Beispiel #1
0
def lstsq(b, y, alpha=0.01):
    """
    Batched linear least-squares for pytorch with optional L1 regularization.

    Parameters
    ----------

    b : shape(L, M, N)
    y : shape(L, M)

    Returns
    -------
    tuple of (coefficients, model, residuals)

    """
    bT = b.transpose(-1, -2)
    AA = torch.bmm(bT, b)
    if alpha != 0:
        diag = torch.diagonal(AA, dim1=1, dim2=2)
        diag += alpha
    RHS = torch.bmm(bT, y[:, :, None])
    X, LU = torch.gesv(RHS, AA)
    fit = torch.bmm(b, X)[..., 0]
    res = y - fit
    return X[..., 0], fit, res
Beispiel #2
0
    def backward(ctx, grad_output):
        L, = ctx.saved_variables

        if ctx.upper:
            L = L.t()
            grad_output = grad_output.t()

        # make sure not to double-count variation, since
        # only half of output matrix is unique
        Lbar = grad_output.tril()

        P = Potrf.phi(torch.mm(L.t(), Lbar))
        S = torch.gesv(P + P.t(), L.t())[0]
        S = torch.gesv(S.t(), L.t())[0]
        S = Potrf.phi(S)

        return S, None
def lsolve(A, B):
    """
    Computes the solution X to AX = B.
    """
    return torch.gesv(B, A)[0]
Beispiel #4
0
    def predict(self, pred_x, hyper=None, in_optimization=False):
        if hyper is not None:
            param_original = self.model.param_to_vec()
            self.cholesky_update(hyper)
        kernel_max = self.model.kernel.forward_on_identical().data[0]
        n_pred, n_dim = pred_x.size()
        pred_x_radius = torch.sqrt(torch.sum(pred_x**2, 1, keepdim=True))
        assert (pred_x_radius.data > 0).all()
        pred_x_sphere = pred_x / pred_x_radius
        satellite = pred_x_sphere * pred_x.size(1)**0.5

        one_radius = Variable(torch.ones(1, 1)).type_as(self.train_x)
        K_non_ori_radius = self.model.kernel.radius_kernel(
            self.train_x_nonorigin_radius, one_radius * 0)
        K_non_ori_sphere = self.model.kernel.sphere_kernel(
            self.train_x_nonorigin_sphere, pred_x_sphere)
        K_non_ori = K_non_ori_radius.view(-1, 1) * K_non_ori_sphere
        K_non_pre = self.model.kernel(self.train_x_nonorigin, pred_x)
        K_non_sat = self.model.kernel(self.train_x_nonorigin, satellite)
        K_ori_pre_diag = self.model.kernel.radius_kernel(
            pred_x_radius, one_radius * 0)
        K_ori_sat_diag = self.model.kernel.radius_kernel(
            one_radius * 0, one_radius * n_dim**0.5).repeat(n_pred, 1)
        K_sat_pre_diag = self.model.kernel.radius_kernel(
            pred_x_radius, one_radius * n_dim**0.5)

        chol_B = torch.cat([
            K_non_ori, K_non_pre,
            self.mean_vec.index_select(0, self.ind_nonorigin), K_non_sat
        ], 1)
        chol_solver = torch.gesv(chol_B, self.cholesky_nonorigin)[0]
        chol_solver_q = chol_solver[:, :n_pred]
        chol_solver_k = chol_solver[:, n_pred:n_pred * 2]
        chol_solver_y = chol_solver[:, n_pred * 2:n_pred * 2 + 1]
        chol_solver_q_bar_0 = chol_solver[:, n_pred * 2 + 1:]

        sol_p_sqr = kernel_max + self.model.likelihood(pred_x).view(
            -1, 1) + self.jitter - (chol_solver_q**2).sum(0).view(-1, 1)
        if not (sol_p_sqr.data >= 0).all():
            if not in_optimization:
                neg_mask = sol_p_sqr.data < 0
                neg_val = sol_p_sqr.data[neg_mask]
                min_neg_val = torch.min(neg_val)
                max_neg_val = torch.max(neg_val)
                kernel_max = self.model.kernel.forward_on_identical().data[0]
                print('p')
                print('negative %d/%d pred_var range %.4E(%.4E) ~ %.4E(%.4E)' %
                      (torch.sum(neg_mask), sol_p_sqr.numel(), min_neg_val,
                       min_neg_val / kernel_max, max_neg_val,
                       max_neg_val / kernel_max))
                print('kernel max %.4E / noise variance %.4E' %
                      (kernel_max,
                       torch.exp(self.model.likelihood.log_noise_var.data)[0]))
                print('jitter %.4E' % self.jitter)
                print('-' * 50)
        sol_p = torch.sqrt(sol_p_sqr.clamp(min=1e-12))
        sol_k_bar = (
            K_ori_pre_diag -
            (chol_solver_q * chol_solver_k).sum(0).view(-1, 1)) / sol_p
        sol_y_bar = (self.mean_vec.index_select(0, self.ind_origin) -
                     torch.mm(chol_solver_q.t(), chol_solver_y)) / sol_p
        sol_q_bar_1 = (
            K_ori_sat_diag -
            (chol_solver_q * chol_solver_q_bar_0).sum(0).view(-1, 1)) / sol_p

        sol_p_bar_sqr = kernel_max + self.model.likelihood(pred_x).view(
            -1, 1) + self.jitter - (chol_solver_q_bar_0**2).sum(0).view(
                -1, 1) - (sol_q_bar_1**2)
        if not (sol_p_bar_sqr.data >= 0).all():
            if not in_optimization:
                neg_mask = sol_p_bar_sqr.data < 0
                neg_val = sol_p_bar_sqr.data[neg_mask]
                min_neg_val = torch.min(neg_val)
                max_neg_val = torch.max(neg_val)
                kernel_max = self.model.kernel.forward_on_identical().data[0]
                print('p bar')
                print('negative %d/%d pred_var range %.4E(%.4E) ~ %.4E(%.4E)' %
                      (torch.sum(neg_mask), sol_p_bar_sqr.numel(), min_neg_val,
                       min_neg_val / kernel_max, max_neg_val,
                       max_neg_val / kernel_max))
                print('kernel max %.4E / noise variance %.4E' %
                      (kernel_max,
                       torch.exp(self.model.likelihood.log_noise_var.data)[0]))
                print('jitter %.4E' % self.jitter)
                print('-' * 50)
        sol_p_bar = torch.sqrt(sol_p_bar_sqr.clamp(min=1e-12))

        sol_k_tilde = (K_sat_pre_diag -
                       (chol_solver_q_bar_0 * chol_solver_k).sum(0).view(
                           -1, 1) - sol_k_bar * sol_q_bar_1) / sol_p_bar

        pred_mean = torch.mm(
            chol_solver_k.t(),
            chol_solver_y) + sol_k_bar * sol_y_bar + self.model.mean(pred_x)
        pred_var = self.model.kernel.forward_on_identical() - (
            chol_solver_k**2).sum(0).view(-1,
                                          1) - sol_k_bar**2 - sol_k_tilde**2

        if not (pred_var.data >= 0).all():
            if not in_optimization:
                neg_mask = pred_var.data < 0
                neg_val = pred_var.data[neg_mask]
                min_neg_val = torch.min(neg_val)
                max_neg_val = torch.max(neg_val)
                kernel_max = self.model.kernel.forward_on_identical().data[0]
                print('predictive variance')
                print('negative %d/%d pred_var range %.4E(%.4E) ~ %.4E(%.4E)' %
                      (torch.sum(neg_mask), pred_var.numel(), min_neg_val,
                       min_neg_val / kernel_max, max_neg_val,
                       max_neg_val / kernel_max))
                print('kernel max %.4E / noise variance %.4E' %
                      (kernel_max,
                       torch.exp(self.model.likelihood.log_noise_var.data)[0]))
                print('jitter %.4E' % self.jitter)
                print('-' * 50)
        numerically_stable = (pred_var.data >= 0).all()
        zero_pred_var = (pred_var.data <= 0).all()

        if hyper is not None:
            self.cholesky_update(param_original)
        return pred_mean, pred_var.clamp(
            min=1e-12), numerically_stable, zero_pred_var
	def gesv_wrapper(return_dict, i, *args):
		return_dict[i] = torch.gesv(*args)[0]
Beispiel #6
0
def get_perspective_transform(src, dst):
    r"""Calculates a perspective transform from four pairs of the corresponding
    points.

    The function calculates the matrix of a perspective transform so that:

    .. math ::

        \begin{bmatrix}
        t_{i}x_{i}^{'} \\
        t_{i}y_{i}^{'} \\
        t_{i} \\
        \end{bmatrix}
        =
        \textbf{map_matrix} \cdot
        \begin{bmatrix}
        x_{i} \\
        y_{i} \\
        1 \\
        \end{bmatrix}

    where

    .. math ::
        dst(i) = (x_{i}^{'},y_{i}^{'}), src(i) = (x_{i}, y_{i}), i = 0,1,2,3

    Args:
        src (Tensor): coordinates of quadrangle vertices in the source image.
        dst (Tensor): coordinates of the corresponding quadrangle vertices in
            the destination image.

