Beispiel #1
0
 def test_load_and_save_is_identity(self):
     input_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
     tensor, sample_rate = load(input_path)
     output_path = os.path.join(self.test_dirpath, 'test.wav')
     save(output_path, tensor, sample_rate, 32)
     tensor2, sample_rate2 = load(output_path)
     self.assertTrue(tensor.allclose(tensor2))
     self.assertEqual(sample_rate, sample_rate2)
     os.unlink(output_path)
Beispiel #2
0
    def test_load_partial(self):
        num_frames = 100
        offset = 200
        # load entire mono sinewave wav file, load a partial copy and then compare
        input_sine_path = os.path.join(self.test_dirpath, 'assets',
                                       'sinewave.wav')
        x_sine_full, sr_sine = load(input_sine_path)
        x_sine_part, _ = load(input_sine_path,
                              num_frames=num_frames,
                              offset=offset)
        l1_error = x_sine_full[offset:(
            num_frames + offset)].sub(x_sine_part).abs().sum().item()
        # test for the correct number of samples and that the correct portion was loaded
        self.assertEqual(x_sine_part.size(0), num_frames)
        self.assertEqual(l1_error, 0.)

        # create a two channel version of this wavefile
        x_2ch_sine = x_sine_full.repeat(1, 2)
        out_2ch_sine_path = os.path.join(self.test_dirpath, 'assets',
                                         '2ch_sinewave.wav')
        save(out_2ch_sine_path, x_2ch_sine, sr_sine)
        x_2ch_sine_load, _ = load(out_2ch_sine_path,
                                  num_frames=num_frames,
                                  offset=offset)
        os.unlink(out_2ch_sine_path)
        l1_error = x_2ch_sine_load.sub(
            x_2ch_sine[offset:(offset + num_frames)]).abs().sum().item()
        self.assertEqual(l1_error, 0.)

        # test with two channel mp3
        x_2ch_full, sr_2ch = load(self.test_filepath, normalization=True)
        x_2ch_part, _ = load(self.test_filepath,
                             normalization=True,
                             num_frames=num_frames,
                             offset=offset)
        l1_error = x_2ch_full[offset:(
            offset + num_frames)].sub(x_2ch_part).abs().sum().item()
        self.assertEqual(x_2ch_part.size(0), num_frames)
        self.assertEqual(l1_error, 0.)

        # check behavior if number of samples would exceed file length
        offset_ns = 300
        x_ns, _ = load(input_sine_path, num_frames=100000, offset=offset_ns)
        self.assertEqual(x_ns.size(0), x_sine_full.size(0) - offset_ns)

        # check when offset is beyond the end of the file
        with self.assertRaises(RuntimeError):
            load(input_sine_path, offset=100000)
Beispiel #3
0
    def test_load(self):
        # check normal loading
        x, sr = load(self.test_filepath)
        self.assertEqual(sr, 44100)
        self.assertEqual(x.size(), (278756, 2))
        self.assertGreater(x.sum(), 0)

        # check normalizing
        x, sr = load(self.test_filepath, normalization=True)
        self.assertEqual(x.dtype, torch.float32)
        self.assertTrue(x.min() >= -1.0)
        self.assertTrue(x.max() <= 1.0)

        # check raising errors
        with self.assertRaises(OSError):
            load("file-does-not-exist.mp3")

        with self.assertRaises(OSError):
            tdir = os.path.join(os.path.dirname(self.test_dirpath),
                                "torchaudio")
            load(tdir)
Beispiel #4
0
    def test_save(self):
        # load signal
        x, sr = load(self.test_filepath)

        # check save
        new_filepath = os.path.join(self.test_dirpath, "test.wav")
        save(new_filepath, x, sr)
        self.assertTrue(os.path.isfile(new_filepath))
        os.unlink(new_filepath)

        # check automatic normalization
        x /= 1 << 31
        save(new_filepath, x, sr)
        self.assertTrue(os.path.isfile(new_filepath))
        os.unlink(new_filepath)

        # test save 1d tensor
        x = x[:, 0]  # get mono signal
        x.squeeze_()  # remove channel dim
        save(new_filepath, x, sr)
        self.assertTrue(os.path.isfile(new_filepath))
        os.unlink(new_filepath)

        # don't allow invalid sizes as inputs
        with self.assertRaises(ValueError):
            x.unsqueeze_(0)  # N x L not L x N
            save(new_filepath, x, sr)

        with self.assertRaises(ValueError):
            x.squeeze_()
            x.unsqueeze_(1)
            x.unsqueeze_(0)  # 1 x L x 1
            save(new_filepath, x, sr)

        # automatically convert sr from floating point to int
        x.squeeze_(0)
        save(new_filepath, x, float(sr))
        self.assertTrue(os.path.isfile(new_filepath))
        os.unlink(new_filepath)

        # don't save to folders that don't exist
        with self.assertRaises(OSError):
            new_filepath = os.path.join(self.test_dirpath, "no-path",
                                        "test.wav")
            save(new_filepath, x, sr)

        # save created file
        sinewave_filepath = os.path.join(self.test_dirpath, "assets",
                                         "sinewave.wav")
        sr = 16000
        freq = 440
        volume = 0.3

        y = (torch.cos(2 * math.pi * torch.arange(0, 4 * sr).float() * freq /
                       sr))
        y.unsqueeze_(1)
        # y is between -1 and 1, so must scale
        y = (y * volume * 2**31).long()
        save(sinewave_filepath, y, sr)
        self.assertTrue(os.path.isfile(sinewave_filepath))

        # test precision
        new_filepath = os.path.join(self.test_dirpath, "test.wav")
        si, ei = torchaudio.info(sinewave_filepath)
        save(new_filepath, y, sr, precision=16)
        si16, ei16 = torchaudio.info(new_filepath)
        self.assertEqual(si.precision, 32)
        self.assertEqual(si16.precision, 16)
        os.unlink(new_filepath)