWS_TEXT里,其中stoi是词和数字的映射字典,vectors是词的词向量矩阵,两者是对应的,第一个词映射为0,且词向量在vectors里也是第一行
    NEWS_TEXT.build_vocab(
        train_dataset,  # 根据训练数据集创建词汇表
        max_size=args.vocab_size,  # 句子最大长度
        vectors=vectors,  # 根据词汇表,从加载的预训练词向量中抽出相应的词向量
        unk_init=torch.nn.init.xavier_normal_,
    )
    # 创建标签的词汇表,作为一个Vocab对象,存在Field对象CATEGORY里
    CATEGORY.build_vocab(train_dataset)
    # 实例化模型
    model = TextClassifier(
        vocab_size=len(NEWS_TEXT.vocab),  # 训练集划分后的词的总个数,即词汇表长度
        output_dim=args.num_labels,  # 类别数
        pad_idx=NEWS_TEXT.vocab.stoi[
            NEWS_TEXT.
            pad_token],  # NEWS_TEXT.pad_token = <pad>,从stoi('<pad> : 1')里取出<pad>的值
        dropout=args.dropout,
    )

    # 为embedding层的矩阵赋值为NEWS.vocab.vectors
    model.embedding.from_pretrained(NEWS_TEXT.vocab.vectors)

    # 构造训练集迭代器,在这一步将torchtext.data.Example对象中的news_text属性数字化
    # 还会对同一个batch内的不够长的句子做pad,pad成batch内最长的句子的长度,但是在batch.news_text里会记录句子真实的长度
    bucket_iterator = BucketIterator(
        train_dataset,
        batch_size=args.train_batch_size,  # batch_size大小
        sort_within_batch=True,  # batch内排序
        shuffle=True,  # 2.batch间进行乱序
        sort_key=lambda x: len(
            x.news_text),  # 1.按句子长度排序,x代表训练集中的每一行,即一个torchtext.data.Example对象
        device=args.device,  # 放入GPU里
    )

    # 2.训练
    model.to(args.device)
    # 损失函数
    criterion = nn.CrossEntropyLoss()
    # 优化器
    optimizer = Adam(model.parameters(),
                     lr=args.learning_rate,
                     eps=args.adam_epsilon)
    # 学习率随epoch改变
    scheduler = OneCycleLR(optimizer,
                           max_lr=args.learning_rate * 10,
                           epochs=args.num_train_epochs,
                           steps_per_epoch=len(bucket_iterator))

    global_step = 0
    # 梯度清零
    model.zero_grad()

    # tqdm(list) 方法可以传入任意一种list

    # trange(i) 是 tqdm(range(i)) 的简单写法
    # 下式左边,等价于tqdm(range(0, 5))
    train_trange = trange(0, args.num_train_epochs, desc="Train epoch")

    for _ in train_trange:
        epoch_iterator = tqdm(bucket_iterator, desc='Training')  # 进度条

        # 对每个batch做一个前向传播和反向传播,更新参数
        for step, batch in enumerate(epoch_iterator):  # for循环结束进度条才为100%
            model.train()

            # news_text:所有句子组成一个list[[句子1],[句子2],...],实际是按列是一个句子
            # [句子1] = [单词1(单词对应的下标),单词2,单词3,...]
            # news_text_lengths:所有句子的长度组成一个list
            news_text, news_text_lengths = batch.news_text  # news_text中,每一列是一个数字化后的句子,batch_size是多少,就有多少列
            # print(batch.news_text)
            #
            # print(len(news_text))
            # print(news_text.shape)
            #
            # print(len(news_text_lengths))
            # print(news_text_lengths)
            category = batch.category  # 标签的list

            # 前向传播
            preds = model(news_text, news_text_lengths)

            # 计算损失值
            loss = criterion(preds, category)
            # 计算梯度
            loss.backward()

            # loss随每次batch的变化,写入tensorboard
            writer.add_scalar('Train/Loss', loss.item(), global_step)
            # 学习率随每次batch的变化,写入tensorboard
            writer.add_scalar('Train/lr',
                              scheduler.get_last_lr()[0], global_step)

            # NOTE: Update model, optimizer should update before scheduler
            # 更新参数
            optimizer.step()
            # 更新学习率
            scheduler.step()
            # 记录用过多少个batch进行参数更新了
            global_step += 1

            # 评估
            # 每50轮评估一次
            if args.logging_steps > 0 and global_step % args.logging_steps == 0:
                # 返回损失值,精准率,召回率,f1_score的字典
                results = evaluate(args, model, CATEGORY.vocab,
                                   NEWS_TEXT.vocab)

                # 损失值,精准率,召回率,f1_score随每次batch的变化,写入tensorboard
                for key, value in results.items():
                    writer.add_scalar("Eval/{}".format(key), value,
                                      global_step)

            # 每100轮保存一次模型
            if args.save_steps > 0 and global_step % args.save_steps == 0:
                save_model(args, model, optimizer, scheduler, global_step)

    writer.close()
Beispiel #16
0
def tts_train_loop(paths: Paths,
                   model: Tacotron,
                   optimizer,
                   train_set,
                   lr,
                   train_steps,
                   attn_example,
                   warmup_lr=False):
    device = next(
        model.parameters()).device  # use same device as model parameters

    for g in optimizer.param_groups:
        g['lr'] = lr

    total_iters = len(train_set)
    epochs = train_steps // total_iters + 1
    if warmup_lr:
        lrs = OneCycleLR(optimizer,
                         lr,
                         total_steps=epochs * total_iters,
                         pct_start=0.5,
                         div_factor=1000,
                         anneal_strategy='cos',
                         final_div_factor=1)

    for e in range(1, epochs + 1):

        start = time.time()
        running_loss = 0

        # Perform 1 epoch
        for i, (x, m, ids, _) in enumerate(train_set, 1):

            x, m = x.to(device), m.to(device)

            # Parallelize model onto GPUS using workaround due to python bug
            if device.type == 'cuda' and torch.cuda.device_count() > 1:
                m1_hat, m2_hat, attention = data_parallel_workaround(
                    model, x, m)
            else:
                m1_hat, m2_hat, attention = model(x, m)

            m1_loss = F.l1_loss(m1_hat, m)
            m2_loss = F.l1_loss(m2_hat, m)

            loss = m1_loss + m2_loss

            optimizer.zero_grad()
            loss.backward()
            if hp.tts_clip_grad_norm is not None:
                grad_norm = torch.nn.utils.clip_grad_norm_(
                    model.parameters(), hp.tts_clip_grad_norm).item()
                if np.isnan(grad_norm):
                    print('grad_norm was NaN!')

            optimizer.step()
            if warmup_lr:
                lrs.step()

            running_loss += loss.item()
            avg_loss = running_loss / i

            speed = i / (time.time() - start)

            step = model.get_step()
            k = step // 1000

            if step % hp.tts_checkpoint_every == 0:
                ckpt_name = f'taco_step{k}K'
                save_checkpoint('tts',
                                paths,
                                model,
                                optimizer,
                                name=ckpt_name,
                                is_silent=True)

            if attn_example in ids:
                idx = ids.index(attn_example)
                save_attention(np_now(attention[idx][:, :160]),
                               paths.tts_attention / f'{step}')
                save_spectrogram(np_now(m2_hat[idx]),
                                 paths.tts_mel_plot / f'{step}', 600)

            msg = f'| Epoch: {e}/{epochs} ({i}/{total_iters}) | Loss: {avg_loss:#.4} | {speed:#.2} steps/s | Step: {k}k | '
            stream(msg)

        # Must save latest optimizer state to ensure that resuming training
        # doesn't produce artifacts
        save_checkpoint('tts', paths, model, optimizer, is_silent=True)
        model.log(paths.tts_log, msg)
        print(' ')
    class OneCycleLRCallback(DefaultPyTorchSchedulerCallback):
        """
        Wraps PyTorch's `OneCycleLR` Scheduler as Callback

        """

        def __init__(
                self,
                optimizer,
                max_lr,
                total_steps=None,
                epochs=None,
                steps_per_epoch=None,
                pct_start=0.3,
                anneal_strategy='cos',
                cycle_momentum=True,
                base_momentum=0.85,
                max_momentum=0.95,
                div_factor=25.0,
                final_div_factor=10000.0,
                last_epoch=-1):
            """

            Parameters
            ----------
            optimizer (Optimizer): Wrapped optimizer.
            max_lr (float or list): Upper learning rate boundaries in the cycle
                for each parameter group.
            total_steps (int): The total number of steps in the cycle. Note
                that if a value is provided here, then it must be inferred by
                providing a value for epochs and steps_per_epoch.
                Default: None
            epochs (int): The number of epochs to train for. This is used along
                with steps_per_epoch in order to infer the total number of
                steps in the cycle if a value for total_steps is not provided.
                Default: None
            steps_per_epoch (int): The number of steps per epoch to train for.
                This is used along with epochs in order to infer the total
                number of steps in the cycle if a value for total_steps is
                not provided.
                Default: None
            pct_start (float): The percentage of the cycle (in number of steps)
                spent increasing the learning rate.
                Default: 0.3
            anneal_strategy (str): {'cos', 'linear'}
                Specifies the annealing strategy.
                Default: 'cos'
            cycle_momentum (bool): If ``True``, momentum is cycled inversely
                to learning rate between 'base_momentum' and 'max_momentum'.
                Default: True
            base_momentum (float or list): Lower momentum boundaries in the
                cycle for each parameter group. Note that momentum is cycled
                inversely to learning rate; at the peak of a cycle, momentum is
                'base_momentum' and learning rate is 'max_lr'.
                Default: 0.85
            max_momentum (float or list): Upper momentum boundaries in the
                cycle for each parameter group. Functionally,
                it defines the cycle amplitude (max_momentum - base_momentum).
                Note that momentum is cycled inversely
                to learning rate; at the start of a cycle, momentum is
                'max_momentum' and learning rate is 'base_lr'
                Default: 0.95
            div_factor (float): Determines the initial learning rate via
                initial_lr = max_lr/div_factor
                Default: 25
            final_div_factor (float): Determines the minimum learning rate via
                min_lr = initial_lr/final_div_factor
                Default: 1e4
            last_epoch (int): The index of the last batch. This parameter is
                used when resuming a training job. Since `step()` should be
                invoked after each batch instead of after each epoch, this
                number represents the total number of *batches* computed,
                not the total number of epochs computed.
                When last_epoch=-1, the schedule is started from the
                beginning.
                Default: -1
            """
            super().__init__()
            self.scheduler = OneCycleLR(
                optimizer,
                max_lr,
                total_steps,
                epochs,
                steps_per_epoch,
                pct_start,
                anneal_strategy,
                cycle_momentum,
                base_momentum,
                max_momentum,
                div_factor,
                final_div_factor,
                last_epoch)

        def at_iter_begin(self, trainer, train,
                          **kwargs):
            """
            Executes a single scheduling step

            Parameters
            ----------
            trainer : :class:`PyTorchNetworkTrainer`
                the trainer class, which can be changed
            kwargs :
                additional keyword arguments

            Returns
            -------
            :class:`PyTorchNetworkTrainer`
                modified trainer

            """
            if train:
                self.scheduler.step()

            return {}

        def at_epoch_end(self, trainer, **kwargs):
            return {}
Beispiel #18
0
class Trainer():
    def __init__(self, config, pretrained=True, augmentor=ImgAugTransform()):

        self.config = config
        self.model, self.vocab = build_model(config)

        self.device = config['device']
        self.num_iters = config['trainer']['iters']
        self.beamsearch = config['predictor']['beamsearch']

        self.data_root = config['dataset']['data_root']
        self.train_annotation = config['dataset']['train_annotation']
        self.valid_annotation = config['dataset']['valid_annotation']
        self.train_lmdb = config['dataset']['train_lmdb']
        self.valid_lmdb = config['dataset']['valid_lmdb']
        self.dataset_name = config['dataset']['name']

        self.batch_size = config['trainer']['batch_size']
        self.print_every = config['trainer']['print_every']
        self.valid_every = config['trainer']['valid_every']

        self.image_aug = config['aug']['image_aug']
        self.masked_language_model = config['aug']['masked_language_model']
        self.metrics = config['trainer']['metrics']
        self.is_padding = config['dataset']['is_padding']

        self.tensorboard_dir = config['monitor']['log_dir']
        if not os.path.exists(self.tensorboard_dir):
            os.makedirs(self.tensorboard_dir, exist_ok=True)
        self.writer = SummaryWriter(self.tensorboard_dir)

        # LOGGER
        self.logger = Logger(config['monitor']['log_dir'])
        self.logger.info(config)

        self.iter = 0
        self.best_acc = 0
        self.scheduler = None
        self.is_finetuning = config['trainer']['is_finetuning']

        if self.is_finetuning:
            self.logger.info("Finetuning model ---->")
            if self.model.seq_modeling == 'crnn':
                self.optimizer = Adam(lr=0.0001,
                                      params=self.model.parameters(),
                                      betas=(0.5, 0.999))
            else:
                self.optimizer = AdamW(lr=0.0001,
                                       params=self.model.parameters(),
                                       betas=(0.9, 0.98),
                                       eps=1e-09)

        else:

            self.optimizer = AdamW(self.model.parameters(),
                                   betas=(0.9, 0.98),
                                   eps=1e-09)
            self.scheduler = OneCycleLR(self.optimizer,
                                        total_steps=self.num_iters,
                                        **config['optimizer'])

        if self.model.seq_modeling == 'crnn':
            self.criterion = torch.nn.CTCLoss(self.vocab.pad,
                                              zero_infinity=True)
        else:
            self.criterion = LabelSmoothingLoss(len(self.vocab),
                                                padding_idx=self.vocab.pad,
                                                smoothing=0.1)

        # Pretrained model
        if config['trainer']['pretrained']:
            self.load_weights(config['trainer']['pretrained'])
            self.logger.info("Loaded trained model from: {}".format(
                config['trainer']['pretrained']))

        # Resume
        elif config['trainer']['resume_from']:
            self.load_checkpoint(config['trainer']['resume_from'])
            for state in self.optimizer.state.values():
                for k, v in state.items():
                    if torch.is_tensor(v):
                        state[k] = v.to(torch.device(self.device))

            self.logger.info("Resume training from {}".format(
                config['trainer']['resume_from']))

        # DATASET
        transforms = None
        if self.image_aug:
            transforms = augmentor

        train_lmdb_paths = [
            os.path.join(self.data_root, lmdb_path)
            for lmdb_path in self.train_lmdb
        ]

        self.train_gen = self.data_gen(
            lmdb_paths=train_lmdb_paths,
            data_root=self.data_root,
            annotation=self.train_annotation,
            masked_language_model=self.masked_language_model,
            transform=transforms,
            is_train=True)

        if self.valid_annotation:
            self.valid_gen = self.data_gen(
                lmdb_paths=[os.path.join(self.data_root, self.valid_lmdb)],
                data_root=self.data_root,
                annotation=self.valid_annotation,
                masked_language_model=False)

        self.train_losses = []
        self.logger.info("Number batch samples of training: %d" %
                         len(self.train_gen))
        self.logger.info("Number batch samples of valid: %d" %
                         len(self.valid_gen))

        config_savepath = os.path.join(self.tensorboard_dir, "config.yml")
        if not os.path.exists(config_savepath):
            self.logger.info("Saving config file at: %s" % config_savepath)
            Cfg(config).save(config_savepath)

    def train(self):
        total_loss = 0

        total_loader_time = 0
        total_gpu_time = 0
        data_iter = iter(self.train_gen)
        for i in range(self.num_iters):
            self.iter += 1
            start = time.time()

            try:
                batch = next(data_iter)
            except StopIteration:
                data_iter = iter(self.train_gen)
                batch = next(data_iter)

            total_loader_time += time.time() - start
            start = time.time()

