Beispiel #1
0
    def preprocess_parameterized(self,
                                 q_device,
                                 q_layer_parameterized,
                                 q_layer_fixed,
                                 q_layer_measure,
                                 x,
                                 ):
        circ_parameterized, params = tq2qiskit_parameterized(
            q_device, q_layer_parameterized.func_list)
        circ_fixed = tq2qiskit(q_device, q_layer_fixed,
                               remove_ops=self.remove_ops,
                               remove_ops_thres=self.remove_ops_thres)
        circ = circ_parameterized + circ_fixed

        v_c_reg_mapping = q_layer_measure.v_c_reg_mapping

        if v_c_reg_mapping is not None:
            for q_reg, c_reg in v_c_reg_mapping['v2c'].items():
                circ.measure(q_reg, c_reg)
        else:
            circ.measure(list(range(q_device.n_wires)), list(range(
                q_device.n_wires)))

        transpiled_circ = self.transpile(circ)
        self.transpiled_circs = [transpiled_circ]
        # construct the parameter_binds
        binds_all = []
        for inputs_single in x:
            binds = {}
            for k, input_single in enumerate(inputs_single):
                binds[params[k]] = input_single.item()
            binds_all.append(binds)

        return transpiled_circ, binds_all
def state_tq_vs_qiskit_test():
    bsz = 1
    for n_wires in range(2, 10):
        q_dev = tq.QuantumDevice(n_wires=n_wires)
        q_dev.reset_states(bsz=bsz)

        x = torch.randn((1, 100000), dtype=F_DTYPE)
        q_layer = AllRandomLayer(n_wires=n_wires,
                                 wires=list(range(n_wires)),
                                 n_ops_rd=500,
                                 n_ops_cin=500,
                                 n_funcs=500,
                                 qiskit_compatible=True)

        q_layer(q_dev, x)
        state_tq = q_dev.states.reshape(bsz, -1)
        state_tq = switch_little_big_endian_state(state_tq.data.numpy())

        # qiskit
        circ = tq2qiskit(q_layer, x)
        # Select the StatevectorSimulator from the Aer provider
        simulator = Aer.get_backend('statevector_simulator')

        # Execute and get counts
        result = execute(circ, simulator).result()
        state_qiskit = result.get_statevector(circ)

        stable_threshold = 1e-5
        try:
            # WARNING: need to remove the global phase! The qiskit simulated
            # results sometimes has global phase shift.
            global_phase = find_global_phase(state_tq,
                                             np.expand_dims(state_qiskit, 0),
                                             stable_threshold)

            if global_phase is None:
                logger.exception(f"Cannot find a stable enough factor to "
                                 f"reduce the global phase, increase the "
                                 f"stable_threshold and try again")
                raise RuntimeError

            assert np.allclose(state_tq * global_phase,
                               state_qiskit,
                               atol=1e-6)
            logger.info(f"PASS tq vs qiskit [n_wires]={n_wires}")

        except AssertionError:
            logger.exception(f"FAIL tq vs qiskit [n_wires]={n_wires}")
            raise AssertionError

        except RuntimeError:
            raise RuntimeError

    logger.info(f"PASS tq vs qiskit statevector test")
Beispiel #3
0
def build_module_description_test():
    import pdb
    from torchquantum.plugins import tq2qiskit

    pdb.set_trace()
    from examples.core.models.q_models import QFCModel12
    q_model = QFCModel12({'n_blocks': 4})
    desc = build_module_op_list(q_model.q_layer)
    print(desc)
    q_dev = tq.QuantumDevice(n_wires=4)
    m = build_module_from_op_list(desc)
    tq2qiskit(q_dev, m, draw=True)

    desc = build_module_op_list(
        tq.RandomLayerAllTypes(n_ops=200,
                               wires=[0, 1, 2, 3],
                               qiskit_compatible=True))
    print(desc)
    m1 = build_module_from_op_list(desc)
    tq2qiskit(q_dev, m1, draw=True)
def measurement_tq_vs_qiskit_test():
    bsz = 1
    for n_wires in range(2, 10):
        q_dev = tq.QuantumDevice(n_wires=n_wires)
        q_dev.reset_states(bsz=bsz)

        x = torch.randn((1, 100000), dtype=F_DTYPE)
        q_layer = AllRandomLayer(n_wires=n_wires,
                                 wires=list(range(n_wires)),
                                 n_ops_rd=500,
                                 n_ops_cin=500,
                                 n_funcs=500,
                                 qiskit_compatible=True)

        q_layer(q_dev, x)
        measurer = tq.MeasureAll(obs=tq.PauliZ)
        # flip because qiskit is from N to 0, tq is from 0 to N
        measured_tq = np.flip(measurer(q_dev).data[0].numpy())

