Beispiel #1
0
    def __init__(self,
                 aggr: Optional[str] = "add",
                 flow: str = "source_to_target",
                 node_dim: int = -2):

        super(MessagePassing, self).__init__()

        self.aggr = aggr
        assert self.aggr in ['add', 'mean', 'max', None]

        self.flow = flow
        assert self.flow in ['source_to_target', 'target_to_source']

        self.node_dim = node_dim

        self.inspector = Inspector(self)
        self.inspector.inspect(self.message)
        self.inspector.inspect(self.aggregate, pop_first=True)
        self.inspector.inspect(self.message_and_aggregate, pop_first=True)
        self.inspector.inspect(self.update, pop_first=True)

        self.__user_args__ = self.inspector.keys(
            ['message', 'aggregate', 'update']).difference(self.special_args)
        self.__fused_user_args__ = self.inspector.keys(
            ['message_and_aggregate', 'update']).difference(self.special_args)

        # Support for "fused" message passing.
        self.fuse = self.inspector.implements('message_and_aggregate')

        # Support for GNNExplainer.
        self.__explain__ = False
        self.__edge_mask__ = None
Beispiel #2
0
    def __init__(self, aggr: Optional[str] = "add",
                 flow: str = "source_to_target", node_dim: int = -2):

        super(MessagePassing, self).__init__()

        self.aggr = aggr
        assert self.aggr in ['add', 'mean', 'max', None]

        self.flow = flow
        assert self.flow in ['source_to_target', 'target_to_source']

        self.node_dim = node_dim

        self.inspector = Inspector(self)
        self.inspector.inspect(self.message)
        self.inspector.inspect(self.aggregate, pop_first=True)
        self.inspector.inspect(self.update, pop_first=True)

        self.__user_args__ = self.inspector.keys(
            ['message', 'aggregate', 'update']).difference(self.special_args)
Beispiel #3
0
class MessagePassing(torch.nn.Module):
    special_args: Set[str] = {
        'edge_index', 'adj_t', 'edge_index_i', 'edge_index_j', 'size',
        'size_i', 'size_j', 'ptr', 'index', 'dim_size'
    }

    def __init__(self, aggr: Optional[str] = "add",
                 flow: str = "source_to_target", node_dim: int = -2):

        super(MessagePassing, self).__init__()

        self.aggr = aggr
        assert self.aggr in ['add', 'mean', 'max', None]

        self.flow = flow
        assert self.flow in ['source_to_target', 'target_to_source']

        self.node_dim = node_dim

        self.inspector = Inspector(self)
        self.inspector.inspect(self.message)
        self.inspector.inspect(self.aggregate, pop_first=True)
        self.inspector.inspect(self.update, pop_first=True)

        self.__user_args__ = self.inspector.keys(
            ['message', 'aggregate', 'update']).difference(self.special_args)


        # Hooks:
#         self._propagate_forward_pre_hooks = OrderedDict()
#         self._propagate_forward_hooks = OrderedDict()
#         self._message_forward_pre_hooks = OrderedDict()
#         self._message_forward_hooks = OrderedDict()
#         self._aggregate_forward_pre_hooks = OrderedDict()
#         self._aggregate_forward_hooks = OrderedDict()

    def __check_input__(self, edge_index, size):
        the_size: List[Optional[int]] = [None, None]

        if isinstance(edge_index, Tensor):
            assert edge_index.dtype == torch.long
            assert edge_index.dim() == 2
            assert edge_index.size(0) == 2
            if size is not None:
                the_size[0] = size[0]
                the_size[1] = size[1]
            return the_size

        raise ValueError(
            ('`MessagePassing.propagate` only supports `torch.LongTensor` of '
             'shape `[2, num_messages]` or `torch_sparse.SparseTensor` for '
             'argument `edge_index`.'))

    def __set_size__(self, size: List[Optional[int]], dim: int, src: Tensor):
        the_size = size[dim]
        if the_size is None:
            size[dim] = src.size(self.node_dim)
        elif the_size != src.size(self.node_dim):
            raise ValueError(
                (f'Encountered tensor with size {src.size(self.node_dim)} in '
                 f'dimension {self.node_dim}, but expected size {the_size}.'))