            # LOSS
            loss = self.step(batch)
            total_loss += loss
            self.train_losses.append((self.iter, loss))

            total_gpu_time += time.time() - start

            if self.iter % self.print_every == 0:

                info = 'Iter: {:06d} - Train loss: {:.3f} - lr: {:.2e} - load time: {:.2f} - gpu time: {:.2f}'.format(
                    self.iter, total_loss / self.print_every,
                    self.optimizer.param_groups[0]['lr'], total_loader_time,
                    total_gpu_time)
                lastest_loss = total_loss / self.print_every
                total_loss = 0
                total_loader_time = 0
                total_gpu_time = 0
                self.logger.info(info)

            if self.valid_annotation and self.iter % self.valid_every == 0:
                val_time = time.time()
                val_loss = self.validate()
                acc_full_seq, acc_per_char, wer = self.precision(self.metrics)

                self.logger.info("Iter: {:06d}, start validating".format(
                    self.iter))
                info = 'Iter: {:06d} - Valid loss: {:.3f} - Acc full seq: {:.4f} - Acc per char: {:.4f} - WER: {:.4f} - Time: {:.4f}'.format(
                    self.iter, val_loss, acc_full_seq, acc_per_char, wer,
                    time.time() - val_time)
                self.logger.info(info)

                if acc_full_seq > self.best_acc:
                    self.save_weights(self.tensorboard_dir + "/best.pt")
                    self.best_acc = acc_full_seq

                self.logger.info("Iter: {:06d} - Best acc: {:.4f}".format(
                    self.iter, self.best_acc))

                filename = 'last.pt'
                filepath = os.path.join(self.tensorboard_dir, filename)
                self.logger.info("Save checkpoint %s" % filename)
                self.save_checkpoint(filepath)

                log_loss = {'train loss': lastest_loss, 'val loss': val_loss}
                self.writer.add_scalars('Loss', log_loss, self.iter)
                self.writer.add_scalar('WER', wer, self.iter)

    def validate(self):
        self.model.eval()

        total_loss = []

        with torch.no_grad():
            for step, batch in enumerate(self.valid_gen):
                batch = self.batch_to_device(batch)
                img, tgt_input, tgt_output, tgt_padding_mask = batch[
                    'img'], batch['tgt_input'], batch['tgt_output'], batch[
                        'tgt_padding_mask']

                outputs = self.model(img, tgt_input, tgt_padding_mask)
                #                loss = self.criterion(rearrange(outputs, 'b t v -> (b t) v'), rearrange(tgt_output, 'b o -> (b o)'))

                if self.model.seq_modeling == 'crnn':
                    length = batch['labels_len']
                    preds_size = torch.autograd.Variable(
                        torch.IntTensor([outputs.size(0)] * self.batch_size))
                    loss = self.criterion(outputs, tgt_output, preds_size,
                                          length)
                else:
                    outputs = outputs.flatten(0, 1)
                    tgt_output = tgt_output.flatten()
                    loss = self.criterion(outputs, tgt_output)

                total_loss.append(loss.item())

                del outputs
                del loss

        total_loss = np.mean(total_loss)
        self.model.train()

        return total_loss

    def predict(self, sample=None):
        pred_sents = []
        actual_sents = []
        img_files = []
        probs_sents = []
        imgs_sents = []

        for idx, batch in enumerate(tqdm.tqdm(self.valid_gen)):
            batch = self.batch_to_device(batch)

            if self.model.seq_modeling != 'crnn':
                if self.beamsearch:
                    translated_sentence = batch_translate_beam_search(
                        batch['img'], self.model)
                    prob = None
                else:
                    translated_sentence, prob = translate(
                        batch['img'], self.model)
                pred_sent = self.vocab.batch_decode(
                    translated_sentence.tolist())
            else:
                translated_sentence, prob = translate_crnn(
                    batch['img'], self.model)
                pred_sent = self.vocab.batch_decode(
                    translated_sentence.tolist(), crnn=True)

            actual_sent = self.vocab.batch_decode(batch['tgt_output'].tolist())
            pred_sents.extend(pred_sent)
            actual_sents.extend(actual_sent)

            imgs_sents.extend(batch['img'])
            img_files.extend(batch['filenames'])
            probs_sents.extend(prob)

            # Visualize in tensorboard
            if idx == 0:
                try:
                    num_samples = self.config['monitor']['num_samples']
                    fig = plt.figure(figsize=(12, 15))
                    imgs_samples = imgs_sents[:num_samples]
                    preds_samples = pred_sents[:num_samples]
                    actuals_samples = actual_sents[:num_samples]
                    probs_samples = probs_sents[:num_samples]
                    for id_img in range(len(imgs_samples)):
                        img = imgs_samples[id_img]
                        img = img.permute(1, 2, 0)
                        img = img.cpu().detach().numpy()
                        ax = fig.add_subplot(num_samples,
                                             1,
                                             id_img + 1,
                                             xticks=[],
                                             yticks=[])
                        plt.imshow(img)
                        ax.set_title(
                            "LB: {} \n Pred: {:.4f}-{}".format(
                                actuals_samples[id_img], probs_samples[id_img],
                                preds_samples[id_img]),
                            color=('green' if actuals_samples[id_img]
                                   == preds_samples[id_img] else 'red'),
                            fontdict={
                                'fontsize': 18,
                                'fontweight': 'medium'
                            })

                    self.writer.add_figure('predictions vs. actuals',
                                           fig,
                                           global_step=self.iter)
                except Exception as error:
                    print(error)
                    continue

            if sample != None and len(pred_sents) > sample:
                break

        return pred_sents, actual_sents, img_files, probs_sents, imgs_sents

    def precision(self, sample=None, measure_time=True):
        t1 = time.time()
        pred_sents, actual_sents, _, _, _ = self.predict(sample=sample)
        time_predict = time.time() - t1

        sensitive_case = self.config['predictor']['sensitive_case']
        acc_full_seq = compute_accuracy(actual_sents,
                                        pred_sents,
                                        sensitive_case,
                                        mode='full_sequence')
        acc_per_char = compute_accuracy(actual_sents,
                                        pred_sents,
                                        sensitive_case,
                                        mode='per_char')
        wer = compute_accuracy(actual_sents,
                               pred_sents,
                               sensitive_case,
                               mode='wer')

        if measure_time:
            print("Time: {:.4f}".format(time_predict / len(actual_sents)))
        return acc_full_seq, acc_per_char, wer

    def visualize_prediction(self,
                             sample=16,
                             errorcase=False,
                             fontname='serif',
                             fontsize=16,
                             save_fig=False):

        pred_sents, actual_sents, img_files, probs, imgs = self.predict(sample)

        if errorcase:
            wrongs = []
            for i in range(len(img_files)):
                if pred_sents[i] != actual_sents[i]:
                    wrongs.append(i)

            pred_sents = [pred_sents[i] for i in wrongs]
            actual_sents = [actual_sents[i] for i in wrongs]
            img_files = [img_files[i] for i in wrongs]
            probs = [probs[i] for i in wrongs]
            imgs = [imgs[i] for i in wrongs]

        img_files = img_files[:sample]

        fontdict = {'family': fontname, 'size': fontsize}
        ncols = 5
        nrows = int(math.ceil(len(img_files) / ncols))
        fig, ax = plt.subplots(nrows, ncols, figsize=(12, 15))

        for vis_idx in range(0, len(img_files)):
            row = vis_idx // ncols
            col = vis_idx % ncols

            pred_sent = pred_sents[vis_idx]
            actual_sent = actual_sents[vis_idx]
            prob = probs[vis_idx]
            img = imgs[vis_idx].permute(1, 2, 0).cpu().detach().numpy()

            ax[row, col].imshow(img)
            ax[row, col].set_title(
                "Pred: {: <2} \n Actual: {} \n prob: {:.2f}".format(
                    pred_sent, actual_sent, prob),
                fontname=fontname,
                color='r' if pred_sent != actual_sent else 'g')
            ax[row, col].get_xaxis().set_ticks([])
            ax[row, col].get_yaxis().set_ticks([])

        plt.subplots_adjust()
        if save_fig:
            fig.savefig('vis_prediction.png')
        plt.show()

    def log_prediction(self, sample=16, csv_file='model.csv'):
        pred_sents, actual_sents, img_files, probs, imgs = self.predict(sample)
        save_predictions(csv_file, pred_sents, actual_sents, img_files)

    def vis_data(self, sample=20):

        ncols = 5
        nrows = int(math.ceil(sample / ncols))
        fig, ax = plt.subplots(nrows, ncols, figsize=(12, 12))

        num_plots = 0
        for idx, batch in enumerate(self.train_gen):
            for vis_idx in range(self.batch_size):
                row = num_plots // ncols
                col = num_plots % ncols

                img = batch['img'][vis_idx].numpy().transpose(1, 2, 0)
                sent = self.vocab.decode(
                    batch['tgt_input'].T[vis_idx].tolist())

                ax[row, col].imshow(img)
                ax[row, col].set_title("Label: {: <2}".format(sent),
                                       fontsize=16,
                                       color='g')

                ax[row, col].get_xaxis().set_ticks([])
                ax[row, col].get_yaxis().set_ticks([])

                num_plots += 1
                if num_plots >= sample:
                    plt.subplots_adjust()
                    fig.savefig('vis_dataset.png')
                    return

    def load_checkpoint(self, filename):
        checkpoint = torch.load(filename)

        self.optimizer.load_state_dict(checkpoint['optimizer'])
        self.model.load_state_dict(checkpoint['state_dict'])
        self.iter = checkpoint['iter']
        self.train_losses = checkpoint['train_losses']
        if self.scheduler is not None:
            self.scheduler.load_state_dict(checkpoint['scheduler'])

        self.best_acc = checkpoint['best_acc']

    def save_checkpoint(self, filename):
        state = {
            'iter':
            self.iter,
            'state_dict':
            self.model.state_dict(),
            'optimizer':
            self.optimizer.state_dict(),
            'train_losses':
            self.train_losses,
            'scheduler':
            None if self.scheduler is None else self.scheduler.state_dict(),
            'best_acc':
            self.best_acc
        }

        path, _ = os.path.split(filename)
        os.makedirs(path, exist_ok=True)

        torch.save(state, filename)

    def load_weights(self, filename):
        state_dict = torch.load(filename,
                                map_location=torch.device(self.device))
        if self.is_checkpoint(state_dict):
            self.model.load_state_dict(state_dict['state_dict'])
        else:

            for name, param in self.model.named_parameters():
                if name not in state_dict:
                    print('{} not found'.format(name))
                elif state_dict[name].shape != param.shape:
                    print('{} missmatching shape, required {} but found {}'.
                          format(name, param.shape, state_dict[name].shape))
                    del state_dict[name]
            self.model.load_state_dict(state_dict, strict=False)

    def save_weights(self, filename):
        path, _ = os.path.split(filename)
        os.makedirs(path, exist_ok=True)

        torch.save(self.model.state_dict(), filename)

    def is_checkpoint(self, checkpoint):
        try:
            checkpoint['state_dict']
        except:
            return False
        else:
            return True

    def batch_to_device(self, batch):
        img = batch['img'].to(self.device, non_blocking=True)
        tgt_input = batch['tgt_input'].to(self.device, non_blocking=True)
        tgt_output = batch['tgt_output'].to(self.device, non_blocking=True)
        tgt_padding_mask = batch['tgt_padding_mask'].to(self.device,
                                                        non_blocking=True)

        batch = {
            'img': img,
            'tgt_input': tgt_input,
            'tgt_output': tgt_output,
            'tgt_padding_mask': tgt_padding_mask,
            'filenames': batch['filenames'],
            'labels_len': batch['labels_len']
        }

        return batch

    def data_gen(self,
                 lmdb_paths,
                 data_root,
                 annotation,
                 masked_language_model=True,
                 transform=None,
                 is_train=False):
        datasets = []
        for lmdb_path in lmdb_paths:
            dataset = OCRDataset(
                lmdb_path=lmdb_path,
                root_dir=data_root,
                annotation_path=annotation,
                vocab=self.vocab,
                transform=transform,
                image_height=self.config['dataset']['image_height'],
                image_min_width=self.config['dataset']['image_min_width'],
                image_max_width=self.config['dataset']['image_max_width'],
                separate=self.config['dataset']['separate'],
                batch_size=self.batch_size,
                is_padding=self.is_padding)
            datasets.append(dataset)
        if len(self.train_lmdb) > 1:
            dataset = torch.utils.data.ConcatDataset(datasets)

        if self.is_padding:
            sampler = None
        else:
            sampler = ClusterRandomSampler(dataset, self.batch_size, True)

        collate_fn = Collator(masked_language_model)

        gen = DataLoader(dataset,
                         batch_size=self.batch_size,
                         sampler=sampler,
                         collate_fn=collate_fn,
                         shuffle=is_train,
                         drop_last=self.model.seq_modeling == 'crnn',
                         **self.config['dataloader'])

        return gen

    def step(self, batch):
        self.model.train()

        batch = self.batch_to_device(batch)
        img, tgt_input, tgt_output, tgt_padding_mask = batch['img'], batch[
            'tgt_input'], batch['tgt_output'], batch['tgt_padding_mask']

        outputs = self.model(img,
                             tgt_input,
                             tgt_key_padding_mask=tgt_padding_mask)
        #        loss = self.criterion(rearrange(outputs, 'b t v -> (b t) v'), rearrange(tgt_output, 'b o -> (b o)'))

        if self.model.seq_modeling == 'crnn':
            length = batch['labels_len']
            preds_size = torch.autograd.Variable(
                torch.IntTensor([outputs.size(0)] * self.batch_size))
            loss = self.criterion(outputs, tgt_output, preds_size, length)
        else:
            outputs = outputs.view(
                -1, outputs.size(2))  # flatten(0, 1)    # B*S x N_class
            tgt_output = tgt_output.view(-1)  # flatten()    # B*S
            loss = self.criterion(outputs, tgt_output)

        self.optimizer.zero_grad()

        loss.backward()

        torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1)

        self.optimizer.step()

        if not self.is_finetuning:
            self.scheduler.step()

        loss_item = loss.item()

        return loss_item

    def count_parameters(self, model):
        return sum(p.numel() for p in model.parameters() if p.requires_grad)

    def gen_pseudo_labels(self, outfile=None):
        pred_sents = []
        img_files = []
        probs_sents = []

        for idx, batch in enumerate(tqdm.tqdm(self.valid_gen)):
            batch = self.batch_to_device(batch)

            if self.model.seq_modeling != 'crnn':
                if self.beamsearch:
                    translated_sentence = batch_translate_beam_search(
                        batch['img'], self.model)
                    prob = None
                else:
                    translated_sentence, prob = translate(
                        batch['img'], self.model)
                pred_sent = self.vocab.batch_decode(
                    translated_sentence.tolist())
            else:
                translated_sentence, prob = translate_crnn(
                    batch['img'], self.model)
                pred_sent = self.vocab.batch_decode(
                    translated_sentence.tolist(), crnn=True)

            pred_sents.extend(pred_sent)
            img_files.extend(batch['filenames'])
            probs_sents.extend(prob)
        assert len(pred_sents) == len(img_files) and len(img_files) == len(
            probs_sents)
        with open(outfile, 'w', encoding='utf-8') as f:
            for anno in zip(img_files, pred_sents, probs_sents):
                f.write('||||'.join([anno[0], anno[1],
                                     str(float(anno[2]))]) + '\n')
Beispiel #19
0
class Cifar10Agent(BaseAgent):
    def __init__(self, config):
        super().__init__(config)
        self.logger.info("TRAINING MODE ACTIVATED!!!")
        self.config = config
        self.use_cuda = self.config['use_cuda']
        self.visualize_inline = self.config['visualize_inline']

        # create network instance
        self.model = Net()

        # define data loader
        self.dataloader = dl(config=self.config)

        # intitalize classes
        self.classes = self.dataloader.classes
        self.id2classes = {i: y for i, y in enumerate(self.classes)}

        # define loss
        self.loss = nn.CrossEntropyLoss()

        #find optim lr and set optimizer
        self._find_optim_lr()

