Beispiel #1
0
def _import_prroi_pooling():
    global _prroi_pooling

    if _prroi_pooling is None:
        try:
            from os.path import join as pjoin, dirname
            from torch.utils.cpp_extension import load as load_extension
            root_dir = pjoin(dirname(__file__), 'src')

            _prroi_pooling = load_extension('_prroi_pooling', [
                pjoin(root_dir, 'prroi_pooling_gpu.c'),
                pjoin(root_dir, 'prroi_pooling_gpu_impl.cu')
            ],
                                            verbose=True)
        except ImportError:
            raise ImportError('Can not compile Precise RoI Pooling library.')

    return _prroi_pooling
Beispiel #2
0
import torch
from torch.autograd import Function
from torch.nn.modules.utils import _pair
import cffi
# from .._ext import depthconv

import torch.autograd as ag

try:
    from os.path import join as pjoin, dirname
    from torch.utils.cpp_extension import load as load_extension
    root_dir = pjoin(dirname(__file__), '../src_pytorch13')
    depthconv = load_extension('_depthconv', [
        pjoin(root_dir, 'depthconv_cuda_redo.c'),
        pjoin(root_dir, 'depthconv_cuda_kernel.cu')
    ],
                               verbose=True)
except ImportError:
    raise ImportError('Can not compile depth-aware cnn library.')

__all__ = ['depth_conv']


def depth_conv(input, depth, weight, bias, stride=1, padding=0, dilation=1):

    if input is not None and input.dim() != 4:
        raise ValueError(
            "Expected 4D tensor as input, got {}D tensor instead.".format(
                input.dim()))

    f = DepthconvFunction(_pair(stride), _pair(padding), _pair(dilation))
Beispiel #3
0
import torch


try:
    from os.path import join as pjoin, dirname
    from torch.utils.cpp_extension import load as load_extension
    root_dir = pjoin(dirname(__file__), 'src')
    _psroi_pooling = load_extension(
        '_psroi_pooling', [
            pjoin(root_dir, 'psroi_pooling_cuda.c'),
            pjoin(root_dir, 'cuda/psroi_pooling_kernel.cu')
        ], verbose=True,
    )

except ImportError:
    raise ImportError('Can not compile Position Sensitive RoI Pooling library.')


class PsRoIPool2DFunction(torch.autograd.Function):
    def __init__(self, pooled_height: int, pooled_width: int, spatial_scale: float,
                 group_size: int, output_dim: int):
        self.pooled_width = int(pooled_width)
        self.pooled_height = int(pooled_height)
        self.spatial_scale = float(spatial_scale)

        self.group_size = int(group_size)
        self.output_dim = int(output_dim)

        self.output = None
        self.mappingchannel = None
        self.rois = None
Beispiel #4
0
import torch


try:
    from os.path import join as pjoin, dirname
    from torch.utils.cpp_extension import load as load_extension
    root_dir = pjoin(dirname(__file__), 'src')
    _prroi_pooling = load_extension(
        '_prroi_pooling', [
            pjoin(root_dir, 'prroi_pooling_gpu.c'),
            pjoin(root_dir, 'prroi_pooling_gpu_impl.cu')
        ],
    )
except ImportError:
    raise ImportError('Can not compile Precise RoI Pooling library.')

__all__ = ['prroi_pool2d']


class PrRoIPool2DFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, features, rois, pooled_height, pooled_width, spatial_scale):
        assert isinstance(features, torch.cuda.FloatTensor) or isinstance(rois, torch.cuda.FloatTensor), \
                'Precise RoI Pooling only takes float input, got {} for features and {} for rois.'.format(features.type(), rois.type())

        pooled_height = int(pooled_height)
        pooled_width = int(pooled_width)
        spatial_scale = float(spatial_scale)

        features = features.contiguous()
        rois = rois.contiguous()
# Date   : 07/13/2018
#
# This file is part of PreciseRoIPooling.
# Distributed under terms of the MIT license.
# Copyright (c) 2017 Megvii Technology Limited.

import torch
import torch.autograd as ag

try:
    from os.path import join as pjoin, dirname
    from torch.utils.cpp_extension import load as load_extension
    root_dir = pjoin(dirname(__file__), 'src')
    _prroi_pooling = load_extension(
        '_prroi_pooling',
        [pjoin(root_dir, 'prroi_pooling_gpu.c'), pjoin(root_dir, 'prroi_pooling_gpu_impl.cu')],
        verbose=True
    )
except ImportError:
    raise ImportError('Can not compile Precise RoI Pooling library.')

__all__ = ['prroi_pool2d']


class PrRoIPool2DFunction(ag.Function):
    @staticmethod
    def forward(ctx, features, rois, pooled_height, pooled_width, spatial_scale):
        assert 'FloatTensor' in features.type() and 'FloatTensor' in rois.type(), \
                'Precise RoI Pooling only takes float input, got {} for features and {} for rois.'.format(features.type(), rois.type())

        pooled_height = int(pooled_height)