Beispiel #1
0
def edge_rays_bundle(num_rays,  center,  direction,  radius, ang_range, flux=None, radius_in=0.):

	radius = float(radius)
	radius_in = float(radius_in)
	a = edge_rays_directions(num_rays, ang_range)
		
	# Rotate to a frame in which <direction> is Z:
	perp_rot = rotation_to_z(direction)
	directions = N.sum(perp_rot[...,None] * a[None,...], axis=1)
	# Locations:
	# See [1]
	xi1 = random.uniform(size=num_rays)
	thetas = random.uniform(high=2.*N.pi, size=num_rays)
	rs = N.sqrt(radius_in**2.+xi1*(radius**2.-radius_in**2.))
	xs = rs * N.cos(thetas)
	ys = rs * N.sin(thetas)

	# Rotate locations to the plane defined by <direction>:
	vertices_local = N.vstack((xs, ys, N.zeros(num_rays)))
	vertices_global = N.dot(perp_rot, vertices_local)

	rayb = RayBundle(vertices=vertices_global + center, directions=directions)
	if flux != None:
		rayb.set_energy(N.pi*(radius**2.-radius_in**2.)/num_rays*flux*N.ones(num_rays))
	return rayb
Beispiel #2
0
class TestHomogenizer(unittest.TestCase):
    def setUp(self):
        """A homogenizer transforms a bundle correctly"""
        hmg = rect_homogenizer(5., 3., 10., 0.9)
        self.engine = TracerEngine(hmg)
        self.bund = RayBundle()
        
        # 4 rays starting somewhat above (+z) the homogenizer
        pos = N.zeros((3,4))
        pos[2] = N.r_[11, 11, 11, 11]
        self.bund.set_vertices(pos)
        
        # One ray going to each wall:
        dir = N.c_[[1, 0, -1], [-1, 0, -1], [0, 1, -1], [0, -1, -1]]/N.sqrt(2)
        self.bund.set_directions(dir)
        
        # Laborious setup details:
        self.bund.set_energy(N.ones(4)*4.)
        self.bund.set_ref_index(N.ones(4))
    
    def test_first_hits(self):
        """Test bundle enters homogenizer correctly"""
        v, d = self.engine.ray_tracer(self.bund, 1, 0.05)
        
        out_dirs = N.c_[[-1, 0, -1], [1, 0, -1], [0, -1, -1], [0, 1, -1]]/N.sqrt(2)
        N.testing.assert_array_almost_equal(d, out_dirs)
        
        out_hits = N.c_[
            [2.5, 0, 8.5], 
            [-2.5, 0, 8.5], 
            [0, 1.5, 9.5], 
            [0, -1.5, 9.5]]
        N.testing.assert_array_almost_equal(v, out_hits)
Beispiel #3
0
    def test_up_down(self):
        """Rays coming from below are absorbed, from above reflected"""
        going_down = N.c_[[1, 1, -1], [-1, 1, -1], [-1, -1, -1], [1, -1, -1]] / N.sqrt(3)
        going_up = going_down.copy()
        going_up[2] = 1 / N.sqrt(3)
        
        pos_up = N.c_[[0,0,1], [1,-1,1], [1,1,1], [-1,1,1]]
        pos_down = pos_up.copy()
        pos_down[2] = -1

        bund = RayBundle()
        bund.set_directions(N.hstack((going_down, going_up)))
        bund.set_vertices(N.hstack((pos_up, pos_down)))
        bund.set_energy(N.tile(100, 8))
        bund.set_ref_index(N.tile(1, 8))
        
        gm = FlatGeometryManager()
        prm = gm.find_intersections(N.eye(4), bund)
        absref = optics_callables.AbsorberReflector(0.)
        selector = N.arange(8)
        gm.select_rays(selector)
        outg = absref(gm, bund, selector)
        
        e = outg.get_energy()
        N.testing.assert_array_equal(e[:4], 100)
        N.testing.assert_array_equal(e[4:], 0)
Beispiel #4
0
def oblique_solar_rect_bundle(num_rays,
                              center,
                              source_direction,
                              rays_direction,
                              x,
                              y,
                              ang_range,
                              flux=None,
                              procs=1):
    a = pillbox_sunshape_directions(num_rays, ang_range)
    # Rotate to a frame in which <direction> is Z:
    perp_rot = rotation_to_z(rays_direction)
    directions = N.sum(perp_rot[..., None] * a[None, ...], axis=1)

    xs = random.uniform(low=-x / 2., high=x / 2., size=num_rays)
    ys = random.uniform(low=-y / 2., high=y / 2., size=num_rays)