    Returns:
        Tensor: the perspective transformation.

    Shape:
        - Input: :math:`(B, 4, 2)` and :math:`(B, 4, 2)`
        - Output: :math:`(B, 3, 3)`
    """
    if not torch.is_tensor(src):
        raise TypeError("Input type is not a torch.Tensor. Got {}".format(
            type(src)))
    if not torch.is_tensor(dst):
        raise TypeError("Input type is not a torch.Tensor. Got {}".format(
            type(dst)))
    if not src.shape[-2:] == (4, 2):
        raise ValueError("Inputs must be a Bx4x2 tensor. Got {}".format(
            src.shape))
    if not src.shape == dst.shape:
        raise ValueError("Inputs must have the same shape. Got {}".format(
            dst.shape))
    if not (src.shape[0] == dst.shape[0]):
        raise ValueError(
            "Inputs must have same batch size dimension. Got {}".format(
                src.shape, dst.shape))

    def ax(p, q):
        ones = torch.ones_like(p)[..., 0:1]
        zeros = torch.zeros_like(p)[..., 0:1]
        return torch.cat([
            p[:, 0:1], p[:, 1:2], ones, zeros, zeros, zeros,
            -p[:, 0:1] * q[:, 0:1], -p[:, 1:2] * q[:, 0:1]
        ],
                         dim=1)

    def ay(p, q):
        ones = torch.ones_like(p)[..., 0:1]
        zeros = torch.zeros_like(p)[..., 0:1]
        return torch.cat([
            zeros, zeros, zeros, p[:, 0:1], p[:, 1:2], ones,
            -p[:, 0:1] * q[:, 1:2], -p[:, 1:2] * q[:, 1:2]
        ],
                         dim=1)

    # we build matrix A by using only 4 point correspondence. The linear
    # system is solved with the least square method, so here
    # we could even pass more correspondence
    p = []
    p.append(ax(src[:, 0], dst[:, 0]))
    p.append(ay(src[:, 0], dst[:, 0]))

    p.append(ax(src[:, 1], dst[:, 1]))
    p.append(ay(src[:, 1], dst[:, 1]))

    p.append(ax(src[:, 2], dst[:, 2]))
    p.append(ay(src[:, 2], dst[:, 2]))

    p.append(ax(src[:, 3], dst[:, 3]))
    p.append(ay(src[:, 3], dst[:, 3]))

    # A is Bx8x8
    A = torch.stack(p, dim=1)

    # b is a Bx8x1
    b = torch.stack([
        dst[:, 0:1, 0],
        dst[:, 0:1, 1],
        dst[:, 1:2, 0],
        dst[:, 1:2, 1],
        dst[:, 2:3, 0],
        dst[:, 2:3, 1],
        dst[:, 3:4, 0],
        dst[:, 3:4, 1],
    ],
                    dim=1)

    # solve the system Ax = b
    X, LU = torch.gesv(b, A)

    # create variable to return
    batch_size = src.shape[0]
    M = torch.ones(batch_size, 9, device=src.device, dtype=src.dtype)
    M[..., :8] = torch.squeeze(X, dim=-1)
    return M.view(-1, 3, 3)  # Bx3x3
##############################
res1 = torch.gels(y, X)
print("Solution 1:")
print(res1[0])

# Solution 2
print(torch.matmul(torch.transpose(X, 0, 1),X))
print(torch.matmul(torch.transpose(X, 0, 1),y))

##############################
## How to compute l and r?
## Dimensions: l (2x2); r (2x1)
##############################
l = torch.matmul(torch.transpose(X, 0, 1),X)
r = torch.matmul(torch.transpose(X, 0, 1),y)
res2 = torch.gesv(r,l)
print("Solution 2:")
print(res2[0])

# Solution 3
##############################
## What is l and r?
## Dimensions: l (2x2); r (2x1)
##############################
l = torch.matmul(torch.transpose(X, 0, 1),X)
r = torch.matmul(torch.transpose(X, 0, 1),y)
res3 = torch.matmul(torch.inverse(l),r)
print("Solution 3:")
print(res3)

Beispiel #8
0
def solve(matrix1, matrix2):
    solution, _ = torch.gesv(matrix2, matrix1)
    return solution
sync()
start = time.time()
c = Kinv(x, x, b, g, alpha=alpha)
sync()
end = time.time()
print('Timing (KeOps implementation):', round(end - start, 5), 's')

###############################################################################
# Compare with a straightforward PyTorch implementation:
#

sync()
start = time.time()
K_xx = alpha * torch.eye(N) + torch.exp(-torch.sum(
    (x[:, None, :] - x[None, :, :])**2, dim=2) / (2 * sigma**2))
c_py = torch.gesv(b, K_xx)[0]
sync()
end = time.time()
print('Timing (PyTorch implementation):', round(end - start, 5), 's')
print("Relative error = ", (torch.norm(c - c_py) / torch.norm(c_py)).item())

# Plot the results next to each other:
for i in range(Dv):
    plt.subplot(Dv, 1, i + 1)
    plt.plot(c.cpu().detach().numpy()[:40, i], '-', label='KeOps')
    plt.plot(c_py.cpu().detach().numpy()[:40, i], '--', label='PyTorch')
    plt.legend(loc='lower right')
plt.tight_layout()
plt.show()

###############################################################################
 def compute_beta_cuda(self, X, Y):
     XtX, XtY = X.permute(1, 0).mm(X), X.permute(1, 0).mm(Y)
     beta_cholesky, _ = torch.gesv(XtY, XtX)
     return beta_cholesky
Beispiel #11
0
    def dynamics(self, z, u, i):
        """Dynamics model function.

        Args:
            z (Tensor<..., state_size>): State distribution.
            u (Tensor<..., action_size>): Action vector(s).
            i (Tensor<...>): Time index.

        Returns:
            derivatives of current state wrt to time (Tensor<..., state_size>).
        """
        mc = self.mc if z.dim() == 1 else self.mc.repeat(z.shape[0])
        mp1 = self.mp1 if z.dim() == 1 else self.mp1.repeat(z.shape[0])
        mp2 = self.mp2 if z.dim() == 1 else self.mp2.repeat(z.shape[0])
        l1 = self.l1 if z.dim() == 1 else self.l1.repeat(z.shape[0])
        l2 = self.l2 if z.dim() == 1 else self.l2.repeat(z.shape[0])
        mu = self.mu if z.dim() == 1 else self.mu.repeat(z.shape[0])
        g = self.g if z.dim() == 1 else self.g.repeat(z.shape[0])

        x_dot = z[..., 1]
        theta1 = z[..., 2]
        theta1_dot = z[..., 3]
        theta2 = z[..., 4]
        theta2_dot = z[..., 5]
        dtheta = theta1 - theta2
        F = u[..., 0]

        angles = torch.tensor([theta1, theta2, dtheta])
        sin_theta1, sin_theta2, sin_dtheta = angles.sin()
        cos_theta1, cos_theta2, cos_dtheta = angles.cos()

        a0 = mp2 + 2 * mc
        a1 = mc * l2
        a2 = l1 * theta1_dot**2
        a3 = a1 * theta2_dot**2

        # yapf: disable
        A = torch.stack([
            torch.stack([
                2 * (mp1 + mp2 + mc),
                -a0 * l1 * cos_theta1,
                -a1 * cos_theta2
            ], dim=-1),
            torch.stack([
                -3 * a0 * cos_theta1,
                (2 * a0 + 2 * mc) * l1,
                3 * a1 * cos_dtheta
            ], dim=-1),
            torch.stack([
                -3 * cos_theta2,
                3 * l1 * cos_dtheta,
                2 * l2
            ], dim=-1),
        ], dim=-1).transpose(-2, -1)
        b = torch.stack([
            torch.stack([
                 - 2 * mu * x_dot - a0 * a2 * sin_theta1 - a3 * sin_theta2
            ], dim=-1),
            torch.stack([
                3 * a0 * g * sin_theta1 - 3 * a3 * sin_dtheta
            ], dim=-1),
            torch.stack([
                6*F/(l2*mp2) + 3 * a2 * sin_dtheta + 3 * g * sin_theta2
            ], dim=-1),
        ], dim=-1).transpose(-2, -1)
        # yapf: enable

        sol = torch.gesv(b, A)[0].transpose(-2, -1)

