Beispiel #1
0
def unsqueeze(input, upscale_factor=2):
    return torch.pixel_shuffle(input, upscale_factor)
Beispiel #2
0
 def test_pixel_shuffle(self):
     x = torch.randn(2, 8, 3, 4).float()
     self.assertONNX(lambda x: torch.pixel_shuffle(x, upscale_factor=2),
                     x,
                     opset_version=11)
Beispiel #3
0
def equivariant_unsqueeze(input, upscale_factor=2):
    in_type = input.type
    output = torch.pixel_shuffle(input.tensor, upscale_factor)
    return enn.GeometricTensor(output, in_type)
Beispiel #4
0
 def forward(self, x):
     return torch.pixel_shuffle(x, upscale_factor=2)
import torch

a = torch.randn(100, 16, 224, 224)

b = torch.pixel_shuffle(a, 2)
print(b.shape)  # torch.Size([100, 4, 448, 448])

c = torch.nn.PixelShuffle(2)
d = c(a)
print(d.shape)  # torch.Size([100, 4, 448, 448])