    if (source_direction == N.array([0, 0, -1])).all():
        xs, ys = ys, xs

    # Rotate locations to the plane defined by <direction>:
    vertices_local = N.vstack((ys, xs, N.zeros(num_rays)))
    perp_rot = rotation_to_z(source_direction)
    vertices_global = N.dot(perp_rot, vertices_local)

    rayb = RayBundle(vertices=vertices_global + center, directions=directions)
    if flux != None:
        cosangle = 2. * N.sin(
            N.sqrt(N.sum((rays_direction - source_direction)**2)) / 2.)
        rayb.set_energy(x * y / num_rays * flux * N.ones(num_rays) *
                        N.cos(cosangle))
    else:
        rayb.set_energy(N.ones(num_rays) / float(num_rays) / procs)
    return rayb
    def test_up_down(self):
        """Rays coming from below are absorbed, from above reflected"""
        going_down = N.c_[[1, 1, -1], [-1, 1, -1], [-1, -1, -1], [1, -1, -1]] / N.sqrt(3)
        going_up = going_down.copy()
        going_up[2] = 1 / N.sqrt(3)
        
        pos_up = N.c_[[0,0,1], [1,-1,1], [1,1,1], [-1,1,1]]
        pos_down = pos_up.copy()
        pos_down[2] = -1

        bund = RayBundle()
        bund.set_directions(N.hstack((going_down, going_up)))
        bund.set_vertices(N.hstack((pos_up, pos_down)))
        bund.set_energy(N.tile(100, 8))
        bund.set_ref_index(N.tile(1, 8))
        
        gm = FlatGeometryManager()
        prm = gm.find_intersections(N.eye(4), bund)
        absref = optics_callables.AbsorberReflector(0.)
        selector = N.arange(8)
        gm.select_rays(selector)
        outg = absref(gm, bund, selector)
        
        e = outg.get_energy()
        N.testing.assert_array_equal(e[:4], 100)
        N.testing.assert_array_equal(e[4:], 0)
Beispiel #6
0
class TestHomogenizer(unittest.TestCase):
    def setUp(self):
        """A homogenizer transforms a bundle correctly"""
        hmg = rect_homogenizer(5., 3., 10., 0.9)
        self.engine = TracerEngine(hmg)
        self.bund = RayBundle()

        # 4 rays starting somewhat above (+z) the homogenizer
        pos = N.zeros((3, 4))
        pos[2] = N.r_[11, 11, 11, 11]
        self.bund.set_vertices(pos)

        # One ray going to each wall:
        dir = N.c_[[1, 0, -1], [-1, 0, -1], [0, 1, -1],
                   [0, -1, -1]] / N.sqrt(2)
        self.bund.set_directions(dir)

        # Laborious setup details:
        self.bund.set_energy(N.ones(4) * 4.)
        self.bund.set_ref_index(N.ones(4))

    def test_first_hits(self):
        """Test bundle enters homogenizer correctly"""
        v, d = self.engine.ray_tracer(self.bund, 1, 0.05)

        out_dirs = N.c_[[-1, 0, -1], [1, 0, -1], [0, -1, -1],
                        [0, 1, -1]] / N.sqrt(2)
        N.testing.assert_array_almost_equal(d, out_dirs)

        out_hits = N.c_[[2.5, 0, 8.5], [-2.5, 0, 8.5], [0, 1.5, 9.5],
                        [0, -1.5, 9.5]]
        N.testing.assert_array_almost_equal(v, out_hits)
Beispiel #7
0
def edge_rays_bundle(num_rays,
                     center,
                     direction,
                     radius,
                     ang_range,
                     flux=None,
                     radius_in=0.):

    radius = float(radius)
    radius_in = float(radius_in)
    a = edge_rays_directions(num_rays, ang_range)

    # Rotate to a frame in which <direction> is Z:
    perp_rot = rotation_to_z(direction)
    directions = N.sum(perp_rot[..., None] * a[None, ...], axis=1)
    # Locations:
    # See [1]
    xi1 = random.uniform(size=num_rays)
    thetas = random.uniform(high=2. * N.pi, size=num_rays)
    rs = N.sqrt(radius_in**2. + xi1 * (radius**2. - radius_in**2.))
    xs = rs * N.cos(thetas)
    ys = rs * N.sin(thetas)