        # qiskit
        circ = tq2qiskit(q_layer, x)
        circ.measure(list(range(n_wires)), list(range(n_wires)))

        # Select the QasmSimulator from the Aer provider
        simulator = Aer.get_backend('qasm_simulator')

        # Execute and get counts
        result = execute(circ, simulator, shots=1000000).result()
        counts = result.get_counts(circ)
        measured_qiskit = get_expectations_from_counts(counts, n_wires=n_wires)

        try:
            # WARNING: the measurement has randomness, so tolerate larger
            # differences (MAX 20%) between tq and qiskit
            # typical mean difference is less than 1%
            diff = np.abs(measured_tq - measured_qiskit).mean()
            diff_ratio = (np.abs(
                (measured_tq - measured_qiskit) / measured_qiskit)).mean()
            logger.info(f"Diff: tq vs qiskit {diff} \t Diff Ratio: "
                        f"{diff_ratio}")
            assert np.allclose(measured_tq,
                               measured_qiskit,
                               atol=1e-4,
                               rtol=2e-1)
            logger.info(f"PASS tq vs qiskit [n_wires]={n_wires}")

        except AssertionError:
            logger.exception(f"FAIL tq vs qiskit [n_wires]={n_wires}")
            raise AssertionError

    logger.info(f"PASS tq vs qiskit measurement test")
def unitary_tq_vs_qiskit_test():
    for n_wires in range(2, 10):
        q_dev = tq.QuantumDevice(n_wires=n_wires)
        x = torch.randn((1, 100000), dtype=F_DTYPE)
        q_layer = AllRandomLayer(n_wires=n_wires,
                                 wires=list(range(n_wires)),
                                 n_ops_rd=500,
                                 n_ops_cin=500,
                                 n_funcs=500,
                                 qiskit_compatible=True)

        unitary_tq = q_layer.get_unitary(q_dev, x)
        unitary_tq = switch_little_big_endian_matrix(unitary_tq.data.numpy())

        # qiskit
        circ = tq2qiskit(q_layer, x)
        simulator = Aer.get_backend('unitary_simulator')
        result = execute(circ, simulator).result()
        unitary_qiskit = result.get_unitary(circ)

        stable_threshold = 1e-5
        try:
            # WARNING: need to remove the global phase! The qiskit simulated
            # results sometimes has global phase shift.
            global_phase = find_global_phase(unitary_tq, unitary_qiskit,
                                             stable_threshold)

            if global_phase is None:
                logger.exception(f"Cannot find a stable enough factor to "
                                 f"reduce the global phase, increase the "
                                 f"stable_threshold and try again")
                raise RuntimeError

            assert np.allclose(unitary_tq * global_phase,
                               unitary_qiskit,
                               atol=1e-6)
            logger.info(f"PASS tq vs qiskit [n_wires]={n_wires}")

        except AssertionError:
            logger.exception(f"FAIL tq vs qiskit [n_wires]={n_wires}")
            raise AssertionError

        except RuntimeError:
            raise RuntimeError

    logger.info(f"PASS tq vs qiskit unitary test")
Beispiel #6
0
    def process(self, q_device: tq.QuantumDevice, q_layer: tq.QuantumModule,
                q_layer_measure: tq.QuantumModule, x):
        circs = []
        for i, x_single in tqdm(enumerate(x)):
            circ = tq2qiskit(q_device, q_layer, x_single.unsqueeze(0))
            if q_layer_measure.v_c_reg_mapping is not None:
                for q_reg, c_reg in q_layer_measure.v_c_reg_mapping[
                        'v2c'].items():
                    circ.measure(q_reg, c_reg)
            else:
                circ.measure(list(range(q_device.n_wires)), list(range(
                    q_device.n_wires)))
            circs.append(circ)

        transpiled_circs = self.transpile(circs)
        self.transpiled_circs = transpiled_circs

        job = execute(experiments=transpiled_circs,
                      backend=self.backend,
                      shots=self.n_shots,
                      # initial_layout=self.initial_layout,
                      seed_transpiler=self.seed_transpiler,
                      seed_simulator=self.seed_simulator,
                      coupling_map=self.coupling_map,
                      basis_gates=self.basis_gates,
                      noise_model=self.noise_model,
                      optimization_level=self.optimization_level,
                      )
        job_monitor(job, interval=1)

        result = job.result()
        counts = result.get_counts()

        measured_qiskit = get_expectations_from_counts(
            counts, n_wires=q_device.n_wires)
        measured_qiskit = torch.tensor(measured_qiskit, device=x.device)

        return measured_qiskit
Beispiel #7
0
def main() -> None:
    # dist.init()
    torch.backends.cudnn.benchmark = True
    # torch.cuda.set_device(dist.local_rank())

    parser = argparse.ArgumentParser()
    parser.add_argument('config', metavar='FILE', help='config file')
    parser.add_argument('--ckpt-dir', metavar='DIR', help='run directory')
    parser.add_argument('--pdb', action='store_true', help='pdb')
    parser.add_argument('--gpu', type=str, help='gpu ids', default=None)
    parser.add_argument('--print-configs',
                        action='store_true',
                        help='print ALL configs')
    args, opts = parser.parse_known_args()

    configs.load(args.config, recursive=True)
    configs.update(opts)

    if configs.debug.pdb or args.pdb:
        pdb.set_trace()

    if args.gpu is not None:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu

    if configs.debug.set_seed:
        torch.manual_seed(configs.debug.seed)
        np.random.seed(configs.debug.seed)

    if configs.run.device == 'gpu':
        device = torch.device('cuda')
    elif configs.run.device == 'cpu':
        device = torch.device('cpu')
    else:
        raise ValueError(configs.run.device)

    if isinstance(configs.optimizer.lr, str):
        configs.optimizer.lr = eval(configs.optimizer.lr)