        # intialize weight decay
        self.l1_decay = self.config['l1_decay']
        self.l2_decay = self.config['l2_decay']

        # initialize step lr
        self.use_scheduler = self.config['use_scheduler']

        if self.use_scheduler:
            self.scheduler = self.config["scheduler"]["name"]
            if self.scheduler == "OneCycleLR":
                self.scheduler = OneCycleLR(
                    self.optimizer,
                    self.config['learning_rate'],
                    steps_per_epoch=len(self.dataloader.train_loader),
                    **self.config["scheduler"]["kwargs"])
            else:
                self.logger.info(
                    "WARNING : OneCycleLr Scheduler was not setup. Re-initializing use_scheduler to False"
                )
                self.use_scheduler = False

        # initialize Counter
        self.current_epoch = 0
        self.current_iteration = 0
        self.best_metric = 0
        self.best_epoch = 0

        # intitalize lr values list
        self.lr_list = []

        # initialize loss and accuray arrays
        self.train_losses = []
        self.valid_losses = []
        self.train_acc = []
        self.valid_acc = []

        # initialize misclassified data
        self.misclassified = {}

        # initialize maximum accuracy
        self.max_accuracy = 0.0

        if not self.use_cuda and torch.cuda.is_available():
            self.logger.info(
                'WARNING : You have CUDA device, you should probably enable CUDA.'
            )

        # set manual seed
        self.manual_seed = self.config['seed']
        if self.use_cuda:
            torch.cuda.manual_seed(self.manual_seed)
            self.device = torch.device('cuda')
            torch.cuda.set_device(self.config['gpu_device'])
            self.model = self.model.to(self.device)
            self.loss = self.loss.to(self.device)

            self.logger.info("Program will RUN on ****GPU-CUDA****")
            print_cuda_statistics()
        else:
            torch.manual_seed(self.manual_seed)
            self.device = torch.device('cpu')
            self.logger.info("Program will RUN on ****CPU****")

        # summary of network
        print("****************************")
        print("**********NETWORK SUMMARY**********")
        summary(self.model, input_size=tuple(self.config['input_size']))
        print(self.model,
              file=open(
                  os.path.join(self.config["summary_dir"], "model_arch.txt"),
                  "w"))
        print("****************************")

        self.stats_file_name = os.path.join(self.config["stats_dir"],
                                            self.config["model_stats_file"])

    def load_checkpoint(self, file_name):
        """
        Latest Checkpoint loader
        :param file_name: name of checkpoint file
        :return:
        """
        file_name = os.path.join(self.config["checkpoint_dir"], file_name)
        checkpoint = torch.load(file_name, map_location='cpu')

        self.model = Net()
        self.optimizer = optim.SGD(self.model.parameters(),
                                   lr=self.config['learning_rate'],
                                   momentum=self.config['momentum'])
        self.model.load_state_dict(checkpoint['state_dict'])
        self.optimizer.load_state_dict(checkpoint['optimizer'])

        is_best = checkpoint["is_best"]
        self.misclassified = checkpoint['misclassified_data']

    def save_checkpoint(self, file_name='checkpoint.pth.tar', is_best=1):
        """
        Checkpoint Saver
        :param file_name: name of checkpoint file path
        :param is_best: boolean flag indicating current metrix is best so far
        :return:   
        """
        checkpoint = {
            'epoch': self.current_epoch,
            'valid_accuracy': self.max_accuracy,
            'misclassified_data': self.misclassified,
            'state_dict': self.model.state_dict(),
            'optimizer': self.optimizer.state_dict(),
            'is_best': is_best
        }

        file_name = os.path.join(self.config["checkpoint_dir"], file_name)
        torch.save(checkpoint, file_name)

    def _find_optim_lr(self):
        """
        find optim learning rate to train network
        :return:
        """
        self.logger.info("FINDING OPTIM LEARNING RATE...")
        self.optimizer = optim.SGD(self.model.parameters(),
                                   lr=1e-7,
                                   momentum=self.config['momentum'])
        lr_finder = LRFinder(self.model,
                             self.optimizer,
                             self.loss,
                             device='cuda')
        num_iter = (len(self.dataloader.train_loader.dataset) //
                    self.config["batch_size"]) * 5
        lr_finder.range_test(self.dataloader.train_loader,
                             end_lr=100,
                             num_iter=num_iter)

        if self.visualize_inline:
            lr_finder.plot()

        history = lr_finder.history
        optim_lr = history["lr"][np.argmin(history["loss"])]
        self.logger.info("Learning rate with minimum loss : " + str(optim_lr))
        lr_finder.reset()

        # set optimizer to optim learning rate
        self.config["learning_rate"] = round(optim_lr, 3)
        self.logger.info(
            f"Setting optimizer to optim learning rate : {self.config['learning_rate']}"
        )
        self.optimizer = optim.SGD(self.model.parameters(),
                                   lr=self.config["learning_rate"],
                                   momentum=self.config['momentum'])

    def visualize_set(self):
        """
        Visualize Train set
        :return:
        """
        dataiter = iter(self.dataloader.train_loader)
        images, labels = dataiter.next()
        path = os.path.join(self.config["stats_dir"], 'training_images.png')

        visualize_data(images,
                       self.config['std'],
                       self.config['mean'],
                       30,
                       self.visualize_inline,
                       labels,
                       self.classes,
                       path=path)

    def run(self):
        """
        The main operator
        :return:
        """
        try:
            self.train()
        except Exception as e:
            self.logger.info(e)

    def train(self):
        """
        Main training iteration
        :return:
        """
        for epoch in range(1, self.config['epochs'] + 1):
            for param_group in self.optimizer.param_groups:
                self.lr_list.append(param_group['lr'])
                self.logger.info(f"Current lr value = {param_group['lr']}")

            self.train_one_epoch()
            self.validate()

            self.current_epoch += 1

    def train_one_epoch(self):
        """
        One epoch of training
        :return:
        """
        self.model.train()

        running_loss = 0.0
        running_correct = 0

        pbar = tqdm(self.dataloader.train_loader)
        for batch_idx, (data, target) in enumerate(pbar):
            data, target = data.to(self.device), target.to(self.device)
            self.optimizer.zero_grad()
            output = self.model(data)
            loss = self.loss(output, target)

            if self.l1_decay > 0.0:
                loss += regularize_loss(self.model, loss, self.l1_decay, 1)
            if self.l2_decay > 0.0:
                loss += regularize_loss(self.model, loss, self.l2_decay, 2)

            loss.backward()
            self.optimizer.step()
            if self.use_scheduler:
                self.scheduler.step()

            _, preds = torch.max(output.data, 1)

            # calculate running loss and accuracy
            running_loss += loss.item()
            running_correct += (preds == target).sum().item()
            pbar.set_description(
                desc=f'loss = {loss.item()} batch_id = {batch_idx}')

        total_loss = running_loss / len(self.dataloader.train_loader.dataset)
        total_acc = 100. * running_correct / len(
            self.dataloader.train_loader.dataset)

        self.train_losses.append(total_loss)
        self.train_acc.append(total_acc)
        self.logger.info(
            f"TRAIN EPOCH : {self.current_epoch}\tLOSS : {total_loss:.4f}\tACC : {total_acc:.4f}"
        )

    def validate(self):
        """
        One cycle of model evaluation
        :return:
        """
        self.model.eval()

        running_loss = 0.0
        running_correct = 0

        with torch.no_grad():
            for data, target in self.dataloader.valid_loader:
                data, target = data.to(self.device), target.to(self.device)
                output = self.model(data)
                running_loss += self.loss(output, target).sum().item()
                pred = output.argmax(dim=1, keepdim=True)
                running_correct += pred.eq(target.view_as(pred)).sum().item()

                is_correct = pred.eq(target.view_as(pred))
                misclass_idx = (is_correct == 0).nonzero()[:, 0]
                for idx in misclass_idx:
                    if str(self.current_epoch) not in self.misclassified:
                        self.misclassified[str(self.current_epoch)] = []
                    self.misclassified[str(self.current_epoch)].append({
                        "target":
                        target[idx],
                        "pred":
                        pred[idx],
                        "img":
                        data[idx]
                    })

            total_loss = running_loss / len(
                self.dataloader.valid_loader.dataset)
            total_acc = 100. * running_correct / len(
                self.dataloader.valid_loader.dataset)

        if (self.config['save_checkpoint'] and total_acc > self.max_accuracy):
            self.max_accuracy = total_acc
            self.best_epoch = self.current_epoch
            try:
                self.save_checkpoint()
                self.logger.info("Saved Best Model")
            except Exception as e:
                self.logger.info(e)

        self.valid_losses.append(total_loss)
        self.valid_acc.append(total_acc)
        self.logger.info(
            f"VALID EPOCH : {self.current_epoch}\tLOSS : {total_loss:.4f}\tACC : {total_acc:.4f}"
        )

    def finalize(self):
        """
        Finalize operations
        :return:
        """
        self.logger.info(
            "Please wait while finalizing the operations.. Thank you")

        result = {
            "train_loss": self.train_losses,
            "train_acc": self.train_acc,
            "valid_loss": self.valid_losses,
            "valid_acc": self.valid_acc,
            "lr_list": self.lr_list
        }

        with open(self.stats_file_name, "w") as f:
            json.dump(result, f)
Beispiel #20
0
    def __call__(
        self,
        net: nn.Module,
        train_iter: DataLoader,
        validation_iter: Optional[DataLoader] = None,
    ) -> None:
        optimizer = Adam(net.parameters(),
                         lr=self.learning_rate,
                         weight_decay=self.weight_decay)

        lr_scheduler = OneCycleLR(
            optimizer,
            max_lr=self.maximum_learning_rate,
            steps_per_epoch=self.num_batches_per_epoch,
            epochs=self.epochs,
        )

        for epoch_no in range(self.epochs):
            # mark epoch start time
            tic = time.time()
            cumm_epoch_loss = 0.0
            total = self.num_batches_per_epoch - 1

            # training loop
            with tqdm(train_iter, total=total) as it:
                for batch_no, data_entry in enumerate(it, start=1):
                    optimizer.zero_grad()

                    inputs = [v.to(self.device) for v in data_entry.values()]
                    output = net(*inputs)

                    if isinstance(output, (list, tuple)):
                        loss = output[0]
                    else:
                        loss = output

                    cumm_epoch_loss += loss.item()
                    avg_epoch_loss = cumm_epoch_loss / batch_no
                    it.set_postfix(
                        {
                            "epoch": f"{epoch_no + 1}/{self.epochs}",
                            "avg_loss": avg_epoch_loss,
                        },
                        refresh=False,
                    )

                    loss.backward()
                    if self.clip_gradient is not None:
                        nn.utils.clip_grad_norm_(net.parameters(),
                                                 self.clip_gradient)

                    optimizer.step()
                    lr_scheduler.step()

                    if self.num_batches_per_epoch == batch_no:
                        break
                it.close()

            # validation loop
            if validation_iter is not None:
                cumm_epoch_loss_val = 0.0
                with tqdm(validation_iter, total=total, colour="green") as it:

                    for batch_no, data_entry in enumerate(it, start=1):
                        inputs = [
                            v.to(self.device) for v in data_entry.values()
                        ]
                        with torch.no_grad():
                            output = net(*inputs)
                        if isinstance(output, (list, tuple)):
                            loss = output[0]
                        else:
                            loss = output

                        cumm_epoch_loss_val += loss.item()
                        avg_epoch_loss_val = cumm_epoch_loss_val / batch_no
                        it.set_postfix(
                            {
                                "epoch": f"{epoch_no + 1}/{self.epochs}",
                                "avg_loss": avg_epoch_loss,
                                "avg_val_loss": avg_epoch_loss_val,
                            },
                            refresh=False,
                        )

                        if self.num_batches_per_epoch == batch_no:
                            break

                it.close()

            # mark epoch end time and log time cost of current epoch
            toc = time.time()
Beispiel #21
0
def do_training(ogn,
                graph,
                trainloader,
                lr=1e-3,
                total_epochs=100,
                batch_per_epoch=1500,
                weight_decay=1e-8,
                l1=1e-2):

    batch = trainloader.batch_size
    X = graph.x
    y = graph.y
    # # Set up optimizer:
    init_lr = lr
    opt = torch.optim.Adam(ogn.parameters(),
                           lr=init_lr,
                           weight_decay=weight_decay)

    sched = OneCycleLR(
        opt,
        max_lr=init_lr,
        steps_per_epoch=batch_per_epoch,  #len(trainloader),
        epochs=total_epochs,
        final_div_factor=1e5)

    all_losses = []
    epoch = 0

    for epoch in trange(epoch, total_epochs):
        ogn.cuda()
        total_loss = 0.0
        i = 0
        num_items = 0

        while i < batch_per_epoch:
            for subgraph in trainloader():
                if i >= batch_per_epoch:
                    break
                opt.zero_grad()

                n_offset = len(subgraph.n_id)
                cur_len = n_offset
                cur_edge_index = subgraph.blocks[0].edge_index.clone()
                cur_edge_index[0] += n_offset
                g = Data(x=torch.cat(
                    (X[subgraph.n_id], X[subgraph.blocks[0].n_id])).cuda(),
                         y=torch.cat((y[subgraph.n_id],
                                      y[subgraph.blocks[0].n_id])).cuda(),
                         edge_index=cur_edge_index.cuda())

                loss, reg = new_loss(ogn, g, cur_len, regularization=l1)
                ((loss + reg) / int(cur_len + 1)).backward()

                opt.step()
                sched.step()

                total_loss += loss.item()
                i += 1
                num_items += cur_len

        cur_loss = total_loss / num_items
        all_losses.append(cur_loss)
        print(cur_loss, flush=True)

    return all_losses
Beispiel #22
0
class SegmentationTrainer():
    def __init__(self, name, model, train_set, valid_set, test_set, bs, lr,
                 max_lr, loss_func, device):
        self.device = device
        self.name = name
        self.lr = lr
        self.bs = bs
        self.loss_function = loss_func
        self.metrics = compute_per_channel_dice
        self.train_set = train_set
        self.valid_set = valid_set
        self.test_set = test_set
        self.train_loader = DataLoader(self.train_set,
                                       batch_size=bs,
                                       shuffle=True,
                                       pin_memory=False)
        self.valid_loader = DataLoader(self.valid_set,
                                       batch_size=bs,
                                       shuffle=False,
                                       pin_memory=False)
        self.test_loader = DataLoader(self.test_set,
                                      batch_size=bs,
                                      shuffle=False,
                                      pin_memory=False)
        if model == 'ResidualUNet3D':
            model = ResidualUNet3D(1, 1, True).to(self.device).float()
            optimizer = optim.Adam(model.parameters(), lr=lr)
            self.tmp_optimizer = optim.Adam(model.parameters(), lr=lr)
            self.model, self.optimizer = amp.initialize(model,
                                                        optimizer,
                                                        opt_level='O2')
        self.max_lr = max_lr
        self.lrs = []
        self.model_state_dicts = []

    def fit(self, epochs, print_each_img, use_cycle=False):
        torch.cuda.empty_cache()
        self.train_losses = []
        self.valid_losses = []
        self.train_scores = []
        self.valid_scores = []