    # Rotate locations to the plane defined by <direction>:
    vertices_local = N.vstack((xs, ys, N.zeros(num_rays)))
    vertices_global = N.dot(perp_rot, vertices_local)

    rayb = RayBundle(vertices=vertices_global + center, directions=directions)
    if flux != None:
        rayb.set_energy(N.pi * (radius**2. - radius_in**2.) / num_rays * flux *
                        N.ones(num_rays))
    return rayb
Beispiel #8
0
class TestTraceProtocol6(unittest.TestCase):
    """
    Tests a spherical surface
    """
    def setUp(self):
        surface1 = Surface(HemisphereGM(2.), opt.perfect_mirror,
            rotation=general_axis_rotation(N.r_[1,0,0], N.pi/2.))
        surface2 = Surface(HemisphereGM(2.), opt.perfect_mirror, 
            location=N.array([0,-2,0]), 
            rotation=general_axis_rotation(N.r_[1,0,0], -N.pi/2.))
        
        self._bund = RayBundle()
        self._bund.set_directions(N.c_[[0,1,0]])
        self._bund.set_vertices(N.c_[[0,-1,0]])
        self._bund.set_energy(N.r_[[1]]) 
        self._bund.set_ref_index(N.r_[[1]])

        assembly = Assembly()
        object1 = AssembledObject()
        object2 = AssembledObject()
        object1.add_surface(surface1)
        object2.add_surface(surface2)
        assembly.add_object(object1)
        assembly.add_object(object2)

        self.engine = TracerEngine(assembly)
        
    def test_ray_tracers1(self):
        params = self.engine.ray_tracer(self._bund, 1, .05)[0]
        correct_params = N.c_[[0,2,0]]

        N.testing.assert_array_almost_equal(params,correct_params)
Beispiel #9
0
def rect_ray_bundle(num_rays,
                    center,
                    direction,
                    x,
                    y,
                    sunshape,
                    ang_rang,
                    flux=None,
                    BUIE=None):
    '''
    generate a rectancular ray bundle for different sunshape options

    Arguments:
    num_rays - number of rays to generate
    center - a column 3-array with the 3D coordinate of the ray bundle's center 
    direction - a 1D 3-array with the unit average direction vector for the bundle.
    x - width of the rectangular ray bundle
    y - height of the rectangular ray bundle
    sunshape - str, 'pillbox', 'Gaussian','Buie' or 'collimated'
    ang_rang - the angular width of the solar disk (pillbox), sigma (gaussian) or CSR (Buie sunshape)
    flux - if not None, the ray bundle's energy is set such that each ray has
        an equal amount of energy, and the total energy is flux*pi*radius**2

    Returns:
    A RayBundle object with the above characteristics set.
    '''
    if sunshape == 'pillbox':
        a = pillbox_sunshape_directions(num_rays, ang_rang)
    elif sunshape == 'gaussian':
        a = gaussian_sunshape_directions(num_rays, ang_rang)
    elif sunshape == 'buie':
        a = buie_sunshape_directions(num_rays, BUIE.sample, BUIE.FI)
    elif sunshape == 'collimated':
        a = collimated_directions(num_rays)

    # making sure the rect bundle can cover the whole region of interest
    x *= 1.2
    y *= 1.2

    # Rotate to a frame in which <direction> is Z:
    perp_rot = rotation_to_z(direction)
    directions = N.sum(perp_rot[..., None] * a[None, ...], axis=1)

    # Locations:
    # See [1]
    xs = N.random.uniform(low=-x / 2., high=x / 2., size=num_rays)
    ys = N.random.uniform(low=-y / 2., high=y / 2., size=num_rays)

    # Rotate locations to the plane defined by <direction>:
    vertices_local = N.vstack((xs, ys, N.zeros(num_rays)))
    vertices_global = N.dot(perp_rot, vertices_local)

    rayb = RayBundle(vertices=vertices_global + center, directions=directions)

    if flux != None:
        rayb.set_energy(x * y / num_rays * flux * N.ones(num_rays))

    return rayb
Beispiel #10
0
class TestObjectBuilding1(unittest.TestCase):
    """Tests an object composed of sphere surfaces"""
    def setUp(self):
        self.assembly = Assembly()
        surface1 = Surface(HemisphereGM(3.), optics_callables.perfect_mirror, 
            location=N.array([0,0,-1.]),
            rotation=general_axis_rotation(N.r_[1,0,0], N.pi))
        surface2 = Surface(HemisphereGM(3.), optics_callables.perfect_mirror, 
            location=N.array([0,0,1.]))
        
        self.object = AssembledObject()
        self.object.add_surface(surface1)
        self.object.add_surface(surface2)
        self.assembly.add_object(self.object)

        dir = N.c_[[0,0,1.],[0,0,1.]]
        position = N.c_[[0,0,-3.],[0,0,-1.]]
    
        self._bund = RayBundle(position, dir, energy=N.ones(2))
    
    def test_object(self):
        """Tests that the assembly heirarchy works at a basic level"""
        self.engine = TracerEngine(self.assembly)

        inters = self.engine.ray_tracer(self._bund,1,.05)[0]
        correct_inters = N.c_[[0,0,2],[0,0,-2]]