    # set the run dir according to config file's name
    args.run_dir = 'runs/' + args.config.replace('/', '.').replace(
        'examples.', '').replace('.yml', '').replace('configs.', '')
    set_run_dir(args.run_dir)

    logger.info(' '.join([sys.executable] + sys.argv))

    if args.print_configs:
        print_conf = configs
    else:
        print_conf = get_cared_configs(configs, 'train')

    logger.info(f'Training started: "{args.run_dir}".' + '\n' +
                f'{print_conf}')

    dataset = builder.make_dataset()
    dataflow = dict()

    # for split in dataset:
    #     sampler = torch.utils.data.distributed.DistributedSampler(
    #         dataset[split],
    #         num_replicas=dist.size(),
    #         rank=dist.rank(),
    #         shuffle=(split == 'train'))
    #     dataflow[split] = torch.utils.data.DataLoader(
    #         dataset[split],
    #         batch_size=configs.run.bsz // dist.size(),
    #         sampler=sampler,
    #         num_workers=configs.run.workers_per_gpu,
    #         pin_memory=True)

    for split in dataset:
        if split == 'train':
            sampler = torch.utils.data.RandomSampler(dataset[split])
            batch_size = configs.run.bsz
        else:
            # for valid and test, use SequentialSampler to make the train.py
            # and eval.py results consistent
            sampler = torch.utils.data.SequentialSampler(dataset[split])
            batch_size = getattr(configs.run, 'eval_bsz', configs.run.bsz)

        dataflow[split] = torch.utils.data.DataLoader(
            dataset[split],
            batch_size=batch_size,
            sampler=sampler,
            num_workers=configs.run.workers_per_gpu,
            pin_memory=True)

    model = builder.make_model()

    state_dict = {}
    solution = None
    score = None
    if configs.ckpt.load_ckpt:
        logger.warning('Loading checkpoint!')
        state_dict = io.load(os.path.join(args.ckpt_dir, configs.ckpt.name),
                             map_location='cpu')
        if getattr(state_dict, 'model_arch', None) is not None:
            model_load = state_dict['model_arch']
            for module_load, module in zip(model_load.modules(),
                                           model.modules()):
                if isinstance(module, tq.RandomLayer):
                    # random layer, need to restore the architecture
                    module.rebuild_random_layer_from_op_list(
                        n_ops_in=module_load.n_ops,
                        wires_in=module_load.wires,
                        op_list_in=module_load.op_list,
                    )

        if not configs.ckpt.weight_from_scratch:
            model.load_state_dict(state_dict['model'], strict=False)
        else:
            logger.warning(f"DO NOT load weight, train weights from scratch!")

        if 'solution' in state_dict.keys():
            solution = state_dict['solution']
            logger.info(f"Loading the solution {solution}")
            logger.info(f"Original score: {state_dict['score']}")
            model.set_sample_arch(solution['arch'])
            score = state_dict['score']

        if 'v_c_reg_mapping' in state_dict.keys():
            try:
                model.measure.set_v_c_reg_mapping(
                    state_dict['v_c_reg_mapping'])
            except AttributeError:
                logger.warning(f"Cannot set v_c_reg_mapping.")

        if configs.model.load_op_list:
            assert state_dict['q_layer_op_list'] is not None
            logger.warning(f"Loading the op_list, will replace the q_layer in "
                           f"the original model!")
            q_layer = build_module_from_op_list(state_dict['q_layer_op_list'])
            model.q_layer = q_layer

    if configs.model.transpile_before_run:
        # transpile the q_layer
        logger.warning(f"Transpile the q_layer to basis gate set before "
                       f"training, will replace the q_layer!")
        processor = builder.make_qiskit_processor()

        if getattr(model, 'q_layer', None) is not None:
            circ = tq2qiskit(model.q_device, model.q_layer)
            """
            add measure because the transpile process may permute the wires, 
            so we need to get the final q reg to c reg mapping 
            """
            circ.measure(list(range(model.q_device.n_wires)),
                         list(range(model.q_device.n_wires)))
            logger.info("Transpiling circuit...")

            if solution is not None:
                processor.set_layout(solution['layout'])
                logger.warning(
                    f"Set layout {solution['layout']} for transpile!")