        # For symplectic integration.
        x_dot_dot = sol[..., 0].view(x_dot.shape)
        theta1_dot_dot = sol[..., 1].view(theta1_dot.shape)
        theta2_dot_dot = sol[..., 2].view(theta2_dot.shape)

        return torch.stack([
            x_dot,
            x_dot_dot,
            theta1_dot,
            theta1_dot_dot,
            theta2_dot,
            theta2_dot_dot,
        ],
                           dim=-1)
Beispiel #12
0
    def forward(self,
                x_train,
                y_train,
                body_train,
                x_test=None,
                body_test=None,
                classify=False):
        # See the autograd section for explanation of what happens here.
        n = x_train.size(0)
        p = x_train.size(-1)
        d = torch.zeros(n, n)

        nB = body_train.size(1)  # number of regions/bodies
        if classify:  # i.e we are predicting not training
            body_train = body_train > 0.5

        nullB = torch.sqrt(1 - torch.sum(body_train.float().pow(2), 1))

        for i in range(p):
            d += 0.5 * (x_train[:, i].unsqueeze(1) - x_train[:, i].unsqueeze(0)
                        ).pow(2) / self.lengthscale[i].pow(2)

        kse = self.sigma_f.pow(2) * torch.exp(-d) + self.sigma_n.pow(
            2) * torch.eye(n)

        kyy = nullB.unsqueeze(0) * nullB.unsqueeze(1) * kse
        for i in range(nB):
            kyy += body_train[:, i].float().unsqueeze(
                1) * body_train[:, i].float().unsqueeze(0) * kse

        c = torch.cholesky(kyy, upper=True)
        # v = torch.potrs(y_train, c, upper=True)
        v, _ = torch.gesv(y_train, kyy)
        if x_test is None:
            out = (c, v)

        if x_test is not None:
            with torch.no_grad():
                if classify:
                    body_test = body_test > 0.5  # make a distinct classifier
                nullB_test = torch.sqrt(1 -
                                        torch.sum(body_test.float().pow(2), 1))
                ntest = x_test.size(0)
                d = torch.zeros(ntest, n)
                for i in range(p):
                    d += 0.5 * (x_test[:, i].unsqueeze(1) -
                                x_train[:, i].unsqueeze(0)
                                ).pow(2) / self.lengthscale[i].pow(2)
                kse = self.sigma_f.pow(2) * torch.exp(-d)
                kfy = nullB_test.unsqueeze(1) * nullB.unsqueeze(0) * kse
                for i in range(nB):
                    kfy += body_test[:, i].float().unsqueeze(
                        1) * body_train[:, i].float().unsqueeze(0) * kse

                # solve
                f_test = kfy.mm(v)
                tmp = torch.potrs(kfy.t(), c, upper=True)
                tmp = torch.sum(kfy * tmp.t(), dim=1)
                cov_f = self.sigma_f.pow(2) - tmp
            out = (f_test, cov_f)
        return out
Beispiel #13
0
    global_folder = os.path.join(data_folder, 'global')

    for dx in dx_list:
        # Set subject of observations based on the number of features
        for exp_i in range(n_experiments):
            # Set rho
            # rho = rho_vec[exp_i]
            rho = 0.001
            m = n_centers[exp_i // n_sub_exp]

            # Create data
            X = torch.randn(n, dx).type(dtype)
            W = torch.randn(dy, dx).t().type(dtype)
            Y = torch.mm(X, W).type(dtype) + 2 * torch.randn(n, dy).type(dtype)

            X_t_X, LU = torch.gesv(
                torch.eye(dx).type(dtype), torch.mm(X.t(), X))
            W_full_data = torch.mm(X_t_X, torch.mm(X.t(), Y))

            # print('Plotting')
            # plt.scatter(Y.numpy()[0], torch.mm(X, W).numpy()[0], alpha=0.2, color='b')
            # plt.show()

            global_data = {'X': X, 'W': W, 'Y': Y}

            # Print info
            print('\n[  INFO  ] ==== Experiment %d ====' % exp_i)
            print('[  INFO  ] Global matrices info:')
            for key, data in global_data.items():
                print('\t\t- Shape of matrix %s: %s' % (key, str(data.shape)))
            print('\t\t- Number of observations: ', n)
    def __getitem__(self, index):
        image_path = self.image_paths[index]
        # albedo_path = self.albedo_paths[index]
        # mask_path = self.mask_paths[index]

        if self.opt.direction == 'BtoA':
            input_nc = self.opt.output_nc
            output_nc = self.opt.input_nc
        else:
            input_nc = self.opt.input_nc
            output_nc = self.opt.output_nc

        content = sio.loadmat(image_path)

        if self.isTrain:
            rgb_img = content['imag']
            chrom = content['chrom']
            mask = content['mask']

            mask = resize(mask, [384, 512], 1)
            mask[mask > 0] = 1

            mask = np.mean(mask, axis=2)
            #mask = skimage.morphology.binary_erosion(mask, square(1))
            mask = np.expand_dims(mask, axis=2)
            mask = np.repeat(mask, 3, axis=2)

            l1 = content['l1']
            l2 = content['l2']

            rand_id = random.randint(0, 3)
            light_id1 = random.randint(0, 8)
            light_id2 = random.randint(0, 8)
            arr_id = random.randint(0, 1)

            img1 = content['im1']
            img2 = content['im2']

            img1 = np.nan_to_num(img1)
            img2 = np.nan_to_num(img2)

            img1[img1 > 1.0] = 1.0
            img1[img1 < 0.0] = 0.0

            img2[img2 > 1.0] = 1.0
            img2[img2 < 0.0] = 0.0

            [img1, img2, l1,
             l2] = self.produceColor(img1, img2, arr_id, light_id1, light_id2,
                                     l1, l2)
            # img2 = self.DA(img2, rand_id)
            #img1 = img1/2
            #img2 = img2/2
            chrom = np.nan_to_num(chrom)
            #rgb_img = np.nan_to_num(rgb_img)

            #l1 = np.nan_to_num(l1)
            #l2 = np.nan_to_num(l2)
            # img1[img1 != img1] = 0.0
            # img2[img2 != img2] = 0.0
            # chrom[chrom != chrom] = 0.0
            # rgb_img[rgb_img != rgb_img] = 0.0

            #for i in range(3):
            #    img1[:, :, i] = img1[:, :, i] * l1[i]
            #    img2[:, :, i] = img2[:, :, i] * l2[i]

            rgb_img = img1 + img2
            #rgb_img[rgb_img > 1.0] = 1.0
            #rgb_img[rgb_img < 0.0] = 0.0

            chrom[chrom > 1.0] = 1.0
            chrom[chrom < 0.0] = 0.0

            rgb_img = resize(rgb_img, [384, 512], 1)
            img1 = resize(img1, [384, 512], 1)
            img2 = resize(img2, [384, 512], 1)
            chrom = resize(chrom, [384, 512], 1)

            rgb_img = self.DA(rgb_img, rand_id)
            chrom = self.DA(chrom, rand_id)
            mask = self.DA(mask, rand_id)

            img1 = self.DA(img1, rand_id)
            img2 = self.DA(img2, rand_id)
            # if arr_id:
            #    l1 = self.l1Matrix[light_id1]/255
            #    l2 = self.l2Matrix[light_id2]/255
            #    l1 = np.reshape(l1, (3, -1))
            #    l2 = np.reshape(l2, (3, -1))
            # else:
            #    l1 = self.l2Matrix[light_id2]/255
            #    l2 = self.l1Matrix[light_id1]/255
            #    l1 = np.reshape(l1, (3, -1))
            #    l2 = np.reshape(l2, (3, -1))

            # rgb_img = img1 + img2
            lightColor = np.concatenate((l1, l2), axis=1)
            lightColor = torch.from_numpy(lightColor).contiguous().float()

            rgb_img = torch.from_numpy(np.transpose(
                rgb_img, (2, 0, 1))).contiguous().float()
            chrom = torch.from_numpy(np.transpose(
                chrom, (2, 0, 1))).contiguous().float()
            mask = torch.from_numpy(np.transpose(
                mask.astype(float), (2, 0, 1))).contiguous().float()

            no_albedo_nf = rgb_img / (1e-6 + chrom)
            sum_albedo = torch.sum(no_albedo_nf, 0, keepdim=True)
            gamma = no_albedo_nf / (sum_albedo.repeat(3, 1, 1) + 1e-6)
            gamma = gamma.view(3, -1)

            lightT = lightColor.t()
            light = lightColor
            B = torch.mm(lightT, gamma)
            A = torch.mm(lightT, light)
            shadings, _ = torch.gesv(B, A)
            # shadings[0, :] = (shadings[0:, ] - torch.min(shadings[0, :]))/(torch.max(shadings[0:, ]) - torch.min(shadings[0, :]))
            # shadings[1, :] = (shadings[1:, ] - torch.min(shadings[1, :]))/(torch.max(shadings[1:, ]) - torch.min(shadings[1, :]))
            shadings[shadings != shadings] = 0.0
            im1 = shadings[0, :].repeat(3, 1).view(3, rgb_img.size(1),
                                                   rgb_img.size(2))
            im2 = shadings[1, :].repeat(3, 1).view(3, rgb_img.size(1),
                                                   rgb_img.size(2))

            im1 = (im1 - torch.min(im1[mask > 0])) / (
                torch.max(im1[mask > 0]) - torch.min(im1[mask > 0]))
            im2 = (im2 - torch.min(im2[mask > 0])) / (
                torch.max(im2[mask > 0]) - torch.min(im2[mask > 0]))

            # remove nan values
            im1[im1 != im1] = 0.0
            im2[im2 != im2] = 0.0

            im1[mask == 0] = 0.0
            im2[mask == 0] = 0.0

            im1[0, :, :] *= lightColor[0, 0]
            im1[1, :, :] *= lightColor[1, 0]
            im1[2, :, :] *= lightColor[2, 0]

            im2[0, :, :] *= lightColor[0, 1]
            im2[1, :, :] *= lightColor[1, 1]
            im2[2, :, :] *= lightColor[2, 1]