        self.scheduler = OneCycleLR(self.tmp_optimizer,
                                    self.max_lr,
                                    epochs=epochs,
                                    steps_per_epoch=1,
                                    div_factor=25.0,
                                    final_div_factor=100)
        for epoch in range(epochs):
            self.scheduler.step()
            lr = self.tmp_optimizer.param_groups[0]['lr']
            self.lrs.append(lr)
        del self.tmp_optimizer, self.scheduler
        gc.collect()
        for epoch in range(epochs):
            self.model.train()
            total_loss = 0
            total_score = 0
            print('epoch: ' + str(epoch))
            if use_cycle:
                lr = self.lrs[epoch]
                self.optimizer.param_groups[0]['lr'] = lr
            else:
                lr = self.lr
            print(lr)
            for index, batch in tqdm(enumerate(self.train_loader),
                                     total=len(self.train_loader)):
                sample_img, sample_mask = batch
                sample_img = sample_img.to(self.device)
                sample_mask = sample_mask.to(self.device)
                predicted_mask = self.model(sample_img)
                loss = self.loss_function(predicted_mask, sample_mask)
                #                 score = self.metrics(predicted_mask,sample_mask)
                with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                    scaled_loss.backward()
                self.optimizer.step()
                self.optimizer.zero_grad()
                total_loss += loss.item()
                #                 total_score += score.item()
                if print_each_img:
                    print('batch loss: ' + str(loss.item()))
                del batch, sample_img, sample_mask, predicted_mask, loss, scaled_loss
                gc.collect()
                torch.cuda.empty_cache()
            print('total_loss: ' + str(total_loss / len(self.train_loader)))
            self.train_losses.append(total_loss / len(self.train_loader))
            #             self.train_scores.append(total_score/len(self.train_set))
            val_score = self.val()
            self.save_checkpoint(self.name, epoch, val_score)

    def val(self):
        torch.cuda.empty_cache()
        self.model.eval()
        total_val_loss = 0
        total_val_score = 0
        for index, val_batch in tqdm(enumerate(self.valid_loader),
                                     total=len(self.valid_loader)):
            val_sample_img, val_sample_mask = val_batch
            val_sample_img = val_sample_img.to(self.device)
            val_sample_mask = val_sample_mask.to(self.device)
            del val_batch
            gc.collect()
            with torch.no_grad():
                val_predicted_mask = self.model(val_sample_img)
            val_loss = self.loss_function(val_predicted_mask, val_sample_mask)
            val_score = self.metrics(val_predicted_mask, val_sample_mask)
            total_val_loss += val_loss.item()
            total_val_score += val_score.item()
            del val_sample_img, val_sample_mask, val_predicted_mask, val_loss, val_score
            gc.collect()
        print('total_valid_score: ' +
              str(total_val_score / len(self.valid_set)))
        torch.cuda.empty_cache()
        self.valid_losses.append(total_val_loss / len(self.valid_loader))
        self.valid_scores.append(total_val_score / len(self.valid_loader))
        return total_val_score / len(self.valid_loader)

    def predict(self):
        self.model.eval()
        total_test_loss = 0
        total_test_score = 0
        for index, test_batch in tqdm(enumerate(self.test_loader),
                                      total=len(self.test_loader)):
            test_sample_img, test_sample_mask = test_batch
            test_sample_img = test_sample_img.to(self.device)
            test_sample_mask = test_sample_mask.to(self.device)
            del test_batch
            gc.collect()
            with torch.no_grad():
                test_predicted_mask = self.model(test_sample_img)
            test_loss = self.loss_function(test_predicted_mask,
                                           test_sample_mask)
            test_score = self.metrics(test_predicted_mask, test_sample_mask)
            total_test_loss += test_loss.item()
            total_test_score += test_score.item()
            del test_sample_img, test_sample_mask, test_predicted_mask, test_loss, test_score
            gc.collect()
        print('test_score: ' + str(total_test_score / len(self.test_loader)))
        torch.cuda.empty_cache()
        self.test_score = total_test_score / len(self.test_loader)
        return total_test_score / len(self.test_loader)

    def save_checkpoint(self, name, epoch, val_score):
        if not os.path.exists('./results'):
            os.mkdir('./results')
        if not os.path.exists('./results/' + name):
            os.mkdir('./results/' + name)
        dill.dump(
            self,
            open(
                './results/' + name + '/epoch_' + str(epoch) + '_val_score=' +
                str(val_score) + '.pkl', 'wb'))

    @staticmethod
    def load_best_checkpoint(name):
        checkpoints = sorted([
            checkpoint for checkpoint in os.listdir('./results/' + name)
            if checkpoint.startswith('epoch')
        ])
        best_epoch = np.argmax([
            float(checkpoint.split('=')[1].split('.')[1][:10])
            for checkpoint in checkpoints
        ])
        best_epoch = int(checkpoints[best_epoch].split('_')[1])
        print('best_epoch: ', best_epoch)
        best_checkpoint = [
            checkpoint for checkpoint in checkpoints
            if checkpoint.startswith('epoch_' + str(best_epoch))
        ][0]
        return dill.load(
            open('./results/' + name + '/' + best_checkpoint, 'rb'))
Beispiel #23
0
def train(ox: Oxentiel, env: gym.Env) -> None:
    """ Trains a policy gradient model with hyperparams from ``ox``. """
    # Set shapes and dimensions for use in type hints.
    dims.RESOLUTION = ox.resolution
    dims.BATCH = ox.batch_size
    dims.ACTS = env.action_space.n
    shapes.OB = env.observation_space.shape

    # Make the policy object.
    ac = ActorCritic(shapes.OB[0], ox.hidden_dim, dims.ACTS)

    # Make optimizers.
    policy_optimizer = Adam(ac.pi.parameters(), lr=ox.lr)
    value_optimizer = Adam(ac.v.parameters(), lr=ox.lr)

    policy_scheduler = OneCycleLR(policy_optimizer,
                                  ox.lr,
                                  ox.lr_cycle_steps,
                                  pct_start=ox.pct_start)
    value_scheduler = OneCycleLR(value_optimizer,
                                 ox.lr,
                                 ox.lr_cycle_steps,
                                 pct_start=ox.pct_start)

    # Create a buffer object to store trajectories.
    rollouts = RolloutStorage(ox.batch_size, shapes.OB)

    # Get the initial observation.
    ob: Array[float, shapes.OB]
    ob = env.reset()

    oobs = []
    co2s = []
    mean_co2 = 0
    num_oobs = 0

    t_start = time.time()

    for i in range(ox.iterations):

        # Sample an action from the policy and estimate the value of current state.
        act: Array[int, ()]
        val: Array[float, ()]
        act, val = get_action(ac, ob)

        # Step the environment to get new observation, reward, done status, and info.
        next_ob: Array[float, shapes.OB]
        rew: int
        done: bool
        next_ob, rew, done, info = env.step(int(act))

        # Get co2 lbs.
        co2s.append(info["co2"])
        oobs.append(info["oob"])

        # Add data for a timestep to the buffer.
        rollouts.add(ob, act, val, rew)

        # Don't forget to update the observation.
        ob = next_ob

        # If we reached a terminal state, or we completed a batch.
        if done or rollouts.batch_len == ox.batch_size:

            # Step 1: Compute advantages and critic targets.

            # Get episode length.
            ep_len = rollouts.ep_len
            dims.EP_LEN = ep_len

            # Retrieve values and rewards for the current episode.
            vals: Array[float, ep_len]
            rews: Array[float, ep_len]
            vals, rews = rollouts.get_episode_values_and_rewards()

            mean_rew = np.mean(rews)

            # The last value should be zero if this is the end of an episode.
            last_val: float = 0.0 if done else vals[-1]

            # Compute advantages and rewards-to-go.
            advs: Array[float,
                        ep_len] = get_advantages(ox, rews, vals, last_val)
            rtgs: Array[float, ep_len] = get_rewards_to_go(ox, rews)

            # Record the episode length.
            if done:
                rollouts.lens.append(len(advs))
                rollouts.rets.append(np.sum(rews))

                # Reset the environment.
                ob = env.reset()
                mean_co2 = sum(co2s)
                num_oobs = sum([int(oob) for oob in oobs])
                co2s = []
                oobs = []

            # Step 2: Reset vals and rews in buffer and record computed quantities.
            rollouts.vals[:] = 0
            rollouts.rews[:] = 0

            # Record advantages and rewards-to-go.
            j = rollouts.ep_start
            assert j + ep_len <= ox.batch_size
            rollouts.advs[j:j + ep_len] = advs
            rollouts.rtgs[j:j + ep_len] = rtgs
            rollouts.ep_start = j + ep_len
            rollouts.ep_len = 0

        # If we completed a batch.
        if rollouts.batch_len == ox.batch_size:

            # Get batch data from the buffer.
            obs: Tensor[float, (ox.batch_size, *shapes.OB)]
            acts: Tensor[int, (ox.batch_size)]
            obs, acts, advs, rtgs = rollouts.get_batch()

            # Run a backward pass on the policy (actor).
            policy_optimizer.zero_grad()
            policy_loss = get_policy_loss(ac.pi, obs, acts, advs)
            policy_loss.backward()
            policy_optimizer.step()
            policy_scheduler.step()

            # Run a backward pass on the value function (critic).
            value_optimizer.zero_grad()
            value_loss = get_value_loss(ac.v, obs, rtgs)
            value_loss.backward()
            value_optimizer.step()
            value_scheduler.step()

            # Reset pointers.
            rollouts.batch_len = 0
            rollouts.ep_start = 0

            # Print statistics.
            lr = policy_scheduler.get_lr()
            print(f"Iteration: {i + 1} | ", end="")
            print(f"Time: {time.time() - t_start:.5f} | ", end="")
            print(f"Total co2: {mean_co2:.5f} | ", end="")
            print(f"Num OOBs: {num_oobs:.5f} | ", end="")
            print(f"LR: {lr} | ", end="")
            print(f"Mean reward for current batch: {mean_rew:.5f}")
            t_start = time.time()
            rollouts.rets = []
            rollouts.lens = []

        if i > 0 and i % ox.save_interval == 0:
            with open(ox.save_path, "wb") as model_file:
                torch.save(ac, model_file)
            print("=== saved model ===")
Beispiel #24
0
    def Generator_NOGAN(self,
                        epochs: int = 1,
                        style_weight: float = 20.,
                        content_weight: float = 1.2,
                        recon_weight: float = 10.,
                        tv_weight: float = 1e-6,
                        loss: List[str] = ['content_loss']):
        """Training Generator in NOGAN manner (Feature Loss only)."""
        for g in self.optimizer_G.param_groups:
            g['lr'] = self.G_lr
        test_img = self.get_test_image()
        max_lr = self.G_lr * 10.

        lr_scheduler = OneCycleLR(self.optimizer_G,
                                  max_lr=max_lr,
                                  steps_per_epoch=len(self.dataloader),
                                  epochs=epochs)

        meter = LossMeters(*loss)
        total_loss_arr = np.array([])

        for epoch in tqdm(range(epochs)):

            total_losses = 0
            meter.reset()

            for i, (style, smooth, train) in enumerate(self.dataloader, 0):
                # train = transform(test_img).unsqueeze(0)
                self.G.zero_grad(set_to_none=self.grad_set_to_none)
                train = train.to(self.device)

                generator_output = self.G(train)
                if 'style_loss' in loss:
                    style = style.to(self.device)
                    style_loss = self.loss.style_loss(generator_output,
                                                      style) * style_weight
                else:
                    style_loss = 0.

                if 'content_loss' in loss:
                    content_loss = self.loss.content_loss(
                        generator_output, train) * content_weight
                else:
                    content_loss = 0.

                if 'recon_loss' in loss:
                    recon_loss = self.loss.reconstruction_loss(
                        generator_output, train) * recon_weight
                else:
                    recon_loss = 0.

                if 'tv_loss' in loss:
                    tv_loss = self.loss.tv_loss(generator_output) * tv_weight
                else:
                    tv_loss = 0.

                total_loss = content_loss + tv_loss + recon_loss + style_loss
                if self.fp16:
                    with amp.scale_loss(total_loss,
                                        self.optimizer_G) as scaled_loss:
                        scaled_loss.backward()
                else:
                    total_loss.backward()

                self.optimizer_G.step()
                lr_scheduler.step()
                total_losses += total_loss.detach()
                loss_dict = {
                    'content_loss': content_loss,
                    'style_loss': style_loss,
                    'recon_loss': recon_loss,
                    'tv_loss': tv_loss
                }

                losses = [loss_dict[loss_type].detach() for loss_type in loss]
                meter.update(*losses)

            total_loss_arr = np.append(total_loss_arr, total_losses.item())
            self.writer.add_scalars(f'{self.init_time} NOGAN generator losses',
                                    meter.as_dict('sum'), epoch)

            self.write_weights(epoch + 1, write_D=False)
            self.eval_image(epoch, f'{self.init_time} reconstructed img',
                            test_img)
            if epoch > 2:
                fig = plt.figure(figsize=(8, 8))
                X = np.arange(len(total_loss_arr))
                Y = np.gradient(total_loss_arr)
                plt.plot(X, Y)
                thresh = -1.0
                plt.axhline(thresh, c='r')
                plt.title(f"{self.init_time}")
                self.writer.add_figure(f"{self.init_time}", fig, epoch)
                if Y[-1] > thresh:
                    break

        self.save_trial(epoch, f'G_NG_{self.init_time}')
Beispiel #25
0
    def train(
            self,
            base_path: Union[Path, str],
            learning_rate: float = 0.1,
            mini_batch_size: int = 32,
            mini_batch_chunk_size: Optional[int] = None,
            max_epochs: int = 100,
            train_with_dev: bool = False,
            train_with_test: bool = False,
            monitor_train: bool = False,
            monitor_test: bool = False,
            main_evaluation_metric: Tuple[str, str] = ("micro avg", 'f1-score'),
            scheduler=AnnealOnPlateau,
            anneal_factor: float = 0.5,
            patience: int = 3,
            min_learning_rate: float = 0.0001,
            initial_extra_patience: int = 0,
            optimizer: torch.optim.Optimizer = SGD,
            cycle_momentum: bool = False,
            warmup_fraction: float = 0.1,
            embeddings_storage_mode: str = "cpu",
            checkpoint: bool = False,
            save_final_model: bool = True,
            anneal_with_restarts: bool = False,
            anneal_with_prestarts: bool = False,
            anneal_against_dev_loss: bool = False,
            batch_growth_annealing: bool = False,
            shuffle: bool = True,
            param_selection_mode: bool = False,
            write_weights: bool = False,
            num_workers: int = 6,
            sampler=None,
            use_amp: bool = False,
            amp_opt_level: str = "O1",
            eval_on_train_fraction: float = 0.0,
            eval_on_train_shuffle: bool = False,
            save_model_each_k_epochs: int = 0,
            tensorboard_comment: str = '',
            use_swa: bool = False,
            use_final_model_for_eval: bool = False,
            gold_label_dictionary_for_eval: Optional[Dictionary] = None,
            create_file_logs: bool = True,
            create_loss_file: bool = True,
            epoch: int = 0,
            use_tensorboard: bool = False,
            tensorboard_log_dir=None,
            metrics_for_tensorboard=[],
            optimizer_state_dict: Optional = None,
            scheduler_state_dict: Optional = None,
            save_optimizer_state: bool = False,
            **kwargs,
    ) -> dict:
        """
        Trains any class that implements the flair.nn.Model interface.
        :param base_path: Main path to which all output during training is logged and models are saved
        :param learning_rate: Initial learning rate (or max, if scheduler is OneCycleLR)
        :param mini_batch_size: Size of mini-batches during training
        :param mini_batch_chunk_size: If mini-batches are larger than this number, they get broken down into chunks of this size for processing purposes
        :param max_epochs: Maximum number of epochs to train. Terminates training if this number is surpassed.
        :param scheduler: The learning rate scheduler to use
        :param checkpoint: If True, a full checkpoint is saved at end of each epoch
        :param cycle_momentum: If scheduler is OneCycleLR, whether the scheduler should cycle also the momentum
        :param anneal_factor: The factor by which the learning rate is annealed
        :param patience: Patience is the number of epochs with no improvement the Trainer waits
         until annealing the learning rate
        :param min_learning_rate: If the learning rate falls below this threshold, training terminates
        :param warmup_fraction: Fraction of warmup steps if the scheduler is LinearSchedulerWithWarmup
        :param train_with_dev:  If True, the data from dev split is added to the training data
        :param train_with_test: If True, the data from test split is added to the training data
        :param monitor_train: If True, training data is evaluated at end of each epoch
        :param monitor_test: If True, test data is evaluated at end of each epoch
        :param embeddings_storage_mode: One of 'none' (all embeddings are deleted and freshly recomputed),
        'cpu' (embeddings are stored on CPU) or 'gpu' (embeddings are stored on GPU)
        :param save_final_model: If True, final model is saved
        :param anneal_with_restarts: If True, the last best model is restored when annealing the learning rate
        :param shuffle: If True, data is shuffled during training
        :param param_selection_mode: If True, testing is performed against dev data. Use this mode when doing
        parameter selection.
        :param num_workers: Number of workers in your data loader.
        :param sampler: You can pass a data sampler here for special sampling of data.
        :param eval_on_train_fraction: the fraction of train data to do the evaluation on,
        if 0. the evaluation is not performed on fraction of training data,
        if 'dev' the size is determined from dev set size
        :param eval_on_train_shuffle: if True the train data fraction is determined on the start of training
        and kept fixed during training, otherwise it's sampled at beginning of each epoch
        :param save_model_each_k_epochs: Each k epochs, a model state will be written out. If set to '5', a model will
        be saved each 5 epochs. Default is 0 which means no model saving.
        :param main_evaluation_metric: Type of metric to use for best model tracking and learning rate scheduling (if dev data is available, otherwise loss will be used), currently only applicable for text_classification_model
        :param tensorboard_comment: Comment to use for tensorboard logging
        :param create_file_logs: If True, the logs will also be stored in a file 'training.log' in the model folder
        :param create_loss_file: If True, the loss will be writen to a file 'loss.tsv' in the model folder
        :param optimizer: The optimizer to use (typically SGD or Adam)
        :param epoch: The starting epoch (normally 0 but could be higher if you continue training model)
        :param use_tensorboard: If True, writes out tensorboard information
        :param tensorboard_log_dir: Directory into which tensorboard log files will be written
        :param metrics_for_tensorboard: List of tuples that specify which metrics (in addition to the main_score) shall be plotted in tensorboard, could be [("macro avg", 'f1-score'), ("macro avg", 'precision')] for example
        :param kwargs: Other arguments for the Optimizer
        :return:
        """