            circ_transpiled = processor.transpile(circs=circ)
            q_layer = qiskit2tq(circ=circ_transpiled)

            model.measure.set_v_c_reg_mapping(
                get_v_c_reg_mapping(circ_transpiled))
            model.q_layer = q_layer

            if configs.trainer.add_noise:
                # noise-aware training
                noise_model_tq = builder.make_noise_model_tq()
                noise_model_tq.is_add_noise = True
                noise_model_tq.v_c_reg_mapping = get_v_c_reg_mapping(
                    circ_transpiled)
                noise_model_tq.p_c_reg_mapping = get_p_c_reg_mapping(
                    circ_transpiled)
                noise_model_tq.p_v_reg_mapping = get_p_v_reg_mapping(
                    circ_transpiled)
                model.set_noise_model_tq(noise_model_tq)

        elif getattr(model, 'nodes', None) is not None:
            # every node has a noise model because it is possible that
            # different nodes run on different QC
            for node in model.nodes:
                circ = tq2qiskit(node.q_device, node.q_layer)
                circ.measure(list(range(node.q_device.n_wires)),
                             list(range(node.q_device.n_wires)))
                circ_transpiled = processor.transpile(circs=circ)
                q_layer = qiskit2tq(circ=circ_transpiled)

                node.measure.set_v_c_reg_mapping(
                    get_v_c_reg_mapping(circ_transpiled))
                node.q_layer = q_layer

                if configs.trainer.add_noise:
                    # noise-aware training
                    noise_model_tq = builder.make_noise_model_tq()
                    noise_model_tq.is_add_noise = True
                    noise_model_tq.v_c_reg_mapping = get_v_c_reg_mapping(
                        circ_transpiled)
                    noise_model_tq.p_c_reg_mapping = get_p_c_reg_mapping(
                        circ_transpiled)
                    noise_model_tq.p_v_reg_mapping = get_p_v_reg_mapping(
                        circ_transpiled)
                    node.set_noise_model_tq(noise_model_tq)

    if getattr(configs.model.arch, 'sample_arch', None) is not None and \
            not configs.model.transpile_before_run:
        sample_arch = configs.model.arch.sample_arch
        logger.warning(f"Setting sample arch {sample_arch} from config file!")
        if isinstance(sample_arch, str):
            # this is the name of arch
            sample_arch = get_named_sample_arch(model.arch_space, sample_arch)
            logger.warning(f"Decoded sample arch: {sample_arch}")
        model.set_sample_arch(sample_arch)

    if configs.trainer.name == 'pruning_trainer':
        """
        in pruning, convert the super layers to module list, otherwise the 
        pruning ratio is difficulty to set
        """
        logger.warning(f"Convert sampled layer to module list layer!")
        model.q_layer = build_module_from_op_list(
            build_module_op_list(model.q_layer))

    model.to(device)
    # model = torch.nn.parallel.DistributedDataParallel(
    #     model.cuda(),
    #     device_ids=[dist.local_rank()],
    #     find_unused_parameters=True)
    if getattr(model, 'sample_arch', None) is not None and \
            not configs.model.transpile_before_run and \
            not configs.trainer.name == 'pruning_trainer':
        n_params = model.count_sample_params()
        logger.info(f"Number of sampled params: {n_params}")

    total_params = sum(p.numel() for p in model.parameters())
    logger.info(f'Model Size: {total_params}')

    # logger.info(f'Model MACs: {profile_macs(model, inputs)}')

    criterion = builder.make_criterion()
    optimizer = builder.make_optimizer(model)
    scheduler = builder.make_scheduler(optimizer)
    trainer = builder.make_trainer(model=model,
                                   criterion=criterion,
                                   optimizer=optimizer,
                                   scheduler=scheduler)
    trainer.solution = solution
    trainer.score = score

    # trainer state_dict will be loaded in a callback
    callbacks = builder.make_callbacks(dataflow, state_dict)

    trainer.train_with_defaults(dataflow['train'],
                                num_epochs=configs.run.n_epochs,
                                callbacks=callbacks)
Beispiel #8
0
    def evaluate_all(self,
                     model,
                     dataflow,
                     solutions,
                     writer=None,
                     iter_n=None,
                     population_size=None):
        scores = []

        best_solution = None
        best_solution_accuracy = 0
        best_solution_loss = 0
        best_solution_success_rate = 0
        best_solution_score = 999999

        for i, solution in tqdm.tqdm(enumerate(solutions)):
            fingerprint = solution.copy()
            arch = solution['arch']
            fingerprint['arch'] = arch[:arch[-1] *
                                       configs.model.arch.n_layers_per_block]
            fingerprint['arch'].append(arch[-1])
            fingerprint = str(fingerprint)
            if fingerprint in self.solution_lib.keys():
                """circuit has been simulated before"""
                logger.info(f"loaded from lib")
                loss = self.solution_lib[fingerprint]['loss']
                accuracy = self.solution_lib[fingerprint]['accuracy']
                success_rate = self.solution_lib[fingerprint]['success_rate']
            else:
                if model.qiskit_processor is not None:
                    model.qiskit_processor.set_layout(solution['layout'])
                model.set_sample_arch(solution['arch'])
                with torch.no_grad():
                    target_all = None
                    output_all = None
                    for feed_dict in dataflow:
                        if configs.run.device == 'gpu':
                            inputs = feed_dict[
                                configs.dataset.input_name].cuda(
                                    non_blocking=True)
                            targets = feed_dict[
                                configs.dataset.target_name].cuda(
                                    non_blocking=True)
                        else:
                            inputs = feed_dict[configs.dataset.input_name]
                            targets = feed_dict[configs.dataset.target_name]