    def __lift__(self, src, edge_index, dim):
        if isinstance(edge_index, Tensor):
            index = edge_index[dim]
            return src.index_select(self.node_dim, index)


    def __collect__(self, args, edge_index, size, x):
        i, j = (1, 0) if self.flow == 'source_to_target' else (0, 1)

#        out = {}
        for arg in args:
            if arg[-2:] not in ['_i', '_j']:
                #data_sum = x[0]
                #data_prod = x[1]
                #out[arg] = kwargs.get(arg, Parameter.empty)
                pass
            else:
                dim = 0 if arg[-2:] == '_j' else 1
                #data = kwargs.get(arg[:-2], Parameter.empty)
                data = x

                if isinstance(data, (tuple, list)):
                    assert len(data) == 2
                    if isinstance(data[1 - dim], Tensor):
                        self.__set_size__(size, 1 - dim, data[1 - dim])
                    #data = data[dim]
                    data_sum = data[dim]
                    data_prod = data[dim+1]

                #if isinstance(data, Tensor):
                if isinstance(data_sum, Tensor) and isinstance(data_prod, Tensor):
    #                     self.__set_size__(size, dim, data)
    #                     data = self.__lift__(data, edge_index,
    #                                          j if arg[-2:] == '_j' else i)
                    self.__set_size__(size, dim, data_sum)
                    data_sum = self.__lift__(data_sum, edge_index, j if arg[-2:] == '_j' else i)
                    data_prod = self.__lift__(data_prod, edge_index, j if arg[-2:] == '_j' else i)

#                out[arg] = data

#         if isinstance(edge_index, Tensor):
#             out['adj_t'] = None
#             out['edge_index'] = edge_index
#             out['edge_index_i'] = edge_index[i]
#             out['edge_index_j'] = edge_index[j]
#             out['ptr'] = None

#         out['index'] = out['edge_index_i']
#         out['size'] = size
#         out['size_i'] = size[1] or size[0]
#         out['size_j'] = size[0] or size[1]
#         out['dim_size'] = out['size_i']

        #return out
        return data_sum, data_prod

    def propagate(self, edge_index: Adj, x, size: Size = None, edge_attr = None, norm=None):
#         for hook in self._propagate_forward_pre_hooks.values():
#             res = hook(self, (edge_index, size, kwargs))
#             if res is not None:
#                 edge_index, size, kwargs = res

        size = self.__check_input__(edge_index, size)

        if isinstance(edge_index, Tensor) or not self.fuse:
#             coll_dict = self.__collect__(self.__user_args__, edge_index, size,
#                                          kwargs)
#             msg_kwargs = self.inspector.distribute('message', coll_dict)
            x_sum,x_prod = self.__collect__(self.__user_args__, edge_index, size, x)
#             for hook in self._message_forward_pre_hooks.values():
#                 res = hook(self, (msg_kwargs, ))
#                 if res is not None:
#                     msg_kwargs = res[0] if isinstance(res, tuple) else res
            x_sum = self.message_simple(x_sum)
            x_prod = self.message_simple(x_prod)
            #x_sum = self.message(x_sum, edge_attr, norm)
            #x_prod = self.message(x_prod, edge_attr, norm)
#             x_sum = self.message(x_sum, edge_attr)
#             x_prod = self.message(x_prod, edge_attr)
#             for hook in self._message_forward_hooks.values():
#                 res = hook(self, (msg_kwargs, ), out)
#                 if res is not None:
#                     out = res

#            aggr_kwargs = self.inspector.distribute('aggregate', coll_dict)
#             for hook in self._aggregate_forward_pre_hooks.values():
#                 res = hook(self, (aggr_kwargs, ))
#                 if res is not None:
#                     aggr_kwargs = res[0] if isinstance(res, tuple) else res
            x_sum, x_prod = self.aggregate((x_sum, x_prod), edge_index[1],ptr=None)
#             for hook in self._aggregate_forward_hooks.values():
#                 res = hook(self, (aggr_kwargs, ), out)
#                 if res is not None:
#                     out = res