        # create a model card for this model with Flair and PyTorch version
        model_card = {'flair_version': flair.__version__, 'pytorch_version': torch.__version__}

        # also record Transformers version if library is loaded
        try:
            import transformers
            model_card['transformers_version'] = transformers.__version__
        except:
            pass

        # remember all parameters used in train() call
        local_variables = locals()
        training_parameters = {}
        for parameter in signature(self.train).parameters:
            training_parameters[parameter] = local_variables[parameter]
        model_card['training_parameters'] = training_parameters

        # add model card to model
        self.model.model_card = model_card

        if use_tensorboard:
            try:
                from torch.utils.tensorboard import SummaryWriter

                if tensorboard_log_dir is not None and not os.path.exists(tensorboard_log_dir):
                    os.mkdir(tensorboard_log_dir)
                writer = SummaryWriter(log_dir=tensorboard_log_dir, comment=tensorboard_comment)
                log.info(f"tensorboard logging path is {tensorboard_log_dir}")

            except:
                log_line(log)
                log.warning("ATTENTION! PyTorch >= 1.1.0 and pillow are required for TensorBoard support!")
                log_line(log)
                use_tensorboard = False
                pass

        if use_amp:
            if sys.version_info < (3, 0):
                raise RuntimeError("Apex currently only supports Python 3. Aborting.")
            if amp is None:
                raise RuntimeError(
                    "Failed to import apex. Please install apex from https://www.github.com/nvidia/apex "
                    "to enable mixed-precision training."
                )

        if mini_batch_chunk_size is None:
            mini_batch_chunk_size = mini_batch_size
        if learning_rate < min_learning_rate:
            min_learning_rate = learning_rate / 10

        initial_learning_rate = learning_rate

        # cast string to Path
        if type(base_path) is str:
            base_path = Path(base_path)
        base_path.mkdir(exist_ok=True, parents=True)

        if create_file_logs:
            log_handler = add_file_handler(log, base_path / "training.log")
        else:
            log_handler = None

        log_line(log)
        log.info(f'Model: "{self.model}"')
        log_line(log)
        log.info(f'Corpus: "{self.corpus}"')
        log_line(log)
        log.info("Parameters:")
        log.info(f' - learning_rate: "{learning_rate}"')
        log.info(f' - mini_batch_size: "{mini_batch_size}"')
        log.info(f' - patience: "{patience}"')
        log.info(f' - anneal_factor: "{anneal_factor}"')
        log.info(f' - max_epochs: "{max_epochs}"')
        log.info(f' - shuffle: "{shuffle}"')
        log.info(f' - train_with_dev: "{train_with_dev}"')
        log.info(f' - batch_growth_annealing: "{batch_growth_annealing}"')
        log_line(log)
        log.info(f'Model training base path: "{base_path}"')
        log_line(log)
        log.info(f"Device: {flair.device}")
        log_line(log)
        log.info(f"Embeddings storage mode: {embeddings_storage_mode}")
        if isinstance(self.model, SequenceTagger) and self.model.weight_dict and self.model.use_crf:
            log_line(log)
            log.warning(f'WARNING: Specified class weights will not take effect when using CRF')

        # check for previously saved best models in the current training folder and delete them
        self.check_for_and_delete_previous_best_models(base_path)

        # determine what splits (train, dev, test) to evaluate and log
        log_train = True if monitor_train else False
        log_test = True if (not param_selection_mode and self.corpus.test and monitor_test) else False
        log_dev = False if train_with_dev or not self.corpus.dev else True
        log_train_part = True if (eval_on_train_fraction == "dev" or eval_on_train_fraction > 0.0) else False

        if log_train_part:
            train_part_size = len(self.corpus.dev) if eval_on_train_fraction == "dev" \
                else int(len(self.corpus.train) * eval_on_train_fraction)

            assert train_part_size > 0
            if not eval_on_train_shuffle:
                train_part_indices = list(range(train_part_size))
                train_part = torch.utils.data.dataset.Subset(self.corpus.train, train_part_indices)

        # prepare loss logging file and set up header
        loss_txt = init_output_file(base_path, "loss.tsv") if create_loss_file else None

        weight_extractor = WeightExtractor(base_path)

        # if optimizer class is passed, instantiate:
        if inspect.isclass(optimizer):
            optimizer: torch.optim.Optimizer = optimizer(self.model.parameters(), lr=learning_rate, **kwargs)

        if use_swa:
            import torchcontrib
            optimizer = torchcontrib.optim.SWA(optimizer, swa_start=10, swa_freq=5, swa_lr=learning_rate)

        if use_amp:
            self.model, optimizer = amp.initialize(
                self.model, optimizer, opt_level=amp_opt_level
            )

        # load existing optimizer state dictionary if it exists
        if optimizer_state_dict:
            optimizer.load_state_dict(optimizer_state_dict)

        # minimize training loss if training with dev data, else maximize dev score
        anneal_mode = "min" if train_with_dev or anneal_against_dev_loss else "max"
        best_validation_score = 100000000000 if train_with_dev or anneal_against_dev_loss else 0.

        dataset_size = len(self.corpus.train)
        if train_with_dev:
            dataset_size += len(self.corpus.dev)

        # if scheduler is passed as a class, instantiate
        if inspect.isclass(scheduler):
            if scheduler == OneCycleLR:
                scheduler = OneCycleLR(optimizer,
                                       max_lr=learning_rate,
                                       steps_per_epoch=dataset_size // mini_batch_size + 1,
                                       epochs=max_epochs - epoch,
                                       # if we load a checkpoint, we have already trained for epoch
                                       pct_start=0.0,
                                       cycle_momentum=cycle_momentum)
            elif scheduler == LinearSchedulerWithWarmup:
                steps_per_epoch = (dataset_size + mini_batch_size - 1) / mini_batch_size
                num_train_steps = int(steps_per_epoch * max_epochs)
                num_warmup_steps = int(num_train_steps * warmup_fraction)

                scheduler = LinearSchedulerWithWarmup(optimizer,
                                                      num_train_steps=num_train_steps,
                                                      num_warmup_steps=num_warmup_steps)
            else:
                scheduler = scheduler(
                    optimizer,
                    factor=anneal_factor,
                    patience=patience,
                    initial_extra_patience=initial_extra_patience,
                    mode=anneal_mode,
                    verbose=True,
                )

        # load existing scheduler state dictionary if it exists
        if scheduler_state_dict:
            scheduler.load_state_dict(scheduler_state_dict)

        # update optimizer and scheduler in model card
        model_card['training_parameters']['optimizer'] = optimizer
        model_card['training_parameters']['scheduler'] = scheduler

        if isinstance(scheduler, OneCycleLR) and batch_growth_annealing:
            raise ValueError("Batch growth with OneCycle policy is not implemented.")

        train_data = self.corpus.train

        # if training also uses dev/train data, include in training set
        if train_with_dev or train_with_test:

            parts = [self.corpus.train]
            if train_with_dev: parts.append(self.corpus.dev)
            if train_with_test: parts.append(self.corpus.test)

            train_data = ConcatDataset(parts)

        # initialize sampler if provided
        if sampler is not None:
            # init with default values if only class is provided
            if inspect.isclass(sampler):
                sampler = sampler()
            # set dataset to sample from
            sampler.set_dataset(train_data)
            shuffle = False

        dev_score_history = []
        dev_loss_history = []
        train_loss_history = []

        micro_batch_size = mini_batch_chunk_size

        # At any point you can hit Ctrl + C to break out of training early.
        try:
            previous_learning_rate = learning_rate
            momentum = 0
            for group in optimizer.param_groups:
                if "momentum" in group:
                    momentum = group["momentum"]

            for epoch in range(epoch + 1, max_epochs + 1):
                log_line(log)

                # update epoch in model card
                self.model.model_card['training_parameters']['epoch'] = epoch

                if anneal_with_prestarts:
                    last_epoch_model_state_dict = copy.deepcopy(self.model.state_dict())

                if eval_on_train_shuffle:
                    train_part_indices = list(range(self.corpus.train))
                    random.shuffle(train_part_indices)
                    train_part_indices = train_part_indices[:train_part_size]
                    train_part = torch.utils.data.dataset.Subset(self.corpus.train, train_part_indices)

                # get new learning rate
                for group in optimizer.param_groups:
                    learning_rate = group["lr"]

                if learning_rate != previous_learning_rate and batch_growth_annealing:
                    mini_batch_size *= 2

                # reload last best model if annealing with restarts is enabled
                if (
                        (anneal_with_restarts or anneal_with_prestarts)
                        and learning_rate != previous_learning_rate
                        and os.path.exists(base_path / "best-model.pt")
                ):
                    if anneal_with_restarts:
                        log.info("resetting to best model")
                        self.model.load_state_dict(
                            self.model.load(base_path / "best-model.pt").state_dict()
                        )
                    if anneal_with_prestarts:
                        log.info("resetting to pre-best model")
                        self.model.load_state_dict(
                            self.model.load(base_path / "pre-best-model.pt").state_dict()
                        )

                previous_learning_rate = learning_rate
                if use_tensorboard:
                    writer.add_scalar("learning_rate", learning_rate, epoch)

                # stop training if learning rate becomes too small
                if ((not isinstance(scheduler, (OneCycleLR, LinearSchedulerWithWarmup)) and
                     learning_rate < min_learning_rate)):
                    log_line(log)
                    log.info("learning rate too small - quitting training!")
                    log_line(log)
                    break

                batch_loader = DataLoader(
                    train_data,
                    batch_size=mini_batch_size,
                    shuffle=shuffle if epoch > 1 else False,  # never shuffle the first epoch
                    num_workers=num_workers,
                    sampler=sampler,
                )

                self.model.train()

                train_loss: float = 0

                seen_batches = 0
                total_number_of_batches = len(batch_loader)

                modulo = max(1, int(total_number_of_batches / 10))

                # process mini-batches
                batch_time = 0
                average_over = 0
                for batch_no, batch in enumerate(batch_loader):

                    start_time = time.time()

                    # zero the gradients on the model and optimizer
                    self.model.zero_grad()
                    optimizer.zero_grad()

                    # if necessary, make batch_steps
                    batch_steps = [batch]
                    if len(batch) > micro_batch_size:
                        batch_steps = [batch[x: x + micro_batch_size] for x in range(0, len(batch), micro_batch_size)]

                    # forward and backward for batch
                    for batch_step in batch_steps:

                        # forward pass
                        loss = self.model.forward_loss(batch_step)

                        if isinstance(loss, Tuple):
                            average_over += loss[1]
                            loss = loss[0]

                        # Backward
                        if use_amp:
                            with amp.scale_loss(loss, optimizer) as scaled_loss:
                                scaled_loss.backward()
                        else:
                            loss.backward()
                        train_loss += loss.item()

                    # do the optimizer step
                    torch.nn.utils.clip_grad_norm_(self.model.parameters(), 5.0)
                    optimizer.step()

                    # do the scheduler step if one-cycle or linear decay
                    if isinstance(scheduler, (OneCycleLR, LinearSchedulerWithWarmup)):
                        scheduler.step()
                        # get new learning rate
                        for group in optimizer.param_groups:
                            learning_rate = group["lr"]
                            if "momentum" in group:
                                momentum = group["momentum"]
                            if "betas" in group:
                                momentum, _ = group["betas"]

                    seen_batches += 1

                    # depending on memory mode, embeddings are moved to CPU, GPU or deleted
                    store_embeddings(batch, embeddings_storage_mode)

                    batch_time += time.time() - start_time
                    if seen_batches % modulo == 0:
                        momentum_info = f' - momentum: {momentum:.4f}' if cycle_momentum else ''
                        intermittent_loss = train_loss / average_over if average_over > 0 else train_loss / seen_batches
                        log.info(
                            f"epoch {epoch} - iter {seen_batches}/{total_number_of_batches} - loss "
                            f"{intermittent_loss:.8f} - samples/sec: {mini_batch_size * modulo / batch_time:.2f}"
                            f" - lr: {learning_rate:.6f}{momentum_info}"
                        )
                        batch_time = 0
                        iteration = epoch * total_number_of_batches + batch_no
                        if not param_selection_mode and write_weights:
                            weight_extractor.extract_weights(self.model.state_dict(), iteration)

                if average_over != 0:
                    train_loss /= average_over

                self.model.eval()

                log_line(log)
                log.info(f"EPOCH {epoch} done: loss {train_loss:.4f} - lr {learning_rate:.7f}")

                if use_tensorboard:
                    writer.add_scalar("train_loss", train_loss, epoch)

                # evaluate on train / dev / test split depending on training settings
                result_line: str = ""

                if log_train:
                    train_eval_result = self.model.evaluate(
                        self.corpus.train,
                        gold_label_type=self.model.label_type,
                        mini_batch_size=mini_batch_chunk_size,
                        num_workers=num_workers,
                        embedding_storage_mode=embeddings_storage_mode,
                        main_evaluation_metric=main_evaluation_metric,
                        gold_label_dictionary=gold_label_dictionary_for_eval,
                    )
                    result_line += f"\t{train_eval_result.log_line}"