                        outputs = model(inputs,
                                        use_qiskit=configs.qiskit.use_qiskit)

                        if target_all is None:
                            target_all = targets
                            output_all = outputs
                        else:
                            target_all = torch.cat([target_all, targets],
                                                   dim=0)
                            output_all = torch.cat([output_all, outputs],
                                                   dim=0)

                if configs.dataset.name == 'vqe':
                    loss = output_all[0].item()
                    accuracy = -1
                else:
                    k = 1
                    _, indices = output_all.topk(k, dim=1)
                    masks = indices.eq(
                        target_all.view(-1, 1).expand_as(indices))
                    size = target_all.shape[0]
                    corrects = masks.sum().item()
                    accuracy = corrects / size
                    loss = F.nll_loss(output_all, target_all).item()

                if configs.es.est_success_rate:
                    circ_parameterized, params = tq2qiskit_parameterized(
                        model.q_device, model.encoder.func_list)
                    circ_fixed = tq2qiskit(model.q_device, model.q_layer)
                    circ = circ_parameterized + circ_fixed
                    transpiled_circ = model.qiskit_processor.transpile(circ)

                    success_rate = get_success_rate(
                        model.qiskit_processor.properties, transpiled_circ)
                else:
                    success_rate = 1

                self.solution_lib[fingerprint] = {
                    'loss': loss,
                    'accuracy': accuracy,
                    'success_rate': success_rate,
                }
            if configs.es.score_mode == 'loss_succ':
                score = loss / success_rate
            elif configs.es.score_mode == 'acc_succ':
                score = -accuracy * success_rate
            else:
                raise NotImplementedError

            scores.append(score)
            logger.info(f"Current solution: {solution}\n"
                        f"Accuracy: {accuracy:.5f}, Loss: {loss:.5f}, "
                        f"Success Rate: {success_rate: .5f}, "
                        f"Score: {score:.5f}")

            if score < best_solution_score:
                best_solution = solution
                best_solution_accuracy = accuracy
                best_solution_success_rate = success_rate
                best_solution_loss = loss
                best_solution_score = score

            logger.info(f"Best of iteration: "
                        f"Solution: {best_solution}\n"
                        f"Accuracy: {best_solution_accuracy:.5f}, "
                        f"Loss: {best_solution_loss:.5f}, "
                        f"Success Rate: {best_solution_success_rate: .5f}, "
                        f"Score: {best_solution_score:.5f}")

            if population_size is not None and writer is not None and \
                    population_size is not None:
                writer.add_scalar('es/accuracy', accuracy,
                                  iter_n * population_size + i)
                writer.add_scalar('es/loss', loss,
                                  iter_n * population_size + i)
                writer.add_scalar('es/success_rate', success_rate,
                                  iter_n * population_size + i)
                writer.add_scalar('es/score', score,
                                  iter_n * population_size + i)

        return scores, best_solution_accuracy, best_solution_loss, \
            best_solution_success_rate, best_solution_score
Beispiel #9
0
def main() -> None:
    torch.backends.cudnn.benchmark = True

    parser = argparse.ArgumentParser()
    parser.add_argument('config', metavar='FILE', help='config file')
    parser.add_argument('--run-dir', metavar='DIR', help='run directory')
    parser.add_argument('--pdb', action='store_true', help='pdb')
    parser.add_argument('--verbose', action='store_true', help='verbose')
    parser.add_argument('--gpu', type=str, help='gpu ids', default=None)
    parser.add_argument('--print-configs',
                        action='store_true',
                        help='print ALL configs')
    parser.add_argument('--jobs',
                        type=int,
                        default=None,
                        help='max parallel job on qiskit')
    parser.add_argument('--hub', type=str, default=None, help='IBMQ provider')

    args, opts = parser.parse_known_args()

    configs.load(os.path.join(args.run_dir, 'metainfo', 'configs.yaml'))
    configs.load(args.config, recursive=True)
    configs.update(opts)