#             update_kwargs = self.inspector.distribute('update', coll_dict)
#             out = self.update(out, **update_kwargs)

#         for hook in self._propagate_forward_hooks.values():
#             res = hook(self, (edge_index, size, kwargs), out)
#             if res is not None:
#                 out = res

        return x_sum, x_prod

    def message_simple(self, x_j: Tensor) -> Tensor:
        return x_j


    def aggregate(self, inputs: Tensor, index: Tensor,
                  ptr: Optional[Tensor] = None,
                  dim_size: Optional[int] = None) -> Tensor:
        
        return self.scatter_sum(inputs[0], index, dim=self.node_dim),self.scatter_product(inputs[1], index, dim=self.node_dim)

    def update(self, inputs: Tensor) -> Tensor:
        return inputs
    
    
    def scatter_sum(self, src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                out: Optional[torch.Tensor] = None,
                dim_size: Optional[int] = None) -> torch.Tensor:
        index = broadcast(index, src, dim)
        if out is None:
            size = list(src.size())
            if dim_size is not None:
                size[dim] = dim_size
            elif index.numel() == 0:
                size[dim] = 0
            else:
                size[dim] = int(index.max()) + 1
            out = torch.zeros(size, dtype=src.dtype, device=src.device)
            return out.scatter_add_(dim, index, src)
        else:
            return out.scatter_add_(dim, index, src)
    
    
    def scatter_product(self, src: torch.Tensor, index: torch.Tensor, dim: int = -1,
            out: Optional[torch.Tensor] = None, dim_size: Optional[int] = None) -> torch.Tensor:
    
        index = broadcast(index, src, dim)
        size = list(src.size())
        if dim_size is not None:
            size[dim] = dim_size
        elif index.numel() == 0:
            size[dim] = 0
        else:
            size[dim] = int(index.max()) + 1
        out = torch.ones(size, dtype=src.dtype, device=src.device)
        #return scatter_add_(dim, index, src)
        #for i in range(index.size(0)):
        #    for j in range(index.size(1)):
        #        replace_idx = index[i][j]
        #        if dim == -2:
        #            out[replace_idx][j] = out[replace_idx][j]+src[i][j]
        #        elif dim == -1:
        #            out[i][replace_index] = out[i][replace_index]+src[i][j]
        #for i in range(out.shape[0]):
        #    out[i]=torch.sum(src[index==i], dim=0)
        #with torch.no_grad():
        out.scatter_(dim, index, src, reduce='multiply')
        return torch.nn.Parameter(out, requires_grad=True)
Beispiel #4
0
class MessagePassing(torch.nn.Module):
    special_args: Set[str] = {
        'edge_index', 'adj_t', 'edge_index_i', 'edge_index_j', 'size',
        'size_i', 'size_j', 'ptr', 'index', 'dim_size'
    }

    def __init__(self, aggr: Optional[str] = "add",
                 flow: str = "source_to_target", node_dim: int = -2):

        super(MessagePassing, self).__init__()

        self.aggr = aggr
        assert self.aggr in ['add', 'mean', 'max', None]

        self.flow = flow
        assert self.flow in ['source_to_target', 'target_to_source']

        self.node_dim = node_dim

        self.inspector = Inspector(self)
        self.inspector.inspect(self.message)
        self.inspector.inspect(self.aggregate, pop_first=True)
        self.inspector.inspect(self.update, pop_first=True)

        self.__user_args__ = self.inspector.keys(
            ['message', 'aggregate', 'update']).difference(self.special_args)


    def __check_input__(self, edge_index, size):
        the_size: List[Optional[int]] = [None, None]

        if isinstance(edge_index, Tensor):
            assert edge_index.dtype == torch.long
            assert edge_index.dim() == 2
            assert edge_index.size(0) == 2
            if size is not None:
                the_size[0] = size[0]
                the_size[1] = size[1]
            return the_size

        raise ValueError(
            ('`MessagePassing.propagate` only supports `torch.LongTensor` of '
             'shape `[2, num_messages]` or `torch_sparse.SparseTensor` for '
             'argument `edge_index`.'))