                    # depending on memory mode, embeddings are moved to CPU, GPU or deleted
                    store_embeddings(self.corpus.train, embeddings_storage_mode)

                if log_train_part:
                    train_part_eval_result = self.model.evaluate(
                        train_part,
                        gold_label_type=self.model.label_type,
                        mini_batch_size=mini_batch_chunk_size,
                        num_workers=num_workers,
                        embedding_storage_mode=embeddings_storage_mode,
                        main_evaluation_metric=main_evaluation_metric,
                        gold_label_dictionary=gold_label_dictionary_for_eval,
                    )
                    result_line += f"\t{train_part_eval_result.loss}\t{train_part_eval_result.log_line}"

                    log.info(
                        f"TRAIN_SPLIT : loss {train_part_eval_result.loss} - {main_evaluation_metric[1]} ({main_evaluation_metric[0]}) {round(train_part_eval_result.main_score, 4)}"
                    )
                if use_tensorboard:
                    for (metric_class_avg_type, metric_type) in metrics_for_tensorboard:
                        writer.add_scalar(
                            f"train_{metric_class_avg_type}_{metric_type}",
                            train_part_eval_result.classification_report[metric_class_avg_type][metric_type], epoch
                        )

                if log_dev:
                    dev_eval_result = self.model.evaluate(
                        self.corpus.dev,
                        gold_label_type=self.model.label_type,
                        mini_batch_size=mini_batch_chunk_size,
                        num_workers=num_workers,
                        out_path=base_path / "dev.tsv",
                        embedding_storage_mode=embeddings_storage_mode,
                        main_evaluation_metric=main_evaluation_metric,
                        gold_label_dictionary=gold_label_dictionary_for_eval,
                    )
                    result_line += f"\t{dev_eval_result.loss}\t{dev_eval_result.log_line}"
                    log.info(
                        f"DEV : loss {dev_eval_result.loss} - {main_evaluation_metric[1]} ({main_evaluation_metric[0]})  {round(dev_eval_result.main_score, 4)}"
                    )
                    # calculate scores using dev data if available
                    # append dev score to score history
                    dev_score_history.append(dev_eval_result.main_score)
                    dev_loss_history.append(dev_eval_result.loss)

                    dev_score = dev_eval_result.main_score

                    # depending on memory mode, embeddings are moved to CPU, GPU or deleted
                    store_embeddings(self.corpus.dev, embeddings_storage_mode)

                    if use_tensorboard:
                        writer.add_scalar("dev_loss", dev_eval_result.loss, epoch)
                        writer.add_scalar("dev_score", dev_eval_result.main_score, epoch)
                        for (metric_class_avg_type, metric_type) in metrics_for_tensorboard:
                            writer.add_scalar(
                                f"dev_{metric_class_avg_type}_{metric_type}",
                                dev_eval_result.classification_report[metric_class_avg_type][metric_type], epoch
                            )

                if log_test:
                    test_eval_result = self.model.evaluate(
                        self.corpus.test,
                        gold_label_type=self.model.label_type,
                        mini_batch_size=mini_batch_chunk_size,
                        num_workers=num_workers,
                        out_path=base_path / "test.tsv",
                        embedding_storage_mode=embeddings_storage_mode,
                        main_evaluation_metric=main_evaluation_metric,
                        gold_label_dictionary=gold_label_dictionary_for_eval,
                    )
                    result_line += f"\t{test_eval_result.loss}\t{test_eval_result.log_line}"
                    log.info(
                        f"TEST : loss {test_eval_result.loss} - {main_evaluation_metric[1]} ({main_evaluation_metric[0]})  {round(test_eval_result.main_score, 4)}"
                    )

                    # depending on memory mode, embeddings are moved to CPU, GPU or deleted
                    store_embeddings(self.corpus.test, embeddings_storage_mode)

                    if use_tensorboard:
                        writer.add_scalar("test_loss", test_eval_result.loss, epoch)
                        writer.add_scalar("test_score", test_eval_result.main_score, epoch)
                        for (metric_class_avg_type, metric_type) in metrics_for_tensorboard:
                            writer.add_scalar(
                                f"test_{metric_class_avg_type}_{metric_type}",
                                test_eval_result.classification_report[metric_class_avg_type][metric_type], epoch
                            )

                # determine if this is the best model or if we need to anneal
                current_epoch_has_best_model_so_far = False
                # default mode: anneal against dev score
                if not train_with_dev and not anneal_against_dev_loss:
                    if dev_score > best_validation_score:
                        current_epoch_has_best_model_so_far = True
                        best_validation_score = dev_score

                    if isinstance(scheduler, AnnealOnPlateau):
                        scheduler.step(dev_score, dev_eval_result.loss)

                # alternative: anneal against dev loss
                if not train_with_dev and anneal_against_dev_loss:
                    if dev_eval_result.loss < best_validation_score:
                        current_epoch_has_best_model_so_far = True
                        best_validation_score = dev_eval_result.loss

                    if isinstance(scheduler, AnnealOnPlateau):
                        scheduler.step(dev_eval_result.loss)

                # alternative: anneal against train loss
                if train_with_dev:
                    if train_loss < best_validation_score:
                        current_epoch_has_best_model_so_far = True
                        best_validation_score = train_loss

                    if isinstance(scheduler, AnnealOnPlateau):
                        scheduler.step(train_loss)

                train_loss_history.append(train_loss)

                # determine bad epoch number
                try:
                    bad_epochs = scheduler.num_bad_epochs
                except:
                    bad_epochs = 0
                for group in optimizer.param_groups:
                    new_learning_rate = group["lr"]
                if new_learning_rate != previous_learning_rate:
                    bad_epochs = patience + 1
                    if previous_learning_rate == initial_learning_rate: bad_epochs += initial_extra_patience

                # log bad epochs
                log.info(f"BAD EPOCHS (no improvement): {bad_epochs}")

                if create_loss_file:
                    # output log file
                    with open(loss_txt, "a") as f:

                        # make headers on first epoch
                        if epoch == 1:
                            f.write(f"EPOCH\tTIMESTAMP\tBAD_EPOCHS\tLEARNING_RATE\tTRAIN_LOSS")

                            if log_train:
                                f.write("\tTRAIN_" + "\tTRAIN_".join(train_eval_result.log_header.split("\t")))

                            if log_train_part:
                                f.write("\tTRAIN_PART_LOSS\tTRAIN_PART_" + "\tTRAIN_PART_".join(
                                    train_part_eval_result.log_header.split("\t")))

                            if log_dev:
                                f.write("\tDEV_LOSS\tDEV_" + "\tDEV_".join(dev_eval_result.log_header.split("\t")))

                            if log_test:
                                f.write("\tTEST_LOSS\tTEST_" + "\tTEST_".join(test_eval_result.log_header.split("\t")))

                        f.write(
                            f"\n{epoch}\t{datetime.datetime.now():%H:%M:%S}\t{bad_epochs}\t{learning_rate:.4f}\t{train_loss}"
                        )
                        f.write(result_line)

                # if checkpoint is enabled, save model at each epoch
                if checkpoint and not param_selection_mode:
                    self.model.save(base_path / "checkpoint.pt", checkpoint=True)

                # Check whether to save best model
                if (
                        (not train_with_dev or anneal_with_restarts or anneal_with_prestarts)
                        and not param_selection_mode
                        and current_epoch_has_best_model_so_far
                        and not use_final_model_for_eval
                ):
                    log.info("saving best model")
                    self.model.save(base_path / "best-model.pt", checkpoint=save_optimizer_state)

                    if anneal_with_prestarts:
                        current_state_dict = self.model.state_dict()
                        self.model.load_state_dict(last_epoch_model_state_dict)
                        self.model.save(base_path / "pre-best-model.pt")
                        self.model.load_state_dict(current_state_dict)

                if save_model_each_k_epochs > 0 and not epoch % save_model_each_k_epochs:
                    print("saving model of current epoch")
                    model_name = "model_epoch_" + str(epoch) + ".pt"
                    self.model.save(base_path / model_name, checkpoint=save_optimizer_state)

            if use_swa:
                optimizer.swap_swa_sgd()

            # if we do not use dev data for model selection, save final model
            if save_final_model and not param_selection_mode:
                self.model.save(base_path / "final-model.pt", checkpoint=save_optimizer_state)

        except KeyboardInterrupt:
            log_line(log)
            log.info("Exiting from training early.")

            if use_tensorboard:
                writer.close()

            if not param_selection_mode:
                log.info("Saving model ...")
                self.model.save(base_path / "final-model.pt", checkpoint=save_optimizer_state)
                log.info("Done.")

        # test best model if test data is present
        if self.corpus.test and not train_with_test:
            final_score = self.final_test(
                base_path=base_path,
                eval_mini_batch_size=mini_batch_chunk_size,
                num_workers=num_workers,
                main_evaluation_metric=main_evaluation_metric,
                gold_label_dictionary_for_eval=gold_label_dictionary_for_eval,
            )
        else:
            final_score = 0
            log.info("Test data not provided setting final score to 0")

        if create_file_logs:
            log_handler.close()
            log.removeHandler(log_handler)

        if use_tensorboard:
            writer.close()

        return {
            "test_score": final_score,
            "dev_score_history": dev_score_history,
            "train_loss_history": train_loss_history,
            "dev_loss_history": dev_loss_history,
        }
Beispiel #26
0
    def Discriminator_NOGAN(
            self,
            epochs: int = 3,
            adv_weight: float = 1.0,
            edge_weight: float = 1.0,
            loss: List[str] = ['real_adv_loss', 'fake_adv_loss', 'gray_loss']):
        """https://discuss.pytorch.org/t/scheduling-batch-size-in-dataloader/46443/2"""

        for g in self.optimizer_D.param_groups:
            g['lr'] = self.D_lr

        max_lr = self.D_lr * 10.
        lr_scheduler = OneCycleLR(self.optimizer_D,
                                  max_lr=max_lr,
                                  steps_per_epoch=len(self.dataloader),
                                  epochs=epochs)
        meter = LossMeters(*loss)
        total_loss_arr = np.array([])
        if self.init_time is None:
            self.init_time = datetime.datetime.now().strftime("%H:%M")

        for epoch in tqdm(range(epochs)):

            meter.reset()

            for i, (style, smooth, train) in enumerate(self.dataloader, 0):
                # train = transform(test_img).unsqueeze(0)
                self.D.zero_grad(set_to_none=self.grad_set_to_none)
                train = train.to(self.device)
                style = style.to(self.device)

                generator_output = self.G(train)
                real_adv_loss = self.D(style).view(-1)
                fake_adv_loss = self.D(generator_output.detach()).view(-1)
                real_adv_loss = torch.pow(real_adv_loss - 1,
                                          2).mean() * 1.7 * adv_weight
                fake_adv_loss = torch.pow(fake_adv_loss,
                                          2).mean() * 1.7 * adv_weight
                gray_train = tr.inv_gray_transform(style)
                greyscale_output = self.D(gray_train).view(-1)
                gray_loss = torch.pow(greyscale_output,
                                      2).mean() * 1.7 * adv_weight
                "According to AnimeGANv2 implementation, every loss is scaled by individual weights and then scaled with adv_weight"
                "https://github.com/TachibanaYoshino/AnimeGANv2/blob/5946b6afcca5fc28518b75a763c0f561ff5ce3d6/tools/ops.py#L217"
                total_loss = real_adv_loss + fake_adv_loss + gray_loss
                if self.fp16:
                    with amp.scale_loss(total_loss,
                                        self.optimizer_D) as scaled_loss:
                        scaled_loss.backward()
                else:
                    total_loss.backward()
                self.optimizer_D.step()
                lr_scheduler.step()

                loss_dict = {
                    'real_adv_loss': real_adv_loss,
                    'fake_adv_loss': fake_adv_loss,
                    'gray_loss': gray_loss
                }

                losses = [loss_dict[loss_type].detach() for loss_type in loss]
                meter.update(*losses)

            self.writer.add_scalars(
                f'{self.init_time} NOGAN discriminator loss',
                meter.as_dict('sum'), epoch)
            self.writer.flush()
            if epoch > 2:
                fig = plt.figure(figsize=(8, 8))
                X = np.arange(len(total_loss_arr))
                Y = np.gradient(total_loss_arr)
                plt.plot(X, Y)
                thresh = -1.0
                plt.axhline(thresh, c='r')
                plt.title(f"{self.init_time}")
                self.writer.add_figure(f"{self.init_time}", fig, epoch)
                if Y[-1] > thresh:
                    break
Beispiel #27
0
class Trainer():
    def __init__(self, config, pretrained=True):

        self.config = config
        self.model, self.vocab = build_model(config)

        self.device = config['device']
        self.num_iters = config['trainer']['iters']
        self.beamsearch = config['predictor']['beamsearch']

        self.data_root = config['dataset']['data_root']
        self.train_annotation = config['dataset']['train_annotation']
        self.valid_annotation = config['dataset']['valid_annotation']
        self.dataset_name = config['dataset']['name']

        self.batch_size = config['trainer']['batch_size']
        self.print_every = config['trainer']['print_every']
        self.valid_every = config['trainer']['valid_every']

        self.checkpoint = config['trainer']['checkpoint']
        self.export_weights = config['trainer']['export']
        self.metrics = config['trainer']['metrics']
        logger = config['trainer']['log']

        if logger:
            self.logger = Logger(logger)

        if pretrained:
            weight_file = download_weights(**config['pretrain'],
                                           quiet=config['quiet'])
            self.load_weights(weight_file)

        self.iter = 0

        self.optimizer = AdamW(self.model.parameters(),
                               betas=(0.9, 0.98),
                               eps=1e-09)
        self.scheduler = OneCycleLR(self.optimizer, **config['optimizer'])
        #        self.optimizer = ScheduledOptim(
        #            Adam(self.model.parameters(), betas=(0.9, 0.98), eps=1e-09),
        #            #config['transformer']['d_model'],
        #            512,
        #            **config['optimizer'])

        self.criterion = LabelSmoothingLoss(len(self.vocab),
                                            padding_idx=self.vocab.pad,
                                            smoothing=0.1)

        transforms = ImgAugTransform()

        self.train_gen = self.data_gen('train_{}'.format(self.dataset_name),
                                       self.data_root,
                                       self.train_annotation,
                                       transform=transforms)
        if self.valid_annotation:
            self.valid_gen = self.data_gen(
                'valid_{}'.format(self.dataset_name), self.data_root,
                self.valid_annotation)

        self.train_losses = []

    def train(self):
        total_loss = 0

        total_loader_time = 0
        total_gpu_time = 0
        best_acc = 0

        data_iter = iter(self.train_gen)
        for i in range(self.num_iters):
            self.iter += 1

            start = time.time()

            try:
                batch = next(data_iter)
            except StopIteration:
                data_iter = iter(self.train_gen)
                batch = next(data_iter)

            total_loader_time += time.time() - start

            start = time.time()
            loss = self.step(batch)
            total_gpu_time += time.time() - start

            total_loss += loss
            self.train_losses.append((self.iter, loss))

            if self.iter % self.print_every == 0:
                info = 'iter: {:06d} - train loss: {:.3f} - lr: {:.2e} - load time: {:.2f} - gpu time: {:.2f}'.format(
                    self.iter, total_loss / self.print_every,
                    self.optimizer.param_groups[0]['lr'], total_loader_time,
                    total_gpu_time)

                total_loss = 0
                total_loader_time = 0
                total_gpu_time = 0
                print(info)
                self.logger.log(info)

            if self.valid_annotation and self.iter % self.valid_every == 0:
                val_loss = self.validate()
                acc_full_seq, acc_per_char = self.precision(self.metrics)

                info = 'iter: {:06d} - valid loss: {:.3f} - acc full seq: {:.4f} - acc per char: {:.4f}'.format(
                    self.iter, val_loss, acc_full_seq, acc_per_char)
                print(info)
                self.logger.log(info)

                if acc_full_seq > best_acc:
                    self.save_weights(self.export_weights)
                    best_acc = acc_full_seq

    def validate(self):
        self.model.eval()

        total_loss = []

        with torch.no_grad():
            for step, batch in enumerate(self.valid_gen):
                batch = self.batch_to_device(batch)
                img, tgt_input, tgt_output, tgt_padding_mask = batch[
                    'img'], batch['tgt_input'], batch['tgt_output'], batch[
                        'tgt_padding_mask']

                outputs = self.model(img, tgt_input, tgt_padding_mask)
                #                loss = self.criterion(rearrange(outputs, 'b t v -> (b t) v'), rearrange(tgt_output, 'b o -> (b o)'))

                outputs = outputs.flatten(0, 1)
                tgt_output = tgt_output.flatten()
                loss = self.criterion(outputs, tgt_output)

                total_loss.append(loss.item())

                del outputs
                del loss

        total_loss = np.mean(total_loss)
        self.model.train()

        return total_loss

    def predict(self, sample=None):
        pred_sents = []
        actual_sents = []
        img_files = []