        N.testing.assert_array_almost_equal(inters, correct_inters)
    
    def test_translation(self):
        """Tests an assembly that has been translated"""
        trans = N.array([[1,0,0,0],[0,1,0,0],[0,0,1,1],[0,0,0,1]])
        self.assembly.transform_children(trans)

        self.engine = TracerEngine(self.assembly)

        params =  self.engine.ray_tracer(self._bund,1,.05)[0]
        correct_params = N.c_[[0,0,3],[0,0,-1]]

        N.testing.assert_array_almost_equal(params, correct_params)

    def test_rotation_and_translation(self):
        """Tests an assembly that has been translated and rotated"""
        self._bund = RayBundle()
        self._bund.set_vertices(N.c_[[0,-5,1],[0,5,1]])
        self._bund.set_directions(N.c_[[0,1,0],[0,1,0]])
        self._bund.set_energy(N.r_[[1,1]])
        self._bund.set_ref_index(N.r_[[1,1]])

        trans = generate_transform(N.r_[[1,0,0]], N.pi/2, N.c_[[0,0,1]])
        self.assembly.transform_children(trans)

        self.engine = TracerEngine(self.assembly)

        params =  self.engine.ray_tracer(self._bund,1,.05)[0]
        correct_params = N.c_[[0,-2,1]]

        N.testing.assert_array_almost_equal(params, correct_params)
Beispiel #11
0
def triangular_bundle(num_rays,
                      A,
                      AB,
                      AC,
                      direction,
                      ang_range=N.pi / 2.,
                      flux=None,
                      procs=1):
    """
	Triangular ray-casting surface anchored on the point A.
	Arguments:
	- num_rays: the number of rays 
	- A: The first summit of the triangle and its anchor point.
	- AB and AC the vertices of the sides of the triangle in its plane of reference.
	- direction: The direction at which the source is pointing
	- ang_range: the angular range of the rays emitted by the source

	Returns: 
	- A ray bundle object for tracing
	"""
    # Triangle ray vertices:
    # Declare random numbers:
    r1 = N.vstack(N.random.uniform(size=num_rays))
    r2 = N.vstack(N.random.uniform(size=num_rays))
    # Define points in a local referential where A is at [0,0] on a z=0 plane.
    sqrtr1 = N.sqrt(r1)
    Plocs = sqrtr1 * (1. -
                      r2) * AB + r2 * sqrtr1 * AC  # Triangle point picking

    vertices_local = N.array([Plocs[:, 0], Plocs[:, 1], N.zeros(num_rays)])

    # Bring everything back to the global referential:
    rot = rotation_to_z(direction)
    vertices_global = N.dot(rot, vertices_local) + N.vstack(A)

    # Local referential directions:
    a = pillbox_sunshape_directions(num_rays, ang_range)
    # Rotate to a frame in which <direction> is Z:
    directions = N.sum(rot[..., None] * a[None, ...], axis=1)

    rayb = RayBundle()

    rayb.set_vertices(vertices_global)
    rayb.set_directions(directions)

    l1 = N.sqrt(N.sum(AB**2))
    l2 = N.sqrt(N.sum(AC**2))
    l3 = N.sqrt(N.sum((-AB + AC)**2))
    s = (l1 + l2 + l3) / 2.
    area = N.sqrt(s * (s - l1) * (s - l2) * (s - l3))
    if flux != None:
        rayb.set_energy(N.ones(num_rays) * flux * area / float(num_rays))
    else:
        rayb.set_energy(N.ones(num_rays) / float(num_rays) / procs)

    return rayb
Beispiel #12
0
def pillbox_rect_bundle(num_rays,
                        center,
                        direction,
                        x,
                        y,
                        ang_rang,
                        flux=None):
    '''
    generate a rectancular ray bundle for pillbox sunshape

    Arguments:
    num_rays - number of rays to generate
    center - a column 3-array with the 3D coordinate of the ray bundle's center 
    direction - a 1D 3-array with the unit average direction vector for the bundle.
    x - width of the rectangular ray bundle
    y - height of the rectangular ray bundle
    ang_rang - the angular width of the solar disk
    flux - if not None, the ray bundle's energy is set such that each ray has
        an equal amount of energy, and the total energy is flux*pi*radius**2

    Returns:
    A RayBundle object with the above characteristics set.
    '''

    a = pillbox_sunshape_directions(num_rays, ang_rang)
    x *= 1.2
    y *= 1.2

    # Rotate to a frame in which <direction> is Z:
    perp_rot = rotation_to_z(direction)
    directions = N.sum(perp_rot[..., None] * a[None, ...], axis=1)

