Beispiel #1
0
def test_select_fwe():
    """Ensure that the TPOT select fwe outputs the input dataframe when no. of training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(
        tpot_obj._select_fwe(training_testing_data.ix[:, -3:], 0.005),
        training_testing_data.ix[:, -3:])
Beispiel #2
0
def test_select_fwe_4():
    """Ensure that the TPOT select fwe outputs the same result as sklearn fwe when 0.001 < alpha < 0.05"""
    tpot_obj = TPOT()
    non_feature_columns = ['class', 'group', 'guess']
    training_features = training_testing_data.loc[training_testing_data['group'] == 'training'].drop(non_feature_columns, axis=1)
    training_class_vals = training_testing_data.loc[training_testing_data['group'] == 'training', 'class'].values

    with warnings.catch_warnings():
        warnings.simplefilter('ignore', category=UserWarning)
        selector = SelectFwe(f_classif, alpha=0.042)
        selector.fit(training_features, training_class_vals)
        mask = selector.get_support(True)
    mask_cols = list(training_features.iloc[:, mask].columns) + non_feature_columns

    assert np.array_equal(tpot_obj._select_fwe(training_testing_data, 0.042), training_testing_data[mask_cols])
Beispiel #3
0
def test_select_fwe_4():
    """Ensure that the TPOT select fwe outputs the same result as sklearn fwe when 0.001 < alpha < 0.05"""
    tpot_obj = TPOT()
    non_feature_columns = ['class', 'group', 'guess']
    training_features = training_testing_data.loc[training_testing_data['group'] == 'training'].drop(non_feature_columns, axis=1)
    training_class_vals = training_testing_data.loc[training_testing_data['group'] == 'training', 'class'].values

    with warnings.catch_warnings():
        warnings.simplefilter('ignore', category=UserWarning)
        selector = SelectFwe(f_classif, alpha=0.042)
        selector.fit(training_features, training_class_vals)
        mask = selector.get_support(True)
    mask_cols = list(training_features.iloc[:, mask].columns) + non_feature_columns

    assert np.array_equal(tpot_obj._select_fwe(training_testing_data, 0.042), training_testing_data[mask_cols])
Beispiel #4
0
def test_select_fwe():
    """Ensure that the TPOT select fwe outputs the input dataframe when no. of training features is 0"""
    tpot_obj = TPOT()

    assert np.array_equal(tpot_obj._select_fwe(training_testing_data.ix[:, -3:], 0.005), training_testing_data.ix[:, -3:])