            # normalize the data
            # im1 = torch.mul(shadings[0, :].repeat(3, 1), lightColor[:, 0].view(3, 1).repeat(1, shadings.size(1)))
            # im2 = torch.mul(shadings[1, :].repeat(3, 1), lightColor[:, 1].view(3, 1).repeat(1, shadings.size(1)))

            # im1 = im1.view(3, rgb_img.size(1), rgb_img.size(2))
            # im2 = im2.view(3, rgb_img.size(1), rgb_img.size(2))

            im1[im1 > 1] = 1.0
            im2[im2 > 1] = 1.0

            im1[im1 < 0] = 0.0
            im2[im2 < 0] = 0.0

            # rgb_img = 2*rgb_img - 1.0

            img1 = torch.from_numpy(np.transpose(
                img1, (2, 0, 1))).contiguous().float()
            img2 = torch.from_numpy(np.transpose(
                img2, (2, 0, 1))).contiguous().float()

            return {
                'rgb_img': rgb_img,
                'chrom': chrom,
                'im1': im1,
                'im2': im2,
                'A_paths': image_path,
                'mask': mask,
                'img1': img1,
                'img2': img2
            }

        else:
            rgb_img = content['imag']
            #chrom = content['chrom']
            #mask = content['chrom']
            #im1 = content['im1']
            #im2 = content['im2']

            rgb_img[rgb_img > 1] = 1
            rgb_img[rgb_img < 0] = 0
            # rgb_img = 2*rgb_img - 1.0

            #img1 = content['im1']
            #img2 = content['im2']

            rgb_img = torch.from_numpy(np.transpose(
                rgb_img, (2, 0, 1))).contiguous().float()
            #chrom = torch.from_numpy(np.transpose(chrom, (2, 0, 1))).contiguous().float()
            #mask = torch.from_numpy(np.transpose(mask.astype(float), (2, 0, 1))).contiguous().float()
            #im1 = torch.from_numpy(np.transpose(im1, (2, 0, 1))).contiguous().float()
            #im2 = torch.from_numpy(np.transpose(im2, (2, 0, 1))).contiguous().float()
            return {'rgb_img': rgb_img, 'A_paths': image_path}
Beispiel #15
0
 def solve(A, b):
     return torch.gesv(b, A)[0].contiguous()
Beispiel #16
0
def manitest(input_image,
             net,
             mode,
             maxIter=50000,
             lim=None,
             hs=None,
             cuda_on=True,
             stop_when_found=None,
             verbose=True):
    def list_index(a_list, inds):

        return [a_list[i] for i in inds]

    def group_chars(mode):
        if mode == 'rotation':
            hs = torch.Tensor([pi / 20])
        elif mode == 'translation':
            hs = torch.Tensor([0.25, 0.25])
        elif mode == 'rotation+scaling':
            hs = torch.Tensor([pi / 20, 0.1])
        elif mode == 'rotation+translation':
            hs = torch.Tensor([pi / 20, 0.25, 0.25])
        elif mode == 'scaling+translation':
            hs = torch.Tensor([0.1, 0.25, 0.25])
        elif mode == 'similarity':
            hs = torch.Tensor([pi / 20, 0.5, 0.5, 0.1])
        else:
            raise NameError('Wrong mode name entered')

        if cuda_on:
            hs.cuda()

        return hs

    def gen_simplices(cur_vec, cur_dim):
        nonlocal num_simpl
        nonlocal simpls
        if cur_dim == dimension_group + 1:
            if not cur_vec:
                return

            simpls.append(cur_vec)
            num_simpl = num_simpl + 1
            return

        if (n_vec[2 * cur_dim - 2] == i or n_vec[2 * cur_dim - 1] == i):
            cur_vec = cur_vec + [i]
            gen_simplices(cur_vec, cur_dim + 1)
        else:
            gen_simplices(cur_vec, cur_dim + 1)

            if (n_vec[2 * cur_dim - 2] != -1):
                cur_vec_l = cur_vec + [n_vec[2 * cur_dim - 2]]
                gen_simplices(cur_vec_l, cur_dim + 1)

            if (n_vec[2 * cur_dim - 1] != -1):
                cur_vec_r = cur_vec + [n_vec[2 * cur_dim - 1]]
                gen_simplices(cur_vec_r, cur_dim + 1)

    def check_oob(coord):
        inside = 1
        for u in range(len(coord)):
            if (coord[u] > lim[u, 1] + 1e-8 or coord[u] < lim[u, 0] - 1e-8):
                inside = 0
                break

        return inside

    def get_and_create_neighbours(cur_node):
        nonlocal id_max, coords, dist, visited, neighbours, W, ims
        #1)Generate coordinates of neighbouring nodes
        for l in range(dimension_group):

            #Generate coordinates
            coordsNeighbour1 = coords[cur_node].clone()
            coordsNeighbour1[l] += hs[l]

            coordsNeighbour2 = coords[cur_node].clone()
            coordsNeighbour2[l] -= hs[l]

            if check_oob(coordsNeighbour1):
                #Can we find a similar coordinate?
                dists = (torch.stack(coords, 0) -
                         coordsNeighbour1.repeat(len(coords), 1)).abs().sum(
                             dim=1)
                II1 = (dists < 1e-6).nonzero()
                if not II1.size():
                    id_max += 1
                    #create node: i) coords, ii)visited, iii)distance
                    coords.append(coordsNeighbour1)
                    dist.append(np.inf)
                    visited.append(0)
                    #Assing the NodeID to IDNeighbours
                    neighbours.append([-1] * 2 * dimension_group)
                    neighbours[cur_node][2 * l] = id_max
                    #Do the reverse
                    neighbours[id_max][2 * l + 1] = cur_node
                    W.append(None)
                    ims.append([])
                else:
                    #Node already exists
                    neighbours[cur_node][2 * l] = II1[0, 0]
                    #Do the reverse
                    neighbours[II1[0, 0]][2 * l + 1] = cur_node

            if check_oob(coordsNeighbour2):
                #Can we find a similar coordinate?
                dists = (torch.stack(coords, 0) -
                         coordsNeighbour2.repeat(len(coords), 1)).abs().sum(
                             dim=1)
                II2 = (dists < 1e-6).nonzero()
                if not II2.size():
                    id_max += 1
                    #create node: i) coords, ii)visited, iii)distance
                    coords.append(coordsNeighbour2)
                    dist.append(np.inf)
                    visited.append(0)
                    #Assing the NodeID to IDNeighbours
                    neighbours.append([-1] * 2 * dimension_group)
                    neighbours[cur_node][2 * l + 1] = id_max
                    #Do the reverse
                    neighbours[id_max][2 * l] = cur_node
                    W.append(None)
                    ims.append([])
                else:
                    #Node already exists
                    neighbours[cur_node][2 * l + 1] = II2[0, 0]
                    #Do the reverse
                    neighbours[II2[0, 0]][2 * l] = cur_node

    def generate_metric(cur_node):
        nonlocal ims, W

        tau = coords[cur_node]
        tfm = g.para2tfm(tau, mode, 1)
        I = tfm(input_image)
        ims[cur_node] = I
        J = g.jacobian(input_image, I, tfm, mode, 1)
        J_n = J.resize_(J.size()[0], n)

        curW = J_n.mm(J_n.transpose(0, 1))

        W[cur_node] = curW

    def evaluate_classifier(cur_node):
        nonlocal manitest_score, manitest_image, fooling_tfm, out_label

        x = Variable(ims[cur_node].unsqueeze(0))
        output = net(x)
        _, k_I = torch.max(output.data, 1)
        pred_label = k_I[0]

        if pred_label != input_label:
            manitest_score = dist[cur_node] / input_image.norm()
            manitest_image = ims[cur_node]
            fooling_tfm = g.para2tfm(coords[cur_node], mode, 1)
            out_label = pred_label
            return True

        return False

###

    e = g.init_param(mode)

    if cuda_on:
        net.cuda()
        input_image = input_image.cuda()
        e = e.cuda()

    dimension_group = e.size()[0]
    n = functools.reduce(operator.mul, input_image.size(), 1)

    stop_flag = False
    point_dists = None
    if stop_when_found is not None:
        stop_flag = True
        num_stopping_points = stop_when_found.size()[0]
        point_dists = torch.Tensor(num_stopping_points)
        remaining_points = num_stopping_points

    if hs is None:
        hs = group_chars(mode)

    if lim is None:
        lim = np.zeros((dimension_group, 2))
        lim[:, 0] = -np.inf
        lim[:, 1] = np.inf

    dist = [0.0]
    visited = [0]
    coords = [e]
    ims = [input_image]
    W = [None]

    id_max = 0
    neighbours = [[-1] * 2 * dimension_group]

    #Generate input label
    x = Variable(input_image.unsqueeze(0))
    output = net(x)
    _, k_I = torch.max(output.data, 1)
    input_label = k_I[0]

    #Output Variables
    manitest_score = np.inf
    manitest_image = input_image.clone()
    fooling_tfm = e
    out_label = input_label

    for k in range(maxIter):

        if k % 100 == 0 and verbose:
            print('>> k = {}'.format(k))

        tmp_vec = np.array(dist[0:id_max + 1])  #copy the list
        tmp_vec[np.asarray(visited) == 1] = np.inf
        i = np.argmin(tmp_vec)
        visited[i] = 1