    # Locations:
    # See [1]
    xs = N.random.uniform(low=-x / 2., high=x / 2., size=num_rays)
    ys = N.random.uniform(low=-y / 2., high=y / 2., size=num_rays)

    #if (direction == N.array([0,0,-1])).all():
    #    xs, ys = ys, xs

    # Rotate locations to the plane defined by <direction>:
    vertices_local = N.vstack((xs, ys, N.zeros(num_rays)))
    vertices_global = N.dot(perp_rot, vertices_local)

    #dirct=N.vstack((-N.ones(num_rays)*direction[0],-N.ones(num_rays)*direction[1],-N.ones(num_rays)*direction[2]))
    #vertices_global=vertices_local+dirct*100.

    rayb = RayBundle(vertices=vertices_global + center, directions=directions)

    if flux != None:
        rayb.set_energy(x * y / num_rays * flux * N.ones(num_rays))

    return rayb
Beispiel #13
0
def pillbox_effective_rays(num_rays, X, Y, Z, hits, direction, A_source,
                           ang_rang, DNI):
    '''
    Generate a ray bundle according to Buie et al.: "Sunshape distributions for terrestrial simulations." Solar Energy 74 (2003) 113-122 (DOI: 10.1016/S0038-092X(03)00125-7).

    *the ray source just cover each individule mirror	

    Arguments:
    num_rays - number of rays over one heliostat, therefore total num of rays is num_rays*num_helios
    direction - (1,3)direction of the normal to the source disc.
    vertices - (3,n) array vertices of each ray
    energy - float - energy of each ray , W
    DNI - Direct normal irradiantion W/m2

    Returns:
    A raybundle object with the above characteristics set.
    '''

    total_rays = num_rays * N.sum(hits)

    a = pillbox_sunshape_directions(total_rays, ang_rang)
    # Rotate to a frame in which <direction> is Z:
    perp_rot = rotation_to_z(direction)
    directions = N.sum(perp_rot[..., None] * a[None, ...], axis=1)

    Xs = N.array([])
    Ys = N.array([])
    Zs = N.array([])

    #X,Y=N.meshgrid(X,Y)

    for i in xrange(len(hits)):
        for j in xrange(len(hits[i])):
            if hits[i, j] == 1:
                xs = N.random.uniform(low=X[i], high=X[i + 1], size=num_rays)
                ys = N.random.uniform(low=Y[j], high=Y[j + 1], size=num_rays)
                zs = Z * N.ones(num_rays)
                Xs = N.append(Xs, xs)
                Ys = N.append(Ys, ys)
                Zs = N.append(Zs, zs)

    vertices = N.vstack((Xs, Ys, Zs))

    energy = N.ones(total_rays) * DNI * A_source / float(total_rays)

    rayb = RayBundle(vertices=vertices, directions=directions)
    if DNI != None:
        rayb.set_energy(energy)

    print total_rays

    return rayb
Beispiel #14
0
def solar_disk_bundle(num_rays,  center,  direction,  radius, ang_range, flux=None, radius_in=0., angular_span=[0.,2.*N.pi], procs=1):
    """
    Generates a ray bundle emanating from a disk, with each surface element of 
    the disk having the same ray density. The rays all point at directions uniformly 
    distributed between a given angle range from a given direction.
    Setting of the bundle's energy is left to the caller.
    
    Arguments:
    num_rays - number of rays to generate.
    center - a column 3-array with the 3D coordinate of the disk's center
    direction - a 1D 3-array with the unit average direction vector for the
        bundle.
    radius - of the disk.
    ang_range - in radians, the maximum deviation from <direction>.
    flux - if not None, the ray bundle's energy is set such that each ray has
        an equal amount of energy, and the total energy is flux*pi*radius**2
    radius_in - Inner radius if the disc is pierced
    angular_span - wedge of the disc to consider
    
    Returns: 
    A RayBundle object with the above characteristics set.
    """

	# FIXME why should 'center' be a column vector... that's just annoying.

    radius = float(radius)
    radius_in = float(radius_in)
    a = pillbox_sunshape_directions(num_rays, ang_range)
        
    # Rotate to a frame in which <direction> is Z:
    perp_rot = rotation_to_z(direction)
    directions = N.sum(perp_rot[...,None] * a[None,...], axis=1)
    # Locations:
    # See [1]
    xi1 = random.uniform(size=num_rays)
    thetas = random.uniform(low=angular_span[0], high=angular_span[1], size=num_rays)
    rs = N.sqrt(radius_in**2.+xi1*(radius**2.-radius_in**2.))
    xs = rs * N.cos(thetas)
    ys = rs * N.sin(thetas)