        for batch in self.valid_gen:
            batch = self.batch_to_device(batch)

            if self.beamsearch:
                translated_sentence = batch_translate_beam_search(
                    batch['img'], self.model)
            else:
                translated_sentence = translate(batch['img'], self.model)

            pred_sent = self.vocab.batch_decode(translated_sentence.tolist())
            actual_sent = self.vocab.batch_decode(batch['tgt_output'].tolist())

            img_files.extend(batch['filenames'])

            pred_sents.extend(pred_sent)
            actual_sents.extend(actual_sent)

            if sample != None and len(pred_sents) > sample:
                break

        return pred_sents, actual_sents, img_files

    def precision(self, sample=None):

        pred_sents, actual_sents, _ = self.predict(sample=sample)

        acc_full_seq = compute_accuracy(actual_sents,
                                        pred_sents,
                                        mode='full_sequence')
        acc_per_char = compute_accuracy(actual_sents,
                                        pred_sents,
                                        mode='per_char')

        return acc_full_seq, acc_per_char

    def visualize_prediction(self,
                             sample=16,
                             errorcase=False,
                             fontname='serif',
                             fontsize=16):

        pred_sents, actual_sents, img_files = self.predict(sample)

        if errorcase:
            wrongs = []
            for i in range(len(img_files)):
                if pred_sents[i] != actual_sents[i]:
                    wrongs.append(i)

            pred_sents = [pred_sents[i] for i in wrongs]
            actual_sents = [actual_sents[i] for i in wrongs]
            img_files = [img_files[i] for i in wrongs]

        img_files = img_files[:sample]

        fontdict = {'family': fontname, 'size': fontsize}

        for vis_idx in range(0, len(img_files)):
            img_path = img_files[vis_idx]
            pred_sent = pred_sents[vis_idx]
            actual_sent = actual_sents[vis_idx]

            img = Image.open(open(img_path, 'rb'))
            plt.figure()
            plt.imshow(img)
            plt.title('pred: {} - actual: {}'.format(pred_sent, actual_sent),
                      loc='left',
                      fontdict=fontdict)
            plt.axis('off')

        plt.show()

    def visualize_dataset(self, sample=16, fontname='serif'):
        n = 0
        for batch in self.train_gen:
            for i in range(self.batch_size):
                img = batch['img'][i].numpy().transpose(1, 2, 0)
                sent = self.vocab.decode(batch['tgt_input'].T[i].tolist())

                plt.figure()
                plt.title('sent: {}'.format(sent),
                          loc='center',
                          fontname=fontname)
                plt.imshow(img)
                plt.axis('off')

                n += 1
                if n >= sample:
                    plt.show()
                    return

    def load_checkpoint(self, filename):
        checkpoint = torch.load(filename)

        optim = ScheduledOptim(
            Adam(self.model.parameters(), betas=(0.9, 0.98), eps=1e-09),
            self.config['transformer']['d_model'], **self.config['optimizer'])

        self.optimizer.load_state_dict(checkpoint['optimizer'])
        self.model.load_state_dict(checkpoint['state_dict'])
        self.iter = checkpoint['iter']

        self.train_losses = checkpoint['train_losses']

    def save_checkpoint(self, filename):
        state = {
            'iter': self.iter,
            'state_dict': self.model.state_dict(),
            'optimizer': self.optimizer.state_dict(),
            'train_losses': self.train_losses
        }

        path, _ = os.path.split(filename)
        os.makedirs(path, exist_ok=True)

        torch.save(state, filename)

    def load_weights(self, filename):
        state_dict = torch.load(filename,
                                map_location=torch.device(self.device))

        for name, param in self.model.named_parameters():
            if name not in state_dict:
                print('{} not found'.format(name))
            elif state_dict[name].shape != param.shape:
                print('{} missmatching shape'.format(name))
                del state_dict[name]

        self.model.load_state_dict(state_dict, strict=False)

    def save_weights(self, filename):
        path, _ = os.path.split(filename)
        os.makedirs(path, exist_ok=True)

        torch.save(self.model.state_dict(), filename)

    def batch_to_device(self, batch):
        img = batch['img'].to(self.device, non_blocking=True)
        tgt_input = batch['tgt_input'].to(self.device, non_blocking=True)
        tgt_output = batch['tgt_output'].to(self.device, non_blocking=True)
        tgt_padding_mask = batch['tgt_padding_mask'].to(self.device,
                                                        non_blocking=True)

        batch = {
            'img': img,
            'tgt_input': tgt_input,
            'tgt_output': tgt_output,
            'tgt_padding_mask': tgt_padding_mask,
            'filenames': batch['filenames']
        }

        return batch

    def data_gen(self, lmdb_path, data_root, annotation, transform=None):
        dataset = OCRDataset(
            lmdb_path=lmdb_path,
            root_dir=data_root,
            annotation_path=annotation,
            vocab=self.vocab,
            transform=transform,
            image_height=self.config['dataset']['image_height'],
            image_min_width=self.config['dataset']['image_min_width'],
            image_max_width=self.config['dataset']['image_max_width'])

        sampler = ClusterRandomSampler(dataset, self.batch_size, True)
        gen = DataLoader(dataset,
                         batch_size=self.batch_size,
                         sampler=sampler,
                         collate_fn=collate_fn,
                         shuffle=False,
                         drop_last=False,
                         **self.config['dataloader'])

        return gen

    def data_gen_v1(self, lmdb_path, data_root, annotation):
        data_gen = DataGen(
            data_root,
            annotation,
            self.vocab,
            'cpu',
            image_height=self.config['dataset']['image_height'],
            image_min_width=self.config['dataset']['image_min_width'],
            image_max_width=self.config['dataset']['image_max_width'])

        return data_gen

    def step(self, batch):
        self.model.train()

        batch = self.batch_to_device(batch)
        img, tgt_input, tgt_output, tgt_padding_mask = batch['img'], batch[
            'tgt_input'], batch['tgt_output'], batch['tgt_padding_mask']

        outputs = self.model(img,
                             tgt_input,
                             tgt_key_padding_mask=tgt_padding_mask)
        #        loss = self.criterion(rearrange(outputs, 'b t v -> (b t) v'), rearrange(tgt_output, 'b o -> (b o)'))
        outputs = outputs.view(-1, outputs.size(2))  #flatten(0, 1)
        tgt_output = tgt_output.view(-1)  #flatten()

        loss = self.criterion(outputs, tgt_output)

        self.optimizer.zero_grad()

        loss.backward()

        torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1)

        self.optimizer.step()
        self.scheduler.step()

        loss_item = loss.item()

        return loss_item
Beispiel #28
0
                        constraints2.append(constraint.item())
                    else:
                        loss = args.w3 * entropy
                    losses2.append(loss.item())
                    loss.backward()
                    opt2b.step()
                    opt2b.zero_grad()
                    if imgs.shape[1] == 224:
                        imgs = imgs[:, AVIRIS_TO_SENTINEL2, :, :]
                    elif imgs.shape[1] == 12:
                        imgs = imgs[:, SENTINEL2_TO_4B, :, :]
                    else:
                        imgs = None

        if args.schedule:
            sched1.step()
            sched2.step()
        if epoch % 107 == 0:
            log.info(f'Saving checkpoint to /tmp/checkpoint.pth')
            torch.save(model.state_dict(), '/tmp/checkpoint.pth')

        mean_constraint1 = np.mean(constraints1)
        mean_constraint2 = np.mean(constraints2)
        mean_entropy1 = np.mean(entropies1)
        mean_entropy2 = np.mean(entropies2)
        mean_loss1 = np.mean(losses1)
        mean_loss2 = np.mean(losses2)

        log.info(
            f'epoch={epoch:<3d} loss={mean_loss1:+1.5f} entropy={mean_entropy1:+1.5f} constraint={mean_constraint1:+1.5f}'
        )
Beispiel #29
0
    def train(
        self,
        base_path: Union[Path, str],
        learning_rate: float = 0.1,
        mini_batch_size: int = 32,
        mini_batch_chunk_size: int = None,
        max_epochs: int = 100,
        scheduler=AnnealOnPlateau,
        cycle_momentum: bool = False,
        anneal_factor: float = 0.5,
        patience: int = 3,
        initial_extra_patience=0,
        min_learning_rate: float = 0.0001,
        train_with_dev: bool = False,
        train_with_test: bool = False,
        monitor_train: bool = False,
        monitor_test: bool = False,
        embeddings_storage_mode: str = "cpu",
        checkpoint: bool = False,
        save_final_model: bool = True,
        anneal_with_restarts: bool = False,
        anneal_with_prestarts: bool = False,
        batch_growth_annealing: bool = False,
        shuffle: bool = True,
        param_selection_mode: bool = False,
        write_weights: bool = False,
        num_workers: int = 6,
        sampler=None,
        use_amp: bool = False,
        amp_opt_level: str = "O1",
        eval_on_train_fraction=0.0,
        eval_on_train_shuffle=False,
        save_model_at_each_epoch=False,
        **kwargs,
    ) -> dict:
        """
        Trains any class that implements the flair.nn.Model interface.
        :param base_path: Main path to which all output during training is logged and models are saved
        :param learning_rate: Initial learning rate (or max, if scheduler is OneCycleLR)
        :param mini_batch_size: Size of mini-batches during training
        :param mini_batch_chunk_size: If mini-batches are larger than this number, they get broken down into chunks of this size for processing purposes
        :param max_epochs: Maximum number of epochs to train. Terminates training if this number is surpassed.
        :param scheduler: The learning rate scheduler to use
        :param cycle_momentum: If scheduler is OneCycleLR, whether the scheduler should cycle also the momentum
        :param anneal_factor: The factor by which the learning rate is annealed
        :param patience: Patience is the number of epochs with no improvement the Trainer waits
         until annealing the learning rate
        :param min_learning_rate: If the learning rate falls below this threshold, training terminates
        :param train_with_dev: If True, training is performed using both train+dev data
        :param monitor_train: If True, training data is evaluated at end of each epoch
        :param monitor_test: If True, test data is evaluated at end of each epoch
        :param embeddings_storage_mode: One of 'none' (all embeddings are deleted and freshly recomputed),
        'cpu' (embeddings are stored on CPU) or 'gpu' (embeddings are stored on GPU)
        :param checkpoint: If True, a full checkpoint is saved at end of each epoch
        :param save_final_model: If True, final model is saved
        :param anneal_with_restarts: If True, the last best model is restored when annealing the learning rate
        :param shuffle: If True, data is shuffled during training
        :param param_selection_mode: If True, testing is performed against dev data. Use this mode when doing
        parameter selection.
        :param num_workers: Number of workers in your data loader.
        :param sampler: You can pass a data sampler here for special sampling of data.
        :param eval_on_train_fraction: the fraction of train data to do the evaluation on,
        if 0. the evaluation is not performed on fraction of training data,
        if 'dev' the size is determined from dev set size
        :param eval_on_train_shuffle: if True the train data fraction is determined on the start of training
        and kept fixed during training, otherwise it's sampled at beginning of each epoch
        :param save_model_at_each_epoch: If True, at each epoch the thus far trained model will be saved
        :param kwargs: Other arguments for the Optimizer
        :return:
        """

        if self.use_tensorboard:
            try:
                from torch.utils.tensorboard import SummaryWriter

                writer = SummaryWriter()
            except:
                log_line(log)
                log.warning(
                    "ATTENTION! PyTorch >= 1.1.0 and pillow are required for TensorBoard support!"
                )
                log_line(log)
                self.use_tensorboard = False
                pass

        if use_amp:
            if sys.version_info < (3, 0):
                raise RuntimeError(
                    "Apex currently only supports Python 3. Aborting.")
            if amp is None:
                raise RuntimeError(
                    "Failed to import apex. Please install apex from https://www.github.com/nvidia/apex "
                    "to enable mixed-precision training.")

        if mini_batch_chunk_size is None:
            mini_batch_chunk_size = mini_batch_size
        if learning_rate < min_learning_rate:
            min_learning_rate = learning_rate / 10

        initial_learning_rate = learning_rate

        # cast string to Path
        if type(base_path) is str:
            base_path = Path(base_path)

        log_handler = add_file_handler(log, base_path / "training.log")

        log_line(log)
        log.info(f'Model: "{self.model}"')
        log_line(log)
        log.info(f'Corpus: "{self.corpus}"')
        log_line(log)
        log.info("Parameters:")
        log.info(f' - learning_rate: "{learning_rate}"')
        log.info(f' - mini_batch_size: "{mini_batch_size}"')
        log.info(f' - patience: "{patience}"')
        log.info(f' - anneal_factor: "{anneal_factor}"')
        log.info(f' - max_epochs: "{max_epochs}"')
        log.info(f' - shuffle: "{shuffle}"')
        log.info(f' - train_with_dev: "{train_with_dev}"')
        log.info(f' - batch_growth_annealing: "{batch_growth_annealing}"')
        log_line(log)
        log.info(f'Model training base path: "{base_path}"')
        log_line(log)
        log.info(f"Device: {flair.device}")
        log_line(log)
        log.info(f"Embeddings storage mode: {embeddings_storage_mode}")
        if isinstance(self.model, SequenceTagger
                      ) and self.model.weight_dict and self.model.use_crf:
            log_line(log)
            log.warning(
                f'WARNING: Specified class weights will not take effect when using CRF'
            )

        # determine what splits (train, dev, test) to evaluate and log
        log_train = True if monitor_train else False
        log_test = (True if (not param_selection_mode and self.corpus.test
                             and monitor_test) else False)
        log_dev = False if train_with_dev or not self.corpus.dev else True
        log_train_part = (True if (eval_on_train_fraction == "dev"
                                   or eval_on_train_fraction > 0.0) else False)

        if log_train_part:
            train_part_size = (len(
                self.corpus.dev) if eval_on_train_fraction == "dev" else int(
                    len(self.corpus.train) * eval_on_train_fraction))
            assert train_part_size > 0
            if not eval_on_train_shuffle:
                train_part_indices = list(range(train_part_size))
                train_part = torch.utils.data.dataset.Subset(
                    self.corpus.train, train_part_indices)

        # prepare loss logging file and set up header
        loss_txt = init_output_file(base_path, "loss.tsv")

        weight_extractor = WeightExtractor(base_path)

        optimizer: torch.optim.Optimizer = self.optimizer(
            self.model.parameters(), lr=learning_rate, **kwargs)

        if use_amp:
            self.model, optimizer = amp.initialize(self.model,
                                                   optimizer,
                                                   opt_level=amp_opt_level)

        # minimize training loss if training with dev data, else maximize dev score
        anneal_mode = "min" if train_with_dev else "max"

        if scheduler == OneCycleLR:
            dataset_size = len(self.corpus.train)
            if train_with_dev:
                dataset_size += len(self.corpus.dev)
            lr_scheduler = OneCycleLR(
                optimizer,
                max_lr=learning_rate,
                steps_per_epoch=dataset_size // mini_batch_size + 1,
                epochs=max_epochs - self.
                epoch,  # if we load a checkpoint, we have already trained for self.epoch
                pct_start=0.0,
                cycle_momentum=cycle_momentum)
        else:
            lr_scheduler = scheduler(
                optimizer,
                factor=anneal_factor,
                patience=patience,
                initial_extra_patience=initial_extra_patience,
                mode=anneal_mode,
                verbose=True,
            )

        if (isinstance(lr_scheduler, OneCycleLR) and batch_growth_annealing):
            raise ValueError(
                "Batch growth with OneCycle policy is not implemented.")

        train_data = self.corpus.train

        # if training also uses dev/train data, include in training set
        if train_with_dev or train_with_test:

            parts = [self.corpus.train]
            if train_with_dev: parts.append(self.corpus.dev)
            if train_with_test: parts.append(self.corpus.test)

            train_data = ConcatDataset(parts)