        #evaluate the classifier and check if it is fooled
        if stop_flag:
            dists = torch.norm(
                coords[i].repeat(num_stopping_points, 1) - stop_when_found, 2,
                1)
            if dists.min() < 1e-6:
                _, ind = torch.min(dists, 0)
                point_dists[ind[0, 0]] = dist[i]
                remaining_points -= 1

                if remaining_points == 0:
                    break

        elif evaluate_classifier(i):
            break

        get_and_create_neighbours(i)

        for j in neighbours[i]:

            if j == -1:
                continue

            #Consider unknown neighbours only
            if visited[j]:
                continue

            #Look at the neighbours of j (vector of size 2*dimension_group)
            n_vec = neighbours[j]

            num_simpl = 1
            simpls = []
            gen_simplices([], 1)

            if W[j] is None:
                generate_metric(j)

            for j_ in range(num_simpl - 1):
                X = torch.stack(list_index(coords,
                                           simpls[j_])) - coords[j].repeat(
                                               len(simpls[j_]), 1)
                if cuda_on:
                    v = torch.cuda.FloatTensor(list_index(
                        dist, simpls[j_])).unsqueeze(1)
                    one_vector = torch.ones(v.size()).cuda()
                else:
                    v = torch.FloatTensor(list_index(dist,
                                                     simpls[j_])).unsqueeze(1)
                    one_vector = torch.ones(v.size())

                M_prime = (X.mm(W[j]).mm(X.transpose(0, 1)))
                try:
                    invM_prime_v, _ = torch.gesv(v, M_prime)
                except:
                    invM_prime_v = v * np.inf
                try:
                    invM_prime_1, _ = torch.gesv(one_vector, M_prime)
                except:
                    invM_prime_1 = one_vector * np.inf
                invM_prime_v.transpose_(0, 1)
                # one_vector.squeeze_()
                # v.squeeze_()

                #Solve second order equation
                # dz^2 * one_vector' * invM_prime * one_vector
                # - 2 * dz * one_vector' * invM_prime * v + v' * invM_prime * v - 1
                Delta = (invM_prime_v.sum()
                         )**2 - invM_prime_1.sum() * (invM_prime_v.mm(v) - 1)
                Delta = Delta[0, 0]

                if Delta >= 0:
                    #Compute solution
                    x_c = (invM_prime_v.sum() +
                           np.sqrt(Delta)) / invM_prime_1.sum()

                    #Test that it is not on the border of the simplex
                    te, _ = torch.gesv(x_c - v, M_prime)

                    if te.min() > 0:
                        dist[j] = min(dist[j], x_c)

    return manitest_score, manitest_image, fooling_tfm, dist, coords, input_label, out_label, point_dists, k
Beispiel #17
0
def conditional(Xnew,
                X,
                kern,
                f,
                full_cov=False,
                q_sqrt=None,
                whiten=False,
                jitter_level=1e-6):
    """
    Given F, representing the GP at the points X, produce the mean and
    (co-)variance of the GP at the points Xnew.

    Additionally, there may be Gaussian uncertainty about F as represented by
    q_sqrt. In this case `f` represents the mean of the distribution and
    q_sqrt the square-root of the covariance.

    Additionally, the GP may have been centered (whitened) so that
        p(v) = N( 0, I)
        f = L v
    thus
        p(f) = N(0, LL^T) = N(0, K).
    In this case 'f' represents the values taken by v.

    The method can either return the diagonals of the covariance matrix for
    each output of the full covariance matrix (full_cov).

    We assume K independent GPs, represented by the columns of f (and the
    last dimension of q_sqrt).

    :param Xnew: data matrix, size N x D.
    :param X: data points, size M x D.
    :param kern: GPflow kernel.
    :param f: data matrix, M x K, representing the function values at X,
        for K functions.
    :param q_sqrt: matrix of standard-deviations or Cholesky matrices,
        size M x K or M x M x K.
    :param whiten: boolean of whether to whiten the representation as
        described above.

    :return: two element tuple with conditional mean and variance.
    """

    # compute kernel stuff
    num_data = X.size(0)  # M
    num_func = f.size(1)  # K
    Kmn = kern.K(X, Xnew)
    Kmm = kern.K(X) + Variable(torch.eye(num_data,
                                         out=X.data.new())) * jitter_level
    Lm = torch.potrf(Kmm, upper=False)

    # Compute the projection matrix A
    A, _ = torch.gesv(Kmn, Lm)

    # compute the covariance due to the conditioning
    if full_cov:
        fvar = kern.K(Xnew) - torch.matmul(A.t(), A)
        fvar = fvar.unsqueeze(0).expand(num_func, -1, -1)  # K x N x N
    else:
        fvar = kern.Kdiag(Xnew) - (A**2).sum(0)
        fvar = fvar.unsqueeze(0).expand(num_func, -1)  # K x N
    # fvar is K x N x N or K x N

    # another backsubstitution in the unwhitened case (complete the inverse of the cholesky decomposition)
    if not whiten:
        A, _ = torch.gesv(A, Lm.t())

    # construct the conditional mean
    fmean = torch.matmul(A.t(), f)

    if q_sqrt is not None:
        if q_sqrt.dim() == 2:
            LTA = A * q_sqrt.t().unsqueeze(2)  # K x M x N
        elif q_sqrt.dim() == 3:
            L = batch_tril(q_sqrt.permute(2, 0, 1))  # K x M x M
            # A_tiled = tf.tile(tf.expand_dims(A, 0), tf.stack([num_func, 1, 1])) # I don't think I need this
            LTA = torch.matmul(L.transpose(-2, -1), A)  # K x M x N
        else:  # pragma: no cover
            raise ValueError("Bad dimension for q_sqrt :{}".format(
                q_sqrt.dim()))
        if full_cov:
            fvar = fvar + torch.matmul(LTA.t(), LTA)  # K x N x N
        else:
            fvar = fvar + (LTA**2).sum(1)  # K x N
    fvar = fvar.permute(*range(fvar.dim() - 1, -1, -1))  # N x K or N x N x K

    return fmean, fvar
Beispiel #18
0
def Linear_Time_Iteration(A, B, C, F_initial, mu, epsilon):
    """
    This function will find the linear time iteration solution to the system of equations in the form of
    AX(-1) + BX + CE[X(+1)] + epsilon = 0
    with a recursive solution in the form of X = FX(-1) + Q*epsilon
    Parameters
    ----------
    A : torch, array_like, dtype=float
        The matrix of coefficients next to endogenous variables entering with a lag
    B : torch, array_like, dtype=float
        The matrix of coefficients next to endogenous, contemporanous variables
    C : torch, array_like, dtype=float
        The matrix of coefficients next to endogenous variables entering with a lead
    F : torch, array_like, dtype=float
        The initial guess for F
    mu : number, dtype=float
        Small positive real number to be multiplied by a conformable identity matrix
    epsilon : number, dtype=float
        Threshold value, should be set to a small value like 1e-16
    Returns
    -------
    F : torch, array_like, dtype=float
        The matrix of coefficients next to the endogenous variable in the solution
    Q : torch, array_like, dtype=float
        The matrix of coefficients next to the disturbance term in the solution
    Notes
    -----
    """

    F = F_initial
    S = zeros(*A.shape)

    # F.requires_grad_()
    # S.requires_grad_()

    Id = eye(*A.shape) * mu
    Ch = C
    Bh = (B + 2 * mm(C, Id))
    Ah = (mm(C, matrix_power(Id, 2)) + mm(B, Id) + A)

    metric = 1
    iter = 1

    while metric > epsilon:
        if iter % 10000 == 0:
            print(iter)
        F = -gesv(Ah, (Bh + mm(Ch, F)))[0]
        S = -gesv(Ch, (Bh + mm(Ah, S)))[0]
        metric1 = max(abs(Ah + mm(Bh, F) + mm(Ch, (mm(F, F)))))
        metric2 = max(abs(mm(Ah, mm(S, S)) + mm(Bh, S) + Ch))
        metric = max(metric1, metric2)
        iter += 1
        if iter > 1000000:
            break