    # Rotate locations to the plane defined by <direction>:
    vertices_local = N.vstack((xs, ys, N.zeros(num_rays)))
    vertices_global = N.dot(perp_rot, vertices_local)

    rayb = RayBundle(vertices=vertices_global + center, directions=directions)
    if flux != None:
        rayb.set_energy(N.pi*(radius**2.-radius_in**2.)/num_rays*flux*N.ones(num_rays))
    else:
        rayb.set_energy(N.ones(num_rays)/num_rays/procs)
    return rayb
Beispiel #15
0
 def test_paraxial_ray(self):
     """A paraxial ray in reflected correctly"""
     bund = RayBundle()
     bund.set_vertices(N.c_[[0.01, 0., 2.]])
     bund.set_directions(N.c_[[0., 0., -1.]])
     bund.set_energy(N.r_[100.])
     bund.set_ref_index(N.r_[1])
     
     self.engine.ray_tracer(bund, 15, 10.)
     non_degenerate = self.engine.tree[-1].get_energy() > 10
     v = self.engine.tree[-1].get_vertices()[:,non_degenerate]
     d = self.engine.tree[-1].get_directions()[:,non_degenerate]
     # Not high equality demanded, because of spherical aberration.
     N.testing.assert_array_almost_equal(v, N.c_[[-0.01, 0., 1.5]], 2)
     N.testing.assert_array_almost_equal(d, N.c_[[0., 0., 1.]], 2)
Beispiel #16
0
    def test_paraxial_ray(self):
        """A paraxial ray in reflected correctly"""
        bund = RayBundle()
        bund.set_vertices(N.c_[[0.01, 0., 2.]])
        bund.set_directions(N.c_[[0., 0., -1.]])
        bund.set_energy(N.r_[100.])
        bund.set_ref_index(N.r_[1])

        self.engine.ray_tracer(bund, 15, 10.)
        non_degenerate = self.engine.tree[-1].get_energy() > 10
        v = self.engine.tree[-1].get_vertices()[:, non_degenerate]
        d = self.engine.tree[-1].get_directions()[:, non_degenerate]
        # Not high equality demanded, because of spherical aberration.
        N.testing.assert_array_almost_equal(v, N.c_[[-0.01, 0., 1.5]], 2)
        N.testing.assert_array_almost_equal(d, N.c_[[0., 0., 1.]], 2)
Beispiel #17
0
def triangular_bundle(num_rays, A, AB, AC, direction, ang_range=N.pi/2., flux=None, procs=1):
	"""
	Triangular ray-casting surface anchored on the point A.
	Arguments:
	- num_rays: the number of rays 
	- A: The first summit of the triangle and its anchor point.
	- AB and AC the vertices of the sides of the triangle in its plane of reference.
	- direction: The direction at which the source is pointing
	- ang_range: the angular range of the rays emitted by the source

	Returns: 
	- A ray bundle object for tracing
	"""
	# Triangle ray vertices:
	# Declare random numbers:
	r1 = N.vstack(N.random.uniform(size=num_rays))
	r2 = N.vstack(N.random.uniform(size=num_rays))
	# Define points in a local referential where A is at [0,0] on a z=0 plane.
	sqrtr1 = N.sqrt(r1)
	Plocs = sqrtr1*(1.-r2)*AB+r2*sqrtr1*AC # Triangle point picking

	vertices_local = N.array([Plocs[:,0], Plocs[:,1], N.zeros(num_rays)])

	# Bring everything back to the global referential:
	rot = rotation_to_z(direction)
	vertices_global = N.dot(rot, vertices_local)+N.vstack(A)
	
	# Local referential directions:
	a = pillbox_sunshape_directions(num_rays, ang_range)
	# Rotate to a frame in which <direction> is Z:
	directions = N.sum(rot[...,None] * a[None,...], axis=1)

	rayb = RayBundle()

	rayb.set_vertices(vertices_global)
	rayb.set_directions(directions)

	l1 = N.sqrt(N.sum(AB**2))
	l2 = N.sqrt(N.sum(AC**2))
	l3 = N.sqrt(N.sum((-AB+AC)**2))
	s = (l1+l2+l3)/2.
	area = N.sqrt(s*(s-l1)*(s-l2)*(s-l3))
	if flux != None:
		rayb.set_energy(N.ones(num_rays)*flux*area/float(num_rays))
	else:
		rayb.set_energy(N.ones(num_rays)/float(num_rays)/procs)

	return rayb
Beispiel #18
0
class TestRectOneSided(unittest.TestCase):
    def setUp(self):
        self.mirror = rect_one_sided_mirror(1.5, 1.5, 0.9)