    # for eval, always need load weights
    configs.ckpt.weight_from_scratch = False

    if configs.debug.pdb or args.pdb:
        pdb.set_trace()

    configs.verbose = args.verbose
    configs.qiskit.hub = args.hub

    if args.gpu is not None:
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu

    if args.jobs is not None:
        configs.qiskit.max_jobs = args.jobs

    if configs.run.device == 'gpu':
        device = torch.device('cuda')
    elif configs.run.device == 'cpu':
        device = torch.device('cpu')
    else:
        raise ValueError(configs.run.device)

    if args.print_configs:
        print_conf = configs
    else:
        print_conf = get_cared_configs(configs, 'eval')

    logger.info(f'Evaluation started: "{args.run_dir}".' + '\n' +
                f'{print_conf}')

    eval_config_dir = args.config.replace('/', '.').replace(
        'examples.', '').replace('.yml', '').replace('configs.', '')
    configs.eval_config_dir = eval_config_dir
    configs.run_dir = args.run_dir

    # if configs.qiskit.use_qiskit:
    #     IBMQ.load_account()
    #     if configs.run.bsz == 'qiskit_max':
    #         configs.run.bsz = IBMQ.get_provider(hub='ibm-q').get_backend(
    #             configs.qiskit.backend_name).configuration().max_experiments

    dataset = builder.make_dataset()
    sampler = torch.utils.data.SequentialSampler(
        dataset[configs.dataset.split])
    dataflow = torch.utils.data.DataLoader(
        dataset[configs.dataset.split],
        sampler=sampler,
        batch_size=configs.run.bsz,
        num_workers=configs.run.workers_per_gpu,
        pin_memory=True)

    state_dict = io.load(os.path.join(args.run_dir, configs.ckpt.name),
                         map_location='cpu')
    model_load = state_dict['model_arch']
    model = builder.make_model()
    for module_load, module in zip(model_load.modules(), model.modules()):
        if isinstance(module, tq.RandomLayer):
            # random layer, need to restore the architecture
            module.rebuild_random_layer_from_op_list(
                n_ops_in=module_load.n_ops,
                wires_in=module_load.wires,
                op_list_in=module_load.op_list,
            )

    model.load_state_dict(state_dict['model'], strict=False)

    solution = None
    if 'solution' in state_dict.keys():
        solution = state_dict['solution']
        logger.info(f"Evaluate the solution {solution}")
        logger.info(f"Original score: {state_dict['score']}")
        model.set_sample_arch(solution['arch'])

    if 'v_c_reg_mapping' in state_dict.keys():
        if getattr(model, 'q_layer', None) is not None:
            try:
                model.measure.set_v_c_reg_mapping(
                    state_dict['v_c_reg_mapping'])
            except AttributeError:
                logger.warning(f"Cannot set v_c_reg_mapping.")
        elif getattr(model, 'nodes', None) is not None:
            for k, node in enumerate(model.nodes):
                node.measure.set_v_c_reg_mapping(
                    state_dict['v_c_reg_mapping'][k])

    if state_dict.get('q_layer_op_list', None) is not None and not \
            configs.model.load_op_list:
        logger.warning(f"the model has op_list but is not loaded!!")

    if configs.model.load_op_list:
        assert state_dict['q_layer_op_list'] is not None
        logger.warning(f"Loading the op_list, will replace the q_layer in "
                       f"the original model!")
        if getattr(model, 'q_layer', None) is not None:
            q_layer = build_module_from_op_list(
                op_list=state_dict['q_layer_op_list'],
                remove_ops=configs.prune.eval.remove_ops,
                thres=configs.prune.eval.remove_ops_thres)
            model.q_layer = q_layer
        elif getattr(model, 'nodes', None) is not None:
            for k, node in enumerate(model.nodes):
                q_layer = build_module_from_op_list(
                    op_list=state_dict['q_layer_op_list'][k],
                    remove_ops=configs.prune.eval.remove_ops,
                    thres=configs.prune.eval.remove_ops_thres)
                node.q_layer = q_layer

    if state_dict.get('noise_model_tq', None) is not None:
        # the readout error is ALSO applied for eval and test so need load
        # noise_model_tq
        if getattr(model, 'q_layer', None) is not None:
            model.set_noise_model_tq(state_dict['noise_model_tq'])
            if getattr(configs, 'add_noise', False):
                model.noise_model_tq.mode = 'train'
                model.noise_model_tq.noise_total_prob = \
                    configs.noise_total_prob
            else:
                model.noise_model_tq.mode = 'test'
        elif getattr(model, 'nodes', None) is not None:
            for k, node in enumerate(model.nodes):
                node.set_noise_model_tq(state_dict['noise_model_tq'][k])
                if getattr(configs, 'add_noise', False):
                    node.noise_model_tq.mode = 'train'
                    node.noise_model_tq.noise_total_prob = \
                        configs.noise_total_prob
                else:
                    node.noise_model_tq.mode = 'test'

    if configs.model.transpile_before_run:
        # transpile the q_layer
        logger.warning(f"Transpile the q_layer to basis gate set before "
                       f"evaluation, will replace the q_layer!")
        processor = builder.make_qiskit_processor()

        circ = tq2qiskit(model.q_device, model.q_layer)
        """
        add measure because the transpile process may permute the wires, 
        so we need to get the final q reg to c reg mapping 
        """
        circ.measure(list(range(model.q_device.n_wires)),
                     list(range(model.q_device.n_wires)))

        if solution is not None:
            processor.set_layout(solution['layout'])
            logger.warning(f"Set layout {solution['layout']} for transpile!")