    # eig_F = max(abs(eig(F)[0]))
    # eig_S = max(abs(eig(S)[0]))

    # if (eig_F > 1) or (eig_S > 1) or (mu > 1-eig_S):
    #     print('Conditions of Proposition 3 violated')

    F = F + Id
    Q = -inverse(B + mm(C, F))

    return F, Q
Beispiel #19
0
    def predict(self, pred_x, hyper=None):
        if hyper is not None:
            param_original = self.model.param_to_vec()
            self.model.vec_to_param(hyper)

        kernel_on_input_map = deepcopy(self.model.kernel)
        kernel_on_input_map.input_map = id_transform
        train_x_input_map = self.model.kernel.input_map(self.train_x)
        pred_x_input_map = self.model.kernel.input_map(pred_x)

        train_origin_point_mask = train_x_input_map.data[:, 0] == 0
        n_train_origin = torch.sum(train_origin_point_mask)
        n_train_other = self.train_x.size(0) - n_train_origin
        train_point_ind = torch.sort(train_origin_point_mask,
                                     0,
                                     descending=True)[1]
        train_origin_ind = train_point_ind[:n_train_origin]
        train_other_ind = train_point_ind[n_train_origin:]
        train_x_other = self.train_x[train_other_ind]
        train_x_origin = self.train_x[train_origin_ind]
        train_x_other_input_map = train_x_input_map[train_other_ind]
        train_y_other = self.train_y[train_other_ind]
        train_y_origin = self.train_y[train_origin_ind]

        eye_mat = Variable(torch.eye(n_train_other)).type_as(self.train_x)
        K_other_noise = kernel_on_input_map(
            train_x_other_input_map) + torch.diag(
                self.model.likelihood(train_x_other))
        K_other_noise_inv, _ = torch.gesv(eye_mat, K_other_noise)
        mean_vec_other = train_y_other - self.model.mean(train_x_other)
        mean_vec_origin = train_y_origin - self.model.mean(train_x_origin)
        k_pred_other = kernel_on_input_map(pred_x_input_map,
                                           train_x_other_input_map)

        shared_part = k_pred_other.mm(K_other_noise_inv)

        pred_mean = torch.mm(shared_part,
                             mean_vec_other) + self.model.mean(pred_x)
        pred_var = self.model.kernel.forward_on_identical() - (
            shared_part * k_pred_other).sum(1, keepdim=True)

        slide_origin = pred_x_input_map.clone()
        slide_origin[:, 0] = 0

        K_other_origin = kernel_on_input_map(train_x_other_input_map,
                                             slide_origin)
        Ainv_B = K_other_noise_inv.mm(K_other_origin)

        identity_part = self.model.likelihood(self.train_x[:1] * 0)
        onemat_part = self.model.kernel.forward_on_identical() - (
            Ainv_B * K_other_origin).sum(0).view(-1, 1)
        identity_const = 1.0 / identity_part
        onemat_const = -onemat_part / identity_part / (
            identity_part + onemat_part * n_train_origin)

        k_pred_origin = torch.cat([
            kernel_on_input_map(pred_x_input_map[i:i + 1],
                                slide_origin[i:i + 1])
            for i in range(pred_x.size(0))
        ], 0)
        k_vec = (k_pred_other * Ainv_B.t()).sum(1).view(-1, 1) - k_pred_origin
        y_vec = torch.mm(mean_vec_other.t(), Ainv_B).view(
            -1, 1) - torch.mean(mean_vec_origin)

        slide_origin_mean_adjustment = (
            identity_const +
            onemat_const * n_train_origin) * k_vec * y_vec * n_train_origin
        slide_origin_quad_adjustment = (
            identity_const +
            onemat_const * n_train_origin) * k_vec**2 * n_train_origin

        if hyper is not None:
            self.model.vec_to_param(param_original)
        return pred_mean + slide_origin_mean_adjustment, pred_var - slide_origin_quad_adjustment
Beispiel #20
0
def b_inv(A):
	eye = A.new_ones(A.size(-1)).diag().expand_as(A)
	b_inv, _ = torch.gesv(eye, A)
	return b_inv
Beispiel #21
0
def bgesv(B, A):
    return torch.stack([torch.gesv(b, a)[0] for b, a in zip(B, A)])
Beispiel #22
0
    Xt = torch.FloatTensor(X).cuda()
    yt = torch.FloatTensor(y).cuda()

    # cur_time = 0
    # for i in range(10):
    #     #log_reg = LogisticRegression(solver=opt, random_state=123)
    #     start = time.time()
    #     thetas_np = train_logistic(X, y)
    #     #thetas = train_logistic_torch(Xt, yt)
    #
    #     #log_reg.fit(X, y)
    #     cur_time += time.time()-start
    # print("Time is {}".format(cur_time/10))
    cur_time = 0
    pre = torch.gesv(Xt.t(), Xt.t() @ Xt)[0]
    cov = Xt.t() @ Xt
    for i in range(10):
        #log_reg = LogisticRegression(solver=opt, random_state=123)
        start = time.time()
        # thetas_np = train_logistic(X, y)
        theta = torch.gesv((Xt.t() @ yt).view(-1, 1), cov)
        #log_reg.fit(X, y)
        cur_time += time.time() - start
    print("Time is {}".format(cur_time / 10))
    cur_time = 0
    for i in range(10):
        #log_reg = LogisticRegression(solver=opt, random_state=123)
        start = time.time()
        # thetas_np = train_logistic(X, y)
        thetas = train_logistic_torch(Xt, yt)
Beispiel #23
0
def _depth_warping(depth_maps_1, depth_maps_2, img_masks, translation_vectors,
                   rotation_matrices, intrinsic_matrices, epsilon):
    # Generate a meshgrid for each depth map to calculate value
    # BxHxWxC
    depth_maps_1 = torch.mul(depth_maps_1, img_masks)
    depth_maps_2 = torch.mul(depth_maps_2, img_masks)

    depth_maps_1 = depth_maps_1.permute(0, 2, 3, 1)
    depth_maps_2 = depth_maps_2.permute(0, 2, 3, 1)
    img_masks = img_masks.permute(0, 2, 3, 1)

    num_batch, height, width, channels = depth_maps_1.shape

    y_grid, x_grid = torch.meshgrid([
        torch.arange(start=0, end=height, dtype=torch.float32).cuda(),
        torch.arange(start=0, end=width, dtype=torch.float32).cuda()
    ])

    x_grid = x_grid.view(1, height, width, 1)
    y_grid = y_grid.view(1, height, width, 1)

    ones_grid = torch.ones((1, height, width, 1), dtype=torch.float32).cuda()

    # intrinsic_matrix_inverse = intrinsic_matrix.inverse()
    eye = torch.eye(3).float().cuda().view(1, 3, 3).expand(
        intrinsic_matrices.shape[0], -1, -1)
    intrinsic_matrices_inverse, _ = torch.gesv(eye, intrinsic_matrices)
    rotation_matrices_inverse = rotation_matrices.transpose(1, 2)

    # The following is when we have different intrinsic matrices for samples within a batch
    temp_mat = torch.bmm(intrinsic_matrices, rotation_matrices_inverse)
    W = torch.bmm(temp_mat, -translation_vectors)
    M = torch.bmm(temp_mat, intrinsic_matrices_inverse)

    mesh_grid = torch.cat((x_grid, y_grid, ones_grid),
                          dim=-1).view(height, width, 3, 1)
    intermediate_result = torch.matmul(M.view(-1, 1, 1, 3, 3),
                                       mesh_grid).view(-1, height, width, 3)

    depth_maps_2_calculate = W.view(-1, 3).narrow(
        dim=-1, start=2, length=1).view(-1, 1, 1, 1) + torch.mul(
            depth_maps_1,
            intermediate_result.narrow(dim=-1, start=2, length=1).view(
                -1, height, width, 1))

    # expand operation doesn't allocate new memory (repeat does)
    depth_maps_2_calculate = torch.where(img_masks > 0.5,
                                         depth_maps_2_calculate, epsilon)
    depth_maps_2_calculate = torch.where(depth_maps_2_calculate > 0.0,
                                         depth_maps_2_calculate, epsilon)

    # This is the source coordinate in coordinate system 2 but ordered in coordinate system 1 in order to warp image 2 to coordinate system 1
    u_2 = (W.view(-1, 3).narrow(dim=-1, start=0, length=1).view(-1, 1, 1, 1) +
           torch.mul(
               depth_maps_1,
               intermediate_result.narrow(dim=-1, start=0, length=1).view(
                   -1, height, width, 1))) / (depth_maps_2_calculate)

    v_2 = (W.view(-1, 3).narrow(dim=-1, start=1, length=1).view(-1, 1, 1, 1) +
           torch.mul(
               depth_maps_1,
               intermediate_result.narrow(dim=-1, start=1, length=1).view(
                   -1, height, width, 1))) / (depth_maps_2_calculate)

    W_2 = torch.bmm(intrinsic_matrices, translation_vectors)
    M_2 = torch.bmm(torch.bmm(intrinsic_matrices, rotation_matrices),
                    intrinsic_matrices_inverse)

    temp = torch.matmul(M_2.view(-1, 1, 1, 3, 3), mesh_grid).view(
        -1, height, width, 3).narrow(dim=-1, start=2,
                                     length=1).view(-1, height, width, 1)
    depth_maps_1_calculate = W_2.view(-1, 3).narrow(
        dim=-1, start=2, length=1).view(-1, 1, 1, 1) + torch.mul(
            depth_maps_2, temp)
    depth_maps_1_calculate = torch.mul(img_masks, depth_maps_1_calculate)

    u_2_flat = u_2.view(-1)
    v_2_flat = v_2.view(-1)

    warped_depth_maps_2 = _bilinear_interpolate(depth_maps_1_calculate,
                                                u_2_flat, v_2_flat).view(
                                                    num_batch, 1, height,
                                                    width)
    # binarize
    intersect_masks = torch.where(
        _bilinear_interpolate(img_masks, u_2_flat, v_2_flat) * img_masks >=
        0.9,
        torch.tensor(1.0).float().cuda(),
        torch.tensor(0.0).float().cuda()).view(num_batch, 1, height, width)

    return [warped_depth_maps_2, intersect_masks]
def chol_solve(B, A):
    c = torch.potrf(A)
    s1 = torch.gesv(B, c.transpose(0, 1))[0]
    s2 = torch.gesv(s1, c)[0]
    return s2
    def get_fantasy_strategy(self, inputs, targets, full_inputs, full_targets, full_output):
        """
        Returns a new PredictionStrategy that incorporates the specified inputs and targets as new training data.