        pos = N.zeros((3, 8))
        pos[0] = N.tile(N.r_[0, 0.5, 2, -2], 2)
        pos[2] = N.repeat(N.r_[1, -1], 4)
        dir = N.zeros((3, 8))
        dir[2] = N.repeat(N.r_[-1, 1], 4)

        self.bund = RayBundle()
        self.bund.set_vertices(pos)
        self.bund.set_directions(dir)
        self.bund.set_energy(N.ones(8) * 1000)
        self.bund.set_ref_index(N.ones(8))

    def test_regular(self):
        """One-sided plate without rotation"""
        e = TracerEngine(Assembly(objects=[self.mirror]))
        e.ray_tracer(self.bund, 1, 0.05)
        outg = e.tree[-1]

        correct_verts = N.zeros((3, 2))
        correct_verts[0] = N.r_[0, 0.5]
        N.testing.assert_array_equal(
            outg.get_vertices()[:, outg.get_energy() > 0], correct_verts)
        N.testing.assert_array_almost_equal(outg.get_energy(), N.r_[100., 100.,
                                                                    0, 0])

    def test_rotated(self):
        """One-sided plate with rotation"""
        rot = sp.roty(N.pi / 4.)
        self.mirror.set_transform(rot)

        e = TracerEngine(Assembly(objects=[self.mirror]))
        e.ray_tracer(self.bund, 1, 0.05)
        outg = e.tree[-1]

        correct_verts = N.array([[0., 0.5], [0., 0.], [0., -0.5]])
        N.testing.assert_array_almost_equal(
            outg.get_vertices()[:, outg.get_energy() > 0], correct_verts)
        N.testing.assert_array_almost_equal(outg.get_energy(), N.r_[100., 100.,
                                                                    0, 0])
Beispiel #19
0
def single_ray_source(position, direction, flux=None):
    '''
	Establishes a single ray source originating from a definned point on a defined exact 
	direction for the purpose of testing single ray behviours.

	Arguments:
	position - column 3-array with the ray's starting position.
	direction - a 1D 3-array with the unit average direction vector for the
				bundle.
	flux - if not None, the energy transported by the ray.

	Returns:
	A Raybundle object with the corresponding characteristics.
	'''
    directions = N.tile(direction[:, None], 1)
    directions /= N.sqrt(N.sum(directions**2, axis=0))
    singray = RayBundle(vertices=position, directions=directions)
    singray.set_energy(flux * N.ones(1))
    return singray
Beispiel #20
0
def single_ray_source(position, direction, flux=None):
	'''
	Establishes a single ray source originating from a definned point on a defined exact 
	direction for the purpose of testing single ray behviours.

	Arguments:
	position - column 3-array with the ray's starting position.
	direction - a 1D 3-array with the unit average direction vector for the
				bundle.
	flux - if not None, the energy transported by the ray.

	Returns:
	A Raybundle object with the corresponding characteristics.
	'''
	directions = N.tile(direction[:,None],1)
	directions /= N.sqrt(N.sum(directions**2, axis=0))
	singray = RayBundle(vertices = position, directions = directions)
	singray.set_energy(flux*N.ones(1))
	return singray
class TestRectOneSided(unittest.TestCase):
    def setUp(self):
        self.mirror = rect_one_sided_mirror(1.5, 1.5, 0.9)
        
        pos = N.zeros((3,8))
        pos[0] = N.tile(N.r_[0, 0.5, 2, -2], 2)
        pos[2] = N.repeat(N.r_[1, -1], 4)
        dir = N.zeros((3,8))
        dir[2] = N.repeat(N.r_[-1, 1], 4)
        
        self.bund = RayBundle()
        self.bund.set_vertices(pos)
        self.bund.set_directions(dir)
        self.bund.set_energy(N.ones(8)*1000)
        self.bund.set_ref_index(N.ones(8))
    
    def test_regular(self):
        """One-sided plate without rotation"""
        e = TracerEngine(Assembly(objects=[self.mirror]))
        e.ray_tracer(self.bund, 1, 0.05)
        outg = e.tree[-1]
        
        correct_verts = N.zeros((3,2))
        correct_verts[0] = N.r_[0, 0.5]
        N.testing.assert_array_equal(
            outg.get_vertices()[:,outg.get_energy() > 0], correct_verts)
        N.testing.assert_array_almost_equal(
            outg.get_energy(), N.r_[100., 100., 0, 0])
    
    def test_rotated(self):
        """One-sided plate with rotation"""
        rot = sp.roty(N.pi/4.)
        self.mirror.set_transform(rot)
        
        e = TracerEngine(Assembly(objects=[self.mirror]))
        e.ray_tracer(self.bund, 1, 0.05)
        outg = e.tree[-1]
        
        correct_verts = N.array([[0., 0.5], [0., 0.], [0., -0.5]])
        N.testing.assert_array_almost_equal(
            outg.get_vertices()[:,outg.get_energy() > 0], correct_verts)
        N.testing.assert_array_almost_equal(
            outg.get_energy(), N.r_[100., 100., 0, 0])
Beispiel #22
0
def solar_rect_bundle(num_rays, center, direction, x, y, ang_range, flux=None):

    a = pillbox_sunshape_directions(num_rays, ang_range)