        logger.info("Transpiling circuit...")
        circ_transpiled = processor.transpile(circs=circ)
        q_layer = qiskit2tq(circ=circ_transpiled)

        model.measure.set_v_c_reg_mapping(get_v_c_reg_mapping(circ_transpiled))
        model.q_layer = q_layer

    if configs.legalization.legalize:
        legalize_unitary(model)

    if configs.act_quant.add_in_eval:
        quantizers = []
        assert getattr(model, 'nodes', None) is not None
        if getattr(configs.act_quant, 'act_quant_bit', None) is not None:
            # settings from config file has higher priority
            act_quant_bit = configs.act_quant.act_quant_bit
            act_quant_ratio = configs.act_quant.act_quant_ratio
            act_quant_level = configs.act_quant.act_quant_level
            act_quant_lower_bound = configs.act_quant.act_quant_lower_bound
            act_quant_upper_bound = configs.act_quant.act_quant_upper_bound
            logger.warning(f"Get act_quant setting from config file!")
        elif state_dict.get('act_quant', None) is not None:
            act_quant_bit = state_dict['act_quant']['act_quant_bit']
            act_quant_ratio = state_dict['act_quant']['act_quant_ratio']
            act_quant_level = state_dict['act_quant']['act_quant_level']
            act_quant_lower_bound = state_dict['act_quant'][
                'act_quant_lower_bound']
            act_quant_upper_bound = state_dict['act_quant'][
                'act_quant_upper_bound']
            logger.warning(f"Get act_quant setting from ckpt file!")
        elif getattr(configs.trainer, 'act_quant_bit', None) is not None:
            # if the act_quant info is not stored in ckpt, use the info from
            # training config file
            act_quant_bit = configs.trainer.act_quant_bit
            act_quant_ratio = configs.trainer.act_quant_ratio
            act_quant_level = configs.trainer.act_quant_level
            act_quant_lower_bound = configs.trainer.act_quant_lower_bound
            act_quant_upper_bound = configs.trainer.act_quant_upper_bound
            logger.warning(f"Get act_quant setting from previous training "
                           f"config file!")
        else:
            raise NotImplementedError('No act_quant info specified!')

        logger.warning(f"act_quant_bit={act_quant_bit}, "
                       f"act_quant_ratio={act_quant_ratio}, "
                       f"act_quant_level={act_quant_level}, "
                       f"act_quant_lower_bound={act_quant_lower_bound}, "
                       f"act_quant_upper_bound={act_quant_upper_bound}")

        for k, node in enumerate(model.nodes):
            if configs.trainer.act_quant_skip_last_node and k == len(
                    model.nodes) - 1:
                continue
            quantizer = PACTActivationQuantizer(
                module=node,
                precision=act_quant_bit,
                level=act_quant_level,
                alpha=1.0,
                backprop_alpha=False,
                quant_ratio=act_quant_ratio,
                device=device,
                lower_bound=act_quant_lower_bound,
                upper_bound=act_quant_upper_bound,
            )
            quantizers.append(quantizer)

        for quantizer in quantizers:
            quantizer.register_hook()

    if getattr(configs, 'pre_specified_mean', None) is not None and \
            configs.pre_specified_std \
            is not None:
        for k, node in enumerate(model.nodes):
            node.pre_specified_mean_std = {
                'mean': configs.pre_specified_mean[k],
                'std': configs.pre_specified_std[k],
            }

    model.to(device)
    model.eval()

    if configs.qiskit.use_qiskit:
        qiskit_processor = builder.make_qiskit_processor()
        if configs.qiskit.initial_layout is not None:
            layout = configs.qiskit.initial_layout
            logger.warning(f"Use layout {layout} from config file")
        elif 'solution' in state_dict.keys():
            layout = state_dict['solution']['layout']
            logger.warning(f"Use layout {layout} from checkpoint file")
        else:
            layout = None
            logger.warning(f"No specified layout")
        qiskit_processor.set_layout(layout)
        model.set_qiskit_processor(qiskit_processor)

    if getattr(configs.model.arch, 'sample_arch', None) is not None:
        sample_arch = configs.model.arch.sample_arch
        logger.warning(f"Setting sample arch {sample_arch} from config file!")
        if isinstance(sample_arch, str):
            # this is the name of arch
            sample_arch = get_named_sample_arch(model.arch_space, sample_arch)
            logger.warning(f"Decoded sample arch: {sample_arch}")
        model.set_sample_arch(sample_arch)

    if configs.get_n_params:
        n_params = model.count_sample_params()
        logger.info(f"Number of sampled params: {n_params}")
        exit(0)