        This method is primary responsible for updating the mean and covariance caches. To add fantasy data to a
        GP model, use the :meth:`~gpytorch.models.ExactGP.get_fantasy_model` method.

        Args:
            - :attr:`inputs` (Tensor `m x d` or `b x m x d`): Locations of fantasy observations.
            - :attr:`targets` (Tensor `m` or `b x m`): Labels of fantasy observations.
            - :attr:`full_inputs` (Tensor `n+m x d` or `b x n+m x d`): Training data concatenated with fantasy inputs
            - :attr:`full_targets` (Tensor `n+m` or `b x n+m`): Training labels concatenated with fantasy labels.
            - :attr:`full_output` (:class:`gpytorch.distributions.MultivariateNormal`): Prior called on full_inputs
        Returns:
            - :class:`DefaultPredictionStrategy`
                A `DefaultPredictionStrategy` model with `n + m` training examples, where the `m` fantasy examples have
                been added and all test-time caches have been updated.
        """
        full_mean, full_covar = full_output.mean, full_output.lazy_covariance_matrix

        batch_shape = full_inputs[0].shape[:-2]

        full_mean = full_mean.view(*batch_shape, -1)
        num_train = self.num_train

        # Evaluate fant x train and fant x fant covariance matrices, leave train x train unevaluated.
        fant_fant_covar = full_covar[..., num_train:, num_train:]
        fant_mean = full_mean[..., num_train:]
        mvn = self.likelihood(MultivariateNormal(fant_mean, fant_fant_covar), inputs)
        fant_fant_covar = mvn.covariance_matrix

        fant_train_covar = delazify(full_covar[..., num_train:, :num_train])

        self.fantasy_inputs = inputs
        self.fantasy_targets = targets

        """
        Compute a new mean cache given the old mean cache.

        We have \\alpha = K^{-1}y, and we want to solve [K U; U' S][a; b] = [y; y_f], where U' is fant_train_covar,
        S is fant_fant_covar, and y_f is (targets - fant_mean)

        To do this, we solve the bordered linear system of equations for [a; b]:
            AQ = U  # Q = fant_solve
            [S - U'Q]b = y_f - U'\\alpha   ==> b = [S - U'Q]^{-1}(y_f - U'\\alpha)
            a = \\alpha - Qb
        """
        # Get cached K inverse decomp. (or compute if we somehow don't already have the covariance cache)
        K_inverse = self.lik_train_train_covar.root_inv_decomposition()
        fant_solve = K_inverse.matmul(fant_train_covar.transpose(-2, -1))

        # Solve for "b", the lower portion of the *new* \\alpha corresponding to the fantasy points.
        schur_complement = fant_fant_covar - fant_train_covar.matmul(fant_solve)
        small_system_rhs = targets - fant_mean - fant_train_covar.matmul(self.mean_cache)
        # Schur complement of a spd matrix is guaranteed to be positive definite
        if small_system_rhs.requires_grad or schur_complement.requires_grad:
            # TODO: Delete this part of the if statement when PyTorch implements cholesky_solve derivative.
            fant_cache_lower = torch.gesv(small_system_rhs.unsqueeze(-1), schur_complement)[0]
        else:
            fant_cache_lower = cholesky_solve(small_system_rhs, torch.cholesky(schur_complement))

        # Get "a", the new upper portion of the cache corresponding to the old training points.
        fant_cache_upper = self.mean_cache.unsqueeze(-1) - fant_solve.matmul(fant_cache_lower)

        fant_cache_upper = fant_cache_upper.squeeze(-1)
        fant_cache_lower = fant_cache_lower.squeeze(-1)

        # New mean cache.
        fant_mean_cache = torch.cat((fant_cache_upper, fant_cache_lower), dim=-1)

        """
        Compute a new covariance cache given the old covariance cache.

        We have access to K \\approx LL' and K^{-1} \\approx R^{-1}R^{-T}, where L and R are low rank matrices
        resulting from Lanczos (see the LOVE paper).

        To update R^{-1}, we first update L:
            [K U; U' S] = [L 0; A B][L' A'; 0 B']
        Solving this matrix equation, we get:
            K = LL' ==>       L = L
            U = LA' ==>       A = UR^{-1}
            S = AA' + BB' ==> B = cholesky(S - AA')

        Once we've computed Z = [L 0; A B], we have that the new kernel matrix [K U; U' S] \approx ZZ'. Therefore,
        we can form a pseudo-inverse of Z directly to approximate [K U; U' S]^{-1/2}.
        """
        # [K U; U' S] = [L 0; lower_left schur_root]
        batch_shape = fant_train_covar.shape[:-2]

        L_inverse = self.covar_cache
        L = delazify(self.lik_train_train_covar.root_decomposition().root)
        m, n = L.shape[-2:]

        lower_left = fant_train_covar.matmul(L_inverse)
        schur_root = torch.cholesky(fant_fant_covar - lower_left.matmul(lower_left.transpose(-2, -1)))
        upper_right = torch.zeros(m, schur_root.size(-1), device=L.device, dtype=L.dtype)

        # Form new root Z = [L 0; lower_left schur_root]
        num_fant = schur_root.size(-2)
        m, n = L.shape[-2:]
        new_root = torch.zeros(*batch_shape, m + num_fant, n + num_fant, device=L.device, dtype=L.dtype)
        new_root[..., :m, :n] = L
        new_root[..., :m, n:] = upper_right
        new_root[..., m:, :n] = lower_left
        new_root[..., m:, n:] = schur_root

        # Use pseudo-inverse of Z as new inv root
        # TODO: Replace pseudo-inverse calculation with something more stable than normal equations once
        # one of torch.svd, torch.qr, or torch.pinverse works in batch mode.
        cap_mat = new_root.transpose(-2, -1).matmul(new_root)
        if cap_mat.requires_grad or new_root.requires_grad:
            # TODO: Delete this part of the if statement when PyTorch implements cholesky_solve derivative.
            new_covar_cache = torch.gesv(new_root.transpose(-2, -1), cap_mat)[0].transpose(-2, -1)
        else:
            new_covar_cache = cholesky_solve(new_root.transpose(-2, -1), torch.cholesky(cap_mat))
            new_covar_cache = new_covar_cache.transpose(-2, -1)

        # Create new DefaultPredictionStrategy object
        new_num_train = full_inputs[0].size(len(batch_shape))
        fant_strat = self.__class__(
            num_train=new_num_train,
            train_inputs=full_inputs,
            train_mean=full_mean,
            train_train_covar=full_covar,
            train_labels=full_targets,
            likelihood=self.likelihood,
            non_batch_train=(len(batch_shape) == 0),
        )
        setattr(fant_strat, "_memoize_cache", {"mean_cache": fant_mean_cache, "covar_cache": new_covar_cache})

        return fant_strat
Beispiel #26
0
def b_inv(b_mat):
    eye = torch.rand(b_mat.size(0), b_mat.size(1), b_mat.size(2)).cuda()
    b_inv, _ = torch.gesv(eye, b_mat)
    return b_inv
Beispiel #27
0
    def forward(self, im, pts_before, pts_after):
        '''
        Deforms image according to movement of pts_before and pts_after

        Args)
        im		torch.Tensor object of size NxCxHxW
        pts_before	torch.Tensor object of size NxTx2 (T is # control pts)
        pts_after	torch.Tensor object of size NxTx2 (T is # control pts)
        '''
        # check input requirements
        assert (4 == im.dim())
        assert (3 == pts_after.dim())
        assert (3 == pts_before.dim())
        N = im.size()[0]
        assert (N == pts_after.size()[0] and N == pts_before.size()[0])
        assert (2 == pts_after.size()[2] and 2 == pts_before.size()[2])
        T = pts_after.size()[1]
        assert (T == pts_before.size()[1])
        H = im.size()[2]
        W = im.size()[3]

        if self.normalize:
            pts_after = pts_after.clone()
            pts_after[:, :, 0] /= 0.5 * W
            pts_after[:, :, 1] /= 0.5 * H
            pts_after -= 1
            pts_before = pts_before.clone()
            pts_before[:, :, 0] /= 0.5 * W
            pts_before[:, :, 1] /= 0.5 * H
            pts_before -= 1

        def construct_P():
            '''
            Consturcts matrix P of size NxTx3 where 
            P[n,i,0] := 1
            P[n,i,1:] := pts_after[n]
            '''
            # Create matrix P with same configuration as 'pts_after'
            P = pts_after.new_zeros((N, T, 3))
            P[:, :, 0] = 1
            P[:, :, 1:] = pts_after

            return P

        def calc_U(pt1, pt2):
            '''
            Calculate distance U between pt1 and pt2