    def __set_size__(self, size: List[Optional[int]], dim: int, src: Tensor):
        the_size = size[dim]
        if the_size is None:
            size[dim] = src.size(self.node_dim)
        elif the_size != src.size(self.node_dim):
            raise ValueError(
                (f'Encountered tensor with size {src.size(self.node_dim)} in '
                 f'dimension {self.node_dim}, but expected size {the_size}.'))

    def __lift__(self, src, edge_index, dim):
        if isinstance(edge_index, Tensor):
            index = edge_index[dim]
            return src.index_select(self.node_dim, index)


    def __collect__(self, args, edge_index, size, x):
        i, j = (1, 0) if self.flow == 'source_to_target' else (0, 1)

        for arg in args:
            if arg[-2:] not in ['_i', '_j']:
                pass
            else:
                dim = 0 if arg[-2:] == '_j' else 1
                data = x

                if isinstance(data, (tuple, list)):
                    assert len(data) == 2
                    if isinstance(data[1 - dim], Tensor):
                        self.__set_size__(size, 1 - dim, data[1 - dim])
                    #data = data[dim]
                    data_sum = data[dim]
                    data_prod = data[dim+1]

                #if isinstance(data, Tensor):
                if isinstance(data_sum, Tensor) and isinstance(data_prod, Tensor):
                    self.__set_size__(size, dim, data_sum)
                    data_sum = self.__lift__(data_sum, edge_index, j if arg[-2:] == '_j' else i)
                    data_prod = self.__lift__(data_prod, edge_index, j if arg[-2:] == '_j' else i)
        return data_sum, data_prod

    def propagate(self, edge_index: Adj, x, size: Size = None, edge_attr = None, norm=None):

        size = self.__check_input__(edge_index, size)

        if isinstance(edge_index, Tensor) or not self.fuse:
            x_sum,x_prod = self.__collect__(self.__user_args__, edge_index, size, x)
            x_sum = self.message(x_sum)
            x_prod = self.message(x_prod)
            x_sum, x_prod = self.aggregate((x_sum, x_prod), edge_index[1],ptr=None)

        return x_sum, x_prod

    def message(self, x_j: Tensor) -> Tensor:
        return x_j


    def aggregate(self, inputs: Tensor, index: Tensor,
                  ptr: Optional[Tensor] = None,
                  dim_size: Optional[int] = None) -> Tensor:
        
        return self.scatter_sum(inputs[0], index, dim=self.node_dim),self.scatter_product(inputs[1], index, dim=self.node_dim)

    def update(self, inputs: Tensor) -> Tensor:
        return inputs
    
    
    def scatter_sum(self, src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                out: Optional[torch.Tensor] = None,
                dim_size: Optional[int] = None) -> torch.Tensor:
        index = broadcast(index, src, dim)
        if out is None:
            size = list(src.size())
            if dim_size is not None:
                size[dim] = dim_size
            elif index.numel() == 0:
                size[dim] = 0
            else:
                size[dim] = int(index.max()) + 1
            out = torch.zeros(size, dtype=src.dtype, device=src.device)
            return out.scatter_add_(dim, index, src)
        else:
            return out.scatter_add_(dim, index, src)
    
    
    def scatter_product(self, src: torch.Tensor, index: torch.Tensor, dim: int = -1,
            out: Optional[torch.Tensor] = None, dim_size: Optional[int] = None) -> torch.Tensor:
    
        index = broadcast(index, src, dim)
        size = list(src.size())
        if dim_size is not None:
            size[dim] = dim_size
        elif index.numel() == 0:
            size[dim] = 0
        else:
            size[dim] = int(index.max()) + 1
        out = torch.ones(size, dtype=src.dtype, device=src.device)
        out.scatter_(dim, index, src, reduce='multiply')
        return torch.nn.Parameter(out, requires_grad=True)
Beispiel #5
0
class MessagePassing(torch.nn.Module):
    r"""Base class for creating message passing layers of the form