    if configs.qiskit.est_success_rate:
        circ_parameterized, params = tq2qiskit_parameterized(
            model.q_device, model.encoder.func_list)
        circ_fixed = tq2qiskit(model.q_device, model.q_layer)
        circ = circ_parameterized + circ_fixed
        transpiled_circ = model.qiskit_processor.transpile(circ)

        success_rate = get_success_rate(model.qiskit_processor.properties,
                                        transpiled_circ)
        logger.info(f"Success rate: {success_rate}")
        logger.info(f"Size: {transpiled_circ.size()}")
        logger.info(f"Depth: {transpiled_circ.depth()}")
        logger.info(f"Width: {transpiled_circ.width()}")
        exit(0)

    total_params = sum(p.numel() for p in model.parameters())
    logger.info(f'Model Size: {total_params}')

    if hasattr(model, 'sample_arch') and not configs.model.load_op_list:
        n_params = model.count_sample_params()
        logger.info(f"Number of sampled params: {n_params}")

    with torch.no_grad():
        target_all = None
        output_all = None
        for feed_dict in tqdm.tqdm(dataflow):
            if configs.run.device == 'gpu':
                inputs = feed_dict[configs.dataset.input_name].cuda(
                    non_blocking=True)
                targets = feed_dict[configs.dataset.target_name].cuda(
                    non_blocking=True)
            else:
                inputs = feed_dict[configs.dataset.input_name]
                targets = feed_dict[configs.dataset.target_name]

            outputs = model(inputs,
                            verbose=configs.verbose,
                            use_qiskit=configs.qiskit.use_qiskit)

            if target_all is None:
                target_all = targets
                output_all = outputs
            else:
                target_all = torch.cat([target_all, targets], dim=0)
                output_all = torch.cat([output_all, outputs], dim=0)
            # if configs.verbose:
            #     logger.info(f"Measured log_softmax: {outputs}")
            if not configs.dataset.name == 'vqe':
                log_acc(output_all, target_all)

    logger.info("Final:")
    if not configs.dataset.name == 'vqe':
        log_acc(output_all, target_all)
    else:
        logger.info(f"Eigenvalue: {output_all.detach().cpu().numpy()}")
Beispiel #10
0
    def process_multi_measure(self,
                              q_device: tq.QuantumDevice,
                              q_layer: tq.QuantumModule,
                              q_layer_measure: tq.QuantumModule,):
        obs_list = q_layer_measure.obs_list
        v_c_reg_mapping = q_layer_measure.v_c_reg_mapping
        circ_fixed = tq2qiskit(q_device, q_layer,
                               remove_ops=self.remove_ops,
                               remove_ops_thres=self.remove_ops_thres)

        transpiled_circ_fixed = self.transpile(circ_fixed)

        circ_all = []

        for hamil in obs_list:
            circ_diagonalize = QuantumCircuit(q_device.n_wires,
                                              q_device.n_wires)

            # diagonalize the measurements
            for wire, observable in zip(hamil['wires'], hamil['observables']):
                if observable == 'x':
                    circ_diagonalize.h(qubit=wire)
                elif observable == 'y':
                    circ_diagonalize.z(qubit=wire)
                    circ_diagonalize.s(qubit=wire)
                    circ_diagonalize.h(qubit=wire)

            if v_c_reg_mapping is not None:
                for q_reg, c_reg in v_c_reg_mapping['v2c'].items():
                    circ_diagonalize.measure(q_reg, c_reg)
            else:
                circ_diagonalize.measure(list(range(q_device.n_wires)),
                                         list(range(q_device.n_wires)))

            transpiled_circ_diagonalize = self.transpile(circ_diagonalize)
            circ_all.append(transpiled_circ_fixed +
                            transpiled_circ_diagonalize)

        self.transpiled_circs = circ_all

        if hasattr(self.backend.configuration(), 'max_experiments'):
            chunk_size = self.backend.configuration().max_experiments
        else:
            # using simulator, apply multithreading
            chunk_size = len(circ_all) // self.max_jobs

        split_circs = [circ_all[i:i + chunk_size] for i in range(
            0, len(circ_all), chunk_size)]

        qiskit_verbose = self.max_jobs <= 2
        feed_dicts = []
        for split_circ in split_circs:
            feed_dict = {
                'experiments': split_circ,
                'backend': self.backend,
                'pass_manager': self.empty_pass_manager,
                'shots': self.n_shots,
                'seed_simulator': self.seed_simulator,
                'noise_model': self.noise_model,
            }
            feed_dicts.append([feed_dict, qiskit_verbose])

        p = multiprocessing.Pool(self.max_jobs)
        results = p.map(run_job_worker, feed_dicts)
        p.close()

        if all(isinstance(result, dict) for result in results):
            counts = results
        else:
            if isinstance(results[-1], dict):
                results[-1] = [results[-1]]
            counts = list(itertools.chain(*results))

        measured_qiskit = get_expectations_from_counts(
            counts, n_wires=q_device.n_wires)

        measured_qiskit = torch.tensor(measured_qiskit,
                                       device=q_device.state.device)

        return measured_qiskit