        # initialize sampler if provided
        if sampler is not None:
            # init with default values if only class is provided
            if inspect.isclass(sampler):
                sampler = sampler()
            # set dataset to sample from
            sampler.set_dataset(train_data)
            shuffle = False

        dev_score_history = []
        dev_loss_history = []
        train_loss_history = []

        micro_batch_size = mini_batch_chunk_size

        # At any point you can hit Ctrl + C to break out of training early.
        try:
            previous_learning_rate = learning_rate
            momentum = 0
            for group in optimizer.param_groups:
                if "momentum" in group:
                    momentum = group["momentum"]

            for self.epoch in range(self.epoch + 1, max_epochs + 1):
                log_line(log)

                if anneal_with_prestarts:
                    last_epoch_model_state_dict = copy.deepcopy(
                        self.model.state_dict())

                if eval_on_train_shuffle:
                    train_part_indices = list(range(self.corpus.train))
                    random.shuffle(train_part_indices)
                    train_part_indices = train_part_indices[:train_part_size]
                    train_part = torch.utils.data.dataset.Subset(
                        self.corpus.train, train_part_indices)

                # get new learning rate
                for group in optimizer.param_groups:
                    learning_rate = group["lr"]

                if learning_rate != previous_learning_rate and batch_growth_annealing:
                    mini_batch_size *= 2

                # reload last best model if annealing with restarts is enabled
                if ((anneal_with_restarts or anneal_with_prestarts)
                        and learning_rate != previous_learning_rate
                        and (base_path / "best-model.pt").exists()):
                    if anneal_with_restarts:
                        log.info("resetting to best model")
                        self.model.load_state_dict(
                            self.model.load(base_path /
                                            "best-model.pt").state_dict())
                    if anneal_with_prestarts:
                        log.info("resetting to pre-best model")
                        self.model.load_state_dict(
                            self.model.load(base_path /
                                            "pre-best-model.pt").state_dict())

                previous_learning_rate = learning_rate

                # stop training if learning rate becomes too small
                if (not isinstance(lr_scheduler, OneCycleLR)
                    ) and learning_rate < min_learning_rate:
                    log_line(log)
                    log.info("learning rate too small - quitting training!")
                    log_line(log)
                    break

                batch_loader = DataLoader(
                    train_data,
                    batch_size=mini_batch_size,
                    shuffle=shuffle,
                    num_workers=num_workers,
                    sampler=sampler,
                )

                self.model.train()

                train_loss: float = 0

                seen_batches = 0
                total_number_of_batches = len(batch_loader)

                modulo = max(1, int(total_number_of_batches / 10))

                # process mini-batches
                batch_time = 0
                for batch_no, batch in enumerate(batch_loader):
                    start_time = time.time()

                    # zero the gradients on the model and optimizer
                    self.model.zero_grad()
                    optimizer.zero_grad()

                    # if necessary, make batch_steps
                    batch_steps = [batch]
                    if len(batch) > micro_batch_size:
                        batch_steps = [
                            batch[x:x + micro_batch_size]
                            for x in range(0, len(batch), micro_batch_size)
                        ]

                    # forward and backward for batch
                    for batch_step in batch_steps:

                        # forward pass
                        loss = self.model.forward_loss(batch_step)

                        # Backward
                        if use_amp:
                            with amp.scale_loss(loss,
                                                optimizer) as scaled_loss:
                                scaled_loss.backward()
                        else:
                            loss.backward()

                    # do the optimizer step
                    torch.nn.utils.clip_grad_norm_(self.model.parameters(),
                                                   5.0)
                    optimizer.step()

                    # do the scheduler step if one-cycle
                    if isinstance(lr_scheduler, OneCycleLR):
                        lr_scheduler.step()
                        # get new learning rate
                        for group in optimizer.param_groups:
                            learning_rate = group["lr"]
                            if "momentum" in group:
                                momentum = group["momentum"]

                    seen_batches += 1
                    train_loss += loss.item()

                    # depending on memory mode, embeddings are moved to CPU, GPU or deleted
                    store_embeddings(batch, embeddings_storage_mode)

                    batch_time += time.time() - start_time
                    if seen_batches % modulo == 0:
                        momentum_info = f' - momentum: {momentum:.4f}' if cycle_momentum else ''
                        log.info(
                            f"epoch {self.epoch} - iter {seen_batches}/{total_number_of_batches} - loss "
                            f"{train_loss / seen_batches:.8f} - samples/sec: {mini_batch_size * modulo / batch_time:.2f}"
                            f" - lr: {learning_rate:.6f}{momentum_info}")
                        batch_time = 0
                        iteration = self.epoch * total_number_of_batches + batch_no
                        if not param_selection_mode and write_weights:
                            weight_extractor.extract_weights(
                                self.model.state_dict(), iteration)

                train_loss /= seen_batches

                self.model.eval()

                log_line(log)
                log.info(
                    f"EPOCH {self.epoch} done: loss {train_loss:.4f} - lr {learning_rate:.7f}"
                )

                if self.use_tensorboard:
                    writer.add_scalar("train_loss", train_loss, self.epoch)

                # anneal against train loss if training with dev, otherwise anneal against dev score
                current_score = train_loss

                # evaluate on train / dev / test split depending on training settings
                result_line: str = ""

                if log_train:
                    train_eval_result, train_loss = self.model.evaluate(
                        self.corpus.train,
                        mini_batch_size=mini_batch_chunk_size,
                        num_workers=num_workers,
                        embedding_storage_mode=embeddings_storage_mode,
                    )
                    result_line += f"\t{train_eval_result.log_line}"

                    # depending on memory mode, embeddings are moved to CPU, GPU or deleted
                    store_embeddings(self.corpus.train,
                                     embeddings_storage_mode)

                if log_train_part:
                    train_part_eval_result, train_part_loss = self.model.evaluate(
                        train_part,
                        mini_batch_size=mini_batch_chunk_size,
                        num_workers=num_workers,
                        embedding_storage_mode=embeddings_storage_mode,
                    )
                    result_line += (
                        f"\t{train_part_loss}\t{train_part_eval_result.log_line}"
                    )
                    log.info(
                        f"TRAIN_SPLIT : loss {train_part_loss} - score {round(train_part_eval_result.main_score, 4)}"
                    )

                if log_dev:
                    dev_eval_result, dev_loss = self.model.evaluate(
                        self.corpus.dev,
                        mini_batch_size=mini_batch_chunk_size,
                        num_workers=num_workers,
                        out_path=base_path / "dev.tsv",
                        embedding_storage_mode=embeddings_storage_mode,
                    )
                    result_line += f"\t{dev_loss}\t{dev_eval_result.log_line}"
                    log.info(
                        f"DEV : loss {dev_loss} - score {round(dev_eval_result.main_score, 4)}"
                    )
                    # calculate scores using dev data if available
                    # append dev score to score history
                    dev_score_history.append(dev_eval_result.main_score)
                    dev_loss_history.append(dev_loss.item())

                    current_score = dev_eval_result.main_score

                    # depending on memory mode, embeddings are moved to CPU, GPU or deleted
                    store_embeddings(self.corpus.dev, embeddings_storage_mode)

                    if self.use_tensorboard:
                        writer.add_scalar("dev_loss", dev_loss, self.epoch)
                        writer.add_scalar("dev_score",
                                          dev_eval_result.main_score,
                                          self.epoch)

                if log_test:
                    test_eval_result, test_loss = self.model.evaluate(
                        self.corpus.test,
                        mini_batch_size=mini_batch_chunk_size,
                        num_workers=num_workers,
                        out_path=base_path / "test.tsv",
                        embedding_storage_mode=embeddings_storage_mode,
                    )
                    result_line += f"\t{test_loss}\t{test_eval_result.log_line}"
                    log.info(
                        f"TEST : loss {test_loss} - score {round(test_eval_result.main_score, 4)}"
                    )

                    # depending on memory mode, embeddings are moved to CPU, GPU or deleted
                    store_embeddings(self.corpus.test, embeddings_storage_mode)

                    if self.use_tensorboard:
                        writer.add_scalar("test_loss", test_loss, self.epoch)
                        writer.add_scalar("test_score",
                                          test_eval_result.main_score,
                                          self.epoch)

                # determine learning rate annealing through scheduler. Use auxiliary metric for AnnealOnPlateau
                if log_dev and isinstance(lr_scheduler, AnnealOnPlateau):
                    lr_scheduler.step(current_score, dev_loss)
                elif not isinstance(lr_scheduler, OneCycleLR):
                    lr_scheduler.step(current_score)

                train_loss_history.append(train_loss)

                # determine bad epoch number
                try:
                    bad_epochs = lr_scheduler.num_bad_epochs
                except:
                    bad_epochs = 0
                for group in optimizer.param_groups:
                    new_learning_rate = group["lr"]
                if new_learning_rate != previous_learning_rate:
                    bad_epochs = patience + 1
                    if previous_learning_rate == initial_learning_rate:
                        bad_epochs += initial_extra_patience

                # log bad epochs
                log.info(f"BAD EPOCHS (no improvement): {bad_epochs}")

                # output log file
                with open(loss_txt, "a") as f:

                    # make headers on first epoch
                    if self.epoch == 1:
                        f.write(
                            f"EPOCH\tTIMESTAMP\tBAD_EPOCHS\tLEARNING_RATE\tTRAIN_LOSS"
                        )

                        if log_train:
                            f.write("\tTRAIN_" + "\tTRAIN_".join(
                                train_eval_result.log_header.split("\t")))
                        if log_train_part:
                            f.write("\tTRAIN_PART_LOSS\tTRAIN_PART_" +
                                    "\tTRAIN_PART_".join(
                                        train_part_eval_result.log_header.
                                        split("\t")))
                        if log_dev:
                            f.write("\tDEV_LOSS\tDEV_" + "\tDEV_".join(
                                dev_eval_result.log_header.split("\t")))
                        if log_test:
                            f.write("\tTEST_LOSS\tTEST_" + "\tTEST_".join(
                                test_eval_result.log_header.split("\t")))

                    f.write(
                        f"\n{self.epoch}\t{datetime.datetime.now():%H:%M:%S}\t{bad_epochs}\t{learning_rate:.4f}\t{train_loss}"
                    )
                    f.write(result_line)

                # if checkpoint is enabled, save model at each epoch
                if checkpoint and not param_selection_mode:
                    self.save_checkpoint(base_path / "checkpoint.pt")

                # if we use dev data, remember best model based on dev evaluation score
                if ((not train_with_dev or anneal_with_restarts
                     or anneal_with_prestarts) and not param_selection_mode
                        and not isinstance(lr_scheduler, OneCycleLR)
                        and current_score == lr_scheduler.best
                        and bad_epochs == 0):
                    print("saving best model")
                    self.model.save(base_path / "best-model.pt")

                    if anneal_with_prestarts:
                        current_state_dict = self.model.state_dict()
                        self.model.load_state_dict(last_epoch_model_state_dict)
                        self.model.save(base_path / "pre-best-model.pt")
                        self.model.load_state_dict(current_state_dict)

                if save_model_at_each_epoch:
                    print("saving model of current epoch")
                    model_name = "model_epoch_" + str(self.epoch) + ".pt"
                    self.model.save(base_path / model_name)

            # if we do not use dev data for model selection, save final model
            if save_final_model and not param_selection_mode:
                self.model.save(base_path / "final-model.pt")

        except KeyboardInterrupt:
            log_line(log)
            log.info("Exiting from training early.")

            if self.use_tensorboard:
                writer.close()

            if not param_selection_mode:
                log.info("Saving model ...")
                self.model.save(base_path / "final-model.pt")
                log.info("Done.")

        # test best model if test data is present
        if self.corpus.test and not train_with_test:
            final_score = self.final_test(base_path, mini_batch_chunk_size,
                                          num_workers)
        else:
            final_score = 0
            log.info("Test data not provided setting final score to 0")

        log.removeHandler(log_handler)

        if self.use_tensorboard:
            writer.close()

        return {
            "test_score": final_score,
            "dev_score_history": dev_score_history,
            "train_loss_history": train_loss_history,
            "dev_loss_history": dev_loss_history,
        }
Beispiel #30
0
def training_function(config, args):
    # Initialize accelerator
    accelerator = Accelerator(fp16=args.fp16, cpu=args.cpu)

    # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
    lr = config["lr"]
    num_epochs = int(config["num_epochs"])
    seed = int(config["seed"])
    batch_size = int(config["batch_size"])
    image_size = config["image_size"]
    if not isinstance(image_size, (list, tuple)):
        image_size = (image_size, image_size)

    # Grab all the image filenames
    file_names = [os.path.join(args.data_dir, fname) for fname in os.listdir(args.data_dir) if fname.endswith(".jpg")]

    # Build the label correspondences
    all_labels = [extract_label(fname) for fname in file_names]
    id_to_label = list(set(all_labels))
    id_to_label.sort()
    label_to_id = {lbl: i for i, lbl in enumerate(id_to_label)}

    # Set the seed before splitting the data.
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

    # Split our filenames between train and validation
    random_perm = np.random.permutation(len(file_names))
    cut = int(0.8 * len(file_names))
    train_split = random_perm[:cut]
    eval_split = random_perm[cut:]

    # For training we use a simple RandomResizedCrop
    train_tfm = Compose([RandomResizedCrop(image_size, scale=(0.5, 1.0)), ToTensor()])
    train_dataset = PetsDataset(
        [file_names[i] for i in train_split], image_transform=train_tfm, label_to_id=label_to_id
    )

    # For evaluation, we use a deterministic Resize
    eval_tfm = Compose([Resize(image_size), ToTensor()])
    eval_dataset = PetsDataset([file_names[i] for i in eval_split], image_transform=eval_tfm, label_to_id=label_to_id)

    # Instantiate dataloaders.
    train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=4)
    eval_dataloader = DataLoader(eval_dataset, shuffle=False, batch_size=batch_size, num_workers=4)

    # Instantiate the model (we build the model here so that the seed also control new weights initialization)
    model = create_model("resnet50d", pretrained=True, num_classes=len(label_to_id))

    # We could avoid this line since the accelerator is set with `device_placement=True` (default value).
    # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
    # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
    model = model.to(accelerator.device)

    # Freezing the base model
    for param in model.parameters():
        param.requires_grad = False
    for param in model.get_classifier().parameters():
        param.requires_grad = True

    # We normalize the batches of images to be a bit faster.
    mean = torch.tensor(model.default_cfg["mean"])[None, :, None, None].to(accelerator.device)
    std = torch.tensor(model.default_cfg["std"])[None, :, None, None].to(accelerator.device)

    # Instantiate optimizer
    optimizer = torch.optim.Adam(params=model.parameters(), lr=lr / 25)

    # Prepare everything
    # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
    # prepare method.
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader
    )

    # Instantiate learning rate scheduler after preparing the training dataloader as the prepare method
    # may change its length.
    lr_scheduler = OneCycleLR(optimizer=optimizer, max_lr=lr, epochs=num_epochs, steps_per_epoch=len(train_dataloader))

    # Now we train the model
    for epoch in range(num_epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            # We could avoid this line since we set the accelerator with `device_placement=True`.
            batch = {k: v.to(accelerator.device) for k, v in batch.items()}
            inputs = (batch["image"] - mean) / std
            outputs = model(inputs)
            loss = torch.nn.functional.cross_entropy(outputs, batch["label"])
            accelerator.backward(loss)
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()

        model.eval()
        accurate = 0
        num_elems = 0
        for step, batch in enumerate(eval_dataloader):
            # We could avoid this line since we set the accelerator with `device_placement=True`.
            batch = {k: v.to(accelerator.device) for k, v in batch.items()}
            inputs = (batch["image"] - mean) / std
            with torch.no_grad():
                outputs = model(inputs)
            predictions = outputs.argmax(dim=-1)
            accurate_preds = accelerator.gather(predictions) == accelerator.gather(batch["label"])
            num_elems += accurate_preds.shape[0]
            accurate += accurate_preds.long().sum()

        eval_metric = accurate.item() / num_elems
        # Use accelerator.print to print only on the main process.
        accelerator.print(f"epoch {epoch}: {100 * eval_metric:.2f}")