    # Rotate to a frame in which <direction> is Z:
    perp_rot = rotation_to_z(direction)
    directions = N.sum(perp_rot[..., None] * a[None, ...], axis=1)

    xs = random.uniform(low=-x / 2., high=x / 2., size=num_rays)
    ys = random.uniform(low=-y / 2., high=y / 2., size=num_rays)

    if (direction == N.array([0, 0, -1])).all():
        xs, ys = ys, xs

    # Rotate locations to the plane defined by <direction>:
    vertices_local = N.vstack((xs, ys, N.zeros(num_rays)))
    vertices_global = N.dot(perp_rot, vertices_local)

    rayb = RayBundle(vertices=vertices_global + center, directions=directions)
    if flux != None:
        rayb.set_energy(x * y / num_rays * flux * N.ones(num_rays))
    return rayb
Beispiel #23
0
def solar_rect_bundle(num_rays, center, direction, x, y, ang_range, flux=None):

    a = pillbox_sunshape_directions(num_rays, ang_range)

    # Rotate to a frame in which <direction> is Z:
    perp_rot = rotation_to_z(direction)
    directions = N.sum(perp_rot[...,None] * a[None,...], axis=1)

    xs = random.uniform(low=-x/2., high=x/2., size=num_rays)
    ys = random.uniform(low=-y/2., high=y/2., size=num_rays)

    if (direction == N.array([0,0,-1])).all():
        xs, ys = ys, xs

    # Rotate locations to the plane defined by <direction>:
    vertices_local = N.vstack((ys, xs, N.zeros(num_rays)))
    vertices_global = N.dot(perp_rot, vertices_local)

    rayb = RayBundle(vertices=vertices_global + center, directions=directions)
    if flux != None:
        rayb.set_energy(x*y/num_rays*flux*N.ones(num_rays))
    return rayb
Beispiel #24
0
class TestTraceProtocol6(unittest.TestCase):
    """
    Tests a spherical surface
    """
    def setUp(self):
        surface1 = Surface(HemisphereGM(2.),
                           opt.perfect_mirror,
                           rotation=general_axis_rotation(
                               N.r_[1, 0, 0], N.pi / 2.))
        surface2 = Surface(HemisphereGM(2.),
                           opt.perfect_mirror,
                           location=N.array([0, -2, 0]),
                           rotation=general_axis_rotation(
                               N.r_[1, 0, 0], -N.pi / 2.))

        self._bund = RayBundle()
        self._bund.set_directions(N.c_[[0, 1, 0]])
        self._bund.set_vertices(N.c_[[0, -1, 0]])
        self._bund.set_energy(N.r_[[1]])
        self._bund.set_ref_index(N.r_[[1]])

        assembly = Assembly()
        object1 = AssembledObject()
        object2 = AssembledObject()
        object1.add_surface(surface1)
        object2.add_surface(surface2)
        assembly.add_object(object1)
        assembly.add_object(object2)

        self.engine = TracerEngine(assembly)

    def test_ray_tracers1(self):
        params = self.engine.ray_tracer(self._bund, 1, .05)[0]
        correct_params = N.c_[[0, 2, 0]]

        N.testing.assert_array_almost_equal(params, correct_params)
Beispiel #25
0
def oblique_solar_rect_bundle(num_rays, center, source_direction, rays_direction, x, y, ang_range, flux=None, procs=1):
	a = pillbox_sunshape_directions(num_rays, ang_range)
	# Rotate to a frame in which <direction> is Z:
	perp_rot = rotation_to_z(rays_direction)
	directions = N.sum(perp_rot[...,None] * a[None,...], axis=1)

	xs = random.uniform(low=-x/2., high=x/2., size=num_rays)
	ys = random.uniform(low=-y/2., high=y/2., size=num_rays)

	if (source_direction == N.array([0,0,-1])).all():
		xs, ys = ys, xs

	# Rotate locations to the plane defined by <direction>:
	vertices_local = N.vstack((ys, xs, N.zeros(num_rays)))
	perp_rot = rotation_to_z(source_direction)
	vertices_global = N.dot(perp_rot, vertices_local)

	rayb = RayBundle(vertices=vertices_