    .. math::
        \mathbf{x}_i^{\prime} = \gamma_{\mathbf{\Theta}} \left( \mathbf{x}_i,
        \square_{j \in \mathcal{N}(i)} \, \phi_{\mathbf{\Theta}}
        \left(\mathbf{x}_i, \mathbf{x}_j,\mathbf{e}_{j,i}\right) \right),

    where :math:`\square` denotes a differentiable, permutation invariant
    function, *e.g.*, sum, mean or max, and :math:`\gamma_{\mathbf{\Theta}}`
    and :math:`\phi_{\mathbf{\Theta}}` denote differentiable functions such as
    MLPs.
    See `here <https://pytorch-geometric.readthedocs.io/en/latest/notes/
    create_gnn.html>`__ for the accompanying tutorial.

    Args:
        aggr (string, optional): The aggregation scheme to use
            (:obj:`"add"`, :obj:`"mean"`, :obj:`"max"` or :obj:`None`).
            (default: :obj:`"add"`)
        flow (string, optional): The flow direction of message passing
            (:obj:`"source_to_target"` or :obj:`"target_to_source"`).
            (default: :obj:`"source_to_target"`)
        node_dim (int, optional): The axis along which to propagate.
            (default: :obj:`-2`)
    """

    special_args: Set[str] = {
        'edge_index', 'adj_t', 'edge_index_i', 'edge_index_j', 'size',
        'size_i', 'size_j', 'ptr', 'index', 'dim_size'
    }

    def __init__(self,
                 aggr: Optional[str] = "add",
                 flow: str = "source_to_target",
                 node_dim: int = -2):

        super(MessagePassing, self).__init__()

        self.aggr = aggr
        assert self.aggr in ['add', 'mean', 'max', None]

        self.flow = flow
        assert self.flow in ['source_to_target', 'target_to_source']

        self.node_dim = node_dim

        self.inspector = Inspector(self)
        self.inspector.inspect(self.message)
        self.inspector.inspect(self.aggregate, pop_first=True)
        self.inspector.inspect(self.message_and_aggregate, pop_first=True)
        self.inspector.inspect(self.update, pop_first=True)

        self.__user_args__ = self.inspector.keys(
            ['message', 'aggregate', 'update']).difference(self.special_args)
        self.__fused_user_args__ = self.inspector.keys(
            ['message_and_aggregate', 'update']).difference(self.special_args)

        # Support for "fused" message passing.
        self.fuse = self.inspector.implements('message_and_aggregate')

        # Support for GNNExplainer.
        self.__explain__ = False
        self.__edge_mask__ = None

    def __check_input__(self, edge_index, size):
        the_size: List[Optional[int]] = [None, None]

        if isinstance(edge_index, Tensor):
            assert edge_index.dtype == torch.long
            assert edge_index.dim() == 2
            assert edge_index.size(0) == 2
            if size is not None:
                the_size[0] = size[0]
                the_size[1] = size[1]
            return the_size

        elif isinstance(edge_index, SparseTensor):
            if self.flow == 'target_to_source':
                raise ValueError(
                    ('Flow direction "target_to_source" is invalid for '
                     'message propagation via `torch_sparse.SparseTensor`. If '
                     'you really want to make use of a reverse message '
                     'passing flow, pass in the transposed sparse tensor to '
                     'the message passing module, e.g., `adj_t.t()`.'))
            the_size[0] = edge_index.sparse_size(1)
            the_size[1] = edge_index.sparse_size(0)
            return the_size

        raise ValueError(
            ('`MessagePassing.propagate` only supports `torch.LongTensor` of '
             'shape `[2, num_messages]` or `torch_sparse.SparseTensor` for '
             'argument `edge_index`.'))

    def __set_size__(self, size: List[Optional[int]], dim: int, src: Tensor):
        the_size = size[dim]
        if the_size is None:
            size[dim] = src.size(self.node_dim)
        elif the_size != src.size(self.node_dim):
            raise ValueError(
                (f'Encountered tensor with size {src.size(self.node_dim)} in '
                 f'dimension {self.node_dim}, but expected size {the_size}.'))