            U(r) := r**2 * log(r)
            where
                r := |pt1 - pt2|_2

            Args)
            pt1 	torch.Tensor object, last dim is always 2
            pt2 	torch.Tensor object, last dim is always 2
            '''
            assert (2 == pt1.size()[-1])
            assert (2 == pt2.size()[-1])

            diff = pt1 - pt2
            sq_diff = diff**2
            sq_diff_sum = sq_diff.sum(-1)
            r = sq_diff_sum.sqrt()

            # Adds 1e-6 for numerical stability
            return (r**2) * torch.log(r + 1e-6)

        def construct_K():
            '''
            Consturcts matrix K of size NxTxT where 
            K[n,i,j] := U(|pts_after[n,i] - pts_after[n,j]|_2)
            '''

            # Assuming the number of control points are small enough,
            # We just use for-loop for easy-to-read code

            #   Create matrix K with same configuration as 'pts_after'
            K = pts_after.new_zeros((N, T, T))
            for i in range(T):
                for j in range(T):
                    K[:, i, j] = calc_U(pts_after[:, i, :], pts_after[:, j, :])

            return K

        def construct_L():
            '''
            Consturcts matrix L of size Nx(T+3)x(T+3) where 
            L[n] = [[ K[n]    P[n] ]]
                   [[ P[n]^T    0  ]]
            '''
            P = construct_P()
            K = construct_K()

            # Create matrix L with same configuration as 'K'
            L = K.new_zeros((N, T + 3, T + 3))

            # Fill L matrix
            L[:, :T, :T] = K
            L[:, :T, T:(T + 3)] = P
            L[:, T:(T + 3), :T] = P.transpose(1, 2)

            return L

        def construct_uv_grid():
            '''
            Returns H x W x 2 tensor uv with UV coordinate as its elements
            uv[:,:,0] is H x W grid of x values
            uv[:,:,1] is H x W grid of y values
            '''
            u_range = torch.arange(start=-1.0,
                                   end=1.0,
                                   step=2.0 / W,
                                   device=im.device)
            assert (W == u_range.size()[0])
            u = u_range.new_zeros((H, W))
            u[:] = u_range

            v_range = torch.arange(start=-1.0,
                                   end=1.0,
                                   step=2.0 / H,
                                   device=im.device)
            assert (H == v_range.size()[0])
            vt = v_range.new_zeros((W, H))
            vt[:] = v_range
            v = vt.transpose(0, 1)

            return torch.stack([u, v], dim=2)

        L = construct_L()
        VT = pts_before.new_zeros((N, T + 3, 2))
        # Use delta x and delta y as known heights of the surface
        VT[:, :T, :] = pts_before - pts_after

        # Solve Lx = VT
        #   x is of shape (N, T+3, 2)
        #   x[:,:,0] represents surface parameters for dx surface
        #       (dx values as surface height (z))
        #   x[:,:,1] represents surface parameters for dy surface
        #       (dy values as surface height (z))
        x, _ = torch.gesv(VT, L)

        uv = construct_uv_grid()
        uv_batch = uv.repeat((N, 1, 1, 1))

        def calc_dxdy():
            '''
            Calculate surface height for each uv coordinate
            
            Returns NxHxWx2 tensor
            '''

            # control points of size NxTxHxWx2
            cp = uv.new_zeros((H, W, N, T, 2))
            cp[:, :, :] = pts_after
            cp = cp.permute([2, 3, 0, 1, 4])

            U = calc_U(uv, cp)  # U value matrix of size NxTxHxW
            w, a = x[:, :
                     T, :], x[:,
                              T:, :]  # w is of size NxTx2, a is of size Nx3x2
            w_x, w_y = w[:, :, 0], w[:, :, 1]  # NxT each
            a_x, a_y = a[:, :, 0], a[:, :, 1]  # Nx3 each
            dx = (a_x[:, 0].repeat((H, W, 1)).permute(2, 0, 1) +
                  torch.einsum('nhwd,nd->nhw', uv_batch, a_x[:, 1:]) +
                  torch.einsum('nthw,nt->nhw', U, w_x))  # dx values of NxHxW
            dy = (a_y[:, 0].repeat((H, W, 1)).permute(2, 0, 1) +
                  torch.einsum('nhwd,nd->nhw', uv_batch, a_y[:, 1:]) +
                  torch.einsum('nthw,nt->nhw', U, w_y))  # dy values of NxHxW

            return torch.stack([dx, dy], dim=3)

        dxdy = calc_dxdy()
        flow_field = uv + dxdy

        return F.grid_sample(im, flow_field)
Beispiel #28
0
def b_inv(b_mat):
    eye = b_mat.new_ones(b_mat.size(-1)).diag().expand_as(b_mat)
    b_inv, _ = torch.gesv(eye, b_mat)
    return b_inv
Beispiel #29
0
 def matrix_solve(self, matrix, rhs, adjoint=None):
     import ipdb
     ipdb.set_trace()
     return torch.gesv(rhs, matrix)[0]
 def compute_pseudo_gradient(parameters, lr):
     theta = torch.cat([x.grad.data.flatten() for x in parameters]).cpu()
     H = torch.cat([(i * theta).unsqueeze(dim=-1) for i in theta], dim=1)
     U = torch.eye(H.size(0)) + lr * H
     pseudo_grad, _ = torch.gesv(theta, U)
     return pseudo_grad.cuda()
Beispiel #31
0
    def forward(self, y_train, phi, sq_lambda, L, m_test):

        # extract hyperparameters
        sigma_f = torch.exp(self.log_sigma_f)
        lengthscale = torch.exp(self.log_lengthscale)
        sigma_n = torch.exp(self.log_sigma_n)

        # number of basis functions
        m = sq_lambda.size(0)

        # input dimension
        dim = sq_lambda.size(1)
        if self.covfunc.type == 'matern':
            lengthscale = lengthscale.repeat(1, dim).view(dim)

        # See the autograd section for explanation of what happens here.
        n = y_train.size(0)

        lprod = torch.ones(1)
        omega_sum = torch.zeros(m, 1)
        for q in range(dim):
            lprod = lprod.mul(lengthscale[q].pow(2))
            omega_sum = omega_sum.add(lengthscale[q].pow(2) *
                                      sq_lambda[:, q].view(m, 1).pow(2))
        if self.covfunc.type == 'matern':
            inv_lambda_diag = \
            (

                    math.pow( 2.0, dim ) * math.pow( math.pi, dim/2.0 )
                    *math.gamma( self.covfunc.nu + dim/2.0 )
                    *math.pow( 2.0*self.covfunc.nu, self.covfunc.nu )

                    *( (2.0*self.covfunc.nu + omega_sum).mul(lprod.pow(-0.5)) ).pow(-self.covfunc.nu-dim/2.0)
                    .div( math.gamma(self.covfunc.nu)*lprod.pow(self.covfunc.nu) )

            ).pow(-1.0) .view(m).mul(sigma_f.pow(-2.0))
        elif self.covfunc.type == 'se':
            inv_lambda_diag = (sigma_f.pow(-2).mul(lprod.pow(-0.5)).mul(
                torch.exp(0.5 * omega_sum))).mul(
                    math.pow(2.0 * math.pi, -dim / 2)).view(m)

        Z = phi.t().mm(phi) + torch.diag(inv_lambda_diag).mul(sigma_n.pow(2))
        phi_lam = torch.cat((phi, inv_lambda_diag.sqrt().diag().mul(sigma_n)),
                            0)  # [Phi; sign*sqrt(Lambda^-1)]

        _, r = torch.qr(phi_lam)
        v, _ = torch.gesv(
            phi.t().mm(y_train.view(n, 1)), Z
        )  # X,LU = torch.gesv(B, A); AX=B => v=(Phi'*Phi+sign^2I)\(Phi'*y)

        # compute phi_star
        nt = m_test.size(0)
        phi_star = torch.ones(m, nt)
        for q in range(dim):
            phi_star = phi_star.mul(
                torch.sin(sq_lambda[:, q].view(m, 1) *
                          (m_test[:, q].view(1, nt) + L[q])).div(
                              math.sqrt(L[q])))

        # predict
        f_test = phi_star.t().mm(v)
        tmp, _ = torch.trtrs(phi_star, r.t(),
                             upper=False)  # solves r^T*u=phi_star, u=r*x
        tmp, _ = torch.trtrs(tmp, r)  # solves r*x=u
        cov_f = torch.sum(phi_star.t().mul(tmp.t()), dim=1).mul(sigma_n.pow(2))
        out = (f_test, cov_f)
        return out
Beispiel #32
0
 def forward(ctx, b, a):
     # TODO see if one can backprop through LU
     X, LU = torch.gesv(b, a)
     ctx.save_for_backward(X, a)
     ctx.mark_non_differentiable(LU)
     return X, LU
Beispiel #33
0
 def backward(ctx, grad_output, grad_LU=None):
     X, a = ctx.saved_variables
     grad_b, _ = torch.gesv(grad_output, a.t())
     grad_a = -torch.mm(grad_b, X.t())
     return grad_b, grad_a
Beispiel #34
0
def b_inv(b_mat, device):
    eye = torch.rand(b_mat.size(0), b_mat.size(1), b_mat.size(2)).to(device)
    b_inv, _ = torch.gesv(eye, b_mat)
    return b_inv