    def __lift__(self, src, edge_index, dim):
        if isinstance(edge_index, Tensor):
            index = edge_index[dim]
            return src.index_select(self.node_dim, index)
        elif isinstance(edge_index, SparseTensor):
            if dim == 1:
                rowptr = edge_index.storage.rowptr()
                rowptr = expand_left(rowptr, dim=self.node_dim, dims=src.dim())
                return gather_csr(src, rowptr)
            elif dim == 0:
                col = edge_index.storage.col()
                return src.index_select(self.node_dim, col)
        raise ValueError

    def __collect__(self, args, edge_index, size, kwargs):
        i, j = (1, 0) if self.flow == 'source_to_target' else (0, 1)

        out = {}
        for arg in args:
            if arg[-2:] not in ['_i', '_j']:
                out[arg] = kwargs.get(arg, Parameter.empty)
            else:
                dim = 0 if arg[-2:] == '_j' else 1
                data = kwargs.get(arg[:-2], Parameter.empty)

                if isinstance(data, (tuple, list)):
                    assert len(data) == 2
                    if isinstance(data[1 - dim], Tensor):
                        self.__set_size__(size, 1 - dim, data[1 - dim])
                    data = data[dim]

                if isinstance(data, Tensor):
                    self.__set_size__(size, dim, data)
                    data = self.__lift__(data, edge_index,
                                         j if arg[-2:] == '_j' else i)

                out[arg] = data

        if isinstance(edge_index, Tensor):
            out['adj_t'] = None
            out['edge_index'] = edge_index
            out['edge_index_i'] = edge_index[i]
            out['edge_index_j'] = edge_index[j]
            out['ptr'] = None
        elif isinstance(edge_index, SparseTensor):
            out['adj_t'] = edge_index
            out['edge_index'] = None
            out['edge_index_i'] = edge_index.storage.row()
            out['edge_index_j'] = edge_index.storage.col()
            out['ptr'] = edge_index.storage.rowptr()
            out['edge_weight'] = edge_index.storage.value()
            out['edge_attr'] = edge_index.storage.value()
            out['edge_type'] = edge_index.storage.value()

        out['index'] = out['edge_index_i']
        out['size'] = size
        out['size_i'] = size[1] or size[0]
        out['size_j'] = size[0] or size[1]
        out['dim_size'] = out['size_i']

        return out

    # propagate分别会调用message、aggregate、update
    def propagate(self, edge_index: Adj, size: Size = None, **kwargs):
        r"""The initial call to start propagating messages.

        Args:
            edge_index (Tensor or SparseTensor): A :obj:`torch.LongTensor` or a
                :obj:`torch_sparse.SparseTensor` that defines the underlying
                graph connectivity/message passing flow.
                :obj:`edge_index` holds the indices of a general (sparse)
                assignment matrix of shape :obj:`[N, M]`.
                If :obj:`edge_index` is of type :obj:`torch.LongTensor`, its
                shape must be defined as :obj:`[2, num_messages]`, where
                messages from nodes in :obj:`edge_index[0]` are sent to
                nodes in :obj:`edge_index[1]`
                (in case :obj:`flow="source_to_target"`).
                If :obj:`edge_index` is of type
                :obj:`torch_sparse.SparseTensor`, its sparse indices
                :obj:`(row, col)` should relate to :obj:`row = edge_index[1]`
                and :obj:`col = edge_index[0]`.
                The major difference between both formats is that we need to
                input the *transposed* sparse adjacency matrix into
                :func:`propagate`.
            size (tuple, optional): The size :obj:`(N, M)` of the assignment
                matrix in case :obj:`edge_index` is a :obj:`LongTensor`.
                If set to :obj:`None`, the size will be automatically inferred
                and assumed to be quadratic.
                This argument is ignored in case :obj:`edge_index` is a
                :obj:`torch_sparse.SparseTensor`. (default: :obj:`None`)
            **kwargs: Any additional data which is needed to construct and
                aggregate messages, and to update node embeddings.
        """
        size = self.__check_input__(edge_index, size)

        # 对稀疏矩阵进行操作
        # Run "fused" message and aggregation (if applicable).
        if (isinstance(edge_index, SparseTensor) and self.fuse
                and not self.__explain__):
            coll_dict = self.__collect__(self.__fused_user_args__, edge_index,
                                         size, kwargs)

            msg_aggr_kwargs = self.inspector.distribute(
                'message_and_aggregate', coll_dict)
            start_time = time.time()
            out = self.message_and_aggregate(edge_index, **msg_aggr_kwargs)
            end_time = time.time()
            message_time = end_time - start_time

            aggregate_time = 0  # 因为Message和Aggregate阶段合并了,为了统一形式

            update_kwargs = self.inspector.distribute('update', coll_dict)
            start_time = time.time()
            out = self.update(out, **update_kwargs)
            end_time = time.time()
            update_time = end_time - start_time

            return out, message_time, aggregate_time, update_time  # 返回结果和执行时间

        # 对于边表的操作
        # Otherwise, run both functions in separation.
        elif isinstance(edge_index, Tensor) or not self.fuse:
            coll_dict = self.__collect__(self.__user_args__, edge_index, size,
                                         kwargs)

            # 调用message并返回执行时间
            msg_kwargs = self.inspector.distribute('message', coll_dict)
            start_time = time.time()
            out = self.message(**msg_kwargs)
            end_time = time.time()
            message_time = end_time - start_time

            # For `GNNExplainer`, we require a separate message and aggregate
            # procedure since this allows us to inject the `edge_mask` into the
            # message passing computation scheme.
            if self.__explain__:
                edge_mask = self.__edge_mask__.sigmoid()
                # Some ops add self-loops to `edge_index`. We need to do the
                # same for `edge_mask` (but do not train those).
                if out.size(self.node_dim) != edge_mask.size(0):
                    loop = edge_mask.new_ones(size[0])
                    edge_mask = torch.cat([edge_mask, loop], dim=0)
                assert out.size(self.node_dim) == edge_mask.size(0)
                out = out * edge_mask.view([-1] + [1] * (out.dim() - 1))

            # 调用aggregate并返回执行时间
            aggr_kwargs = self.inspector.distribute('aggregate', coll_dict)
            start_time = time.time()
            out = self.aggregate(out, **aggr_kwargs)
            end_time = time.time()
            aggregate_time = end_time - start_time

            # 调用update并返回执行时间
            update_kwargs = self.inspector.distribute('update', coll_dict)
            start_time = time.time()
            out = self.update(out, **update_kwargs)
            end_time = time.time()
            update_time = end_time - start_time

            return out, message_time, aggregate_time, update_time  # 返回结果和执行时间

    # message阶段
    def message(self, x_j: Tensor) -> Tensor:
        r"""Constructs messages from node :math:`j` to node :math:`i`
        in analogy to :math:`\phi_{\mathbf{\Theta}}` for each edge in
        :obj:`edge_index`.
        This function can take any argument as input which was initially
        passed to :meth:`propagate`.
        Furthermore, tensors passed to :meth:`propagate` can be mapped to the
        respective nodes :math:`i` and :math:`j` by appending :obj:`_i` or
        :obj:`_j` to the variable name, *.e.g.* :obj:`x_i` and :obj:`x_j`.
        """
        return x_j

    def aggregate(self,
                  inputs: Tensor,
                  index: Tensor,
                  ptr: Optional[Tensor] = None,
                  dim_size: Optional[int] = None) -> Tensor:
        r"""Aggregates messages from neighbors as
        :math:`\square_{j \in \mathcal{N}(i)}`.

        Takes in the output of message computation as first argument and any
        argument which was initially passed to :meth:`propagate`.

        By default, this function will delegate its call to scatter functions
        that support "add", "mean" and "max" operations as specified in
        :meth:`__init__` by the :obj:`aggr` argument.
        """
        if ptr is not None:
            ptr = expand_left(ptr, dim=self.node_dim, dims=inputs.dim())
            return segment_csr(inputs, ptr, reduce=self.aggr)
        else:
            return scatter(inputs,
                           index,
                           dim=self.node_dim,
                           dim_size=dim_size,
                           reduce=self.aggr)

    # 稀疏矩阵才调用
    def message_and_aggregate(self, adj_t: SparseTensor) -> Tensor:
        r"""Fuses computations of :func:`message` and :func:`aggregate` into a
        single function.
        If applicable, this saves both time and memory since messages do not
        explicitly need to be materialized.
        This function will only gets called in case it is implemented and
        propagation takes place based on a :obj:`torch_sparse.SparseTensor`.
        """
        raise NotImplementedError

    # update阶段
    def update(self, inputs: Tensor) -> Tensor:
        r"""Updates node embeddings in analogy to
        :math:`\gamma_{\mathbf{\Theta}}` for each node
        :math:`i \in \mathcal{V}`.
        Takes in the output of aggregation as first argument and any argument
        which was initially passed to :meth:`propagate`.
        """
        return inputs

    @torch.jit.unused
    def jittable(self, typing: Optional[str] = None):
        r"""Analyzes the :class:`MessagePassing` instance and produces a new
        jittable module.

        Args:
            typing (string, optional): If given, will generate a concrete
                instance with :meth:`forward` types based on :obj:`typing`,
                *e.g.*: :obj:`"(Tensor, Optional[Tensor]) -> Tensor"`.
        """
        # Find and parse `propagate()` types to format `{arg1: type1, ...}`.
        if hasattr(self, 'propagate_type'):
            prop_types = {
                k: sanitize(str(v))
                for k, v in self.propagate_type.items()
            }
        else:
            source = inspect.getsource(self.__class__)
            match = re.search(r'#\s*propagate_type:\s*\((.*)\)', source)
            if match is None:
                raise TypeError(
                    'TorchScript support requires the definition of the types '
                    'passed to `propagate()`. Please specificy them via\n\n'
                    'propagate_type = {"arg1": type1, "arg2": type2, ... }\n\n'
                    'or via\n\n'
                    '# propagate_type: (arg1: type1, arg2: type2, ...)\n\n'
                    'inside the `MessagePassing` module.')
            prop_types = split_types_repr(match.group(1))
            prop_types = dict([re.split(r'\s*:\s*', t) for t in prop_types])

        # Parse `__collect__()` types to format `{arg:1, type1, ...}`.
        collect_types = self.inspector.types(
            ['message', 'aggregate', 'update'])

        # Collect `forward()` header, body and @overload types.
        forward_types = parse_types(self.forward)
        forward_types = [resolve_types(*types) for types in forward_types]
        forward_types = list(chain.from_iterable(forward_types))

        keep_annotation = len(forward_types) < 2
        forward_header = func_header_repr(self.forward, keep_annotation)
        forward_body = func_body_repr(self.forward, keep_annotation)

        if keep_annotation:
            forward_types = []
        elif typing is not None:
            forward_types = []
            forward_body = 8 * ' ' + f'# type: {typing}\n{forward_body}'

        root = os.path.dirname(osp.realpath(__file__))
        with open(osp.join(root, 'message_passing.jinja'), 'r') as f:
            template = Template(f.read())

        uid = uuid1().hex[:6]
        cls_name = f'{self.__class__.__name__}Jittable_{uid}'
        jit_module_repr = template.render(
            uid=uid,
            module=str(self.__class__.__module__),
            cls_name=cls_name,
            parent_cls_name=self.__class__.__name__,
            prop_types=prop_types,
            collect_types=collect_types,
            user_args=self.__user_args__,
            forward_header=forward_header,
            forward_types=forward_types,
            forward_body=forward_body,
            msg_args=self.inspector.keys(['message']),
            aggr_args=self.inspector.keys(['aggregate']),
            msg_and_aggr_args=self.inspector.keys(['message_and_aggregate']),
            update_args=self.inspector.keys(['update']),
            check_input=inspect.getsource(self.__check_input__)[:-1],
            lift=inspect.getsource(self.__lift__)[:-1],
        )

        # Instantiate a class from the rendered JIT module representation.
        cls = class_from_module_repr(cls_name, jit_module_repr)
        module = cls.__new__(cls)
        module.__dict__ = self.__dict__.copy()
        module.jittable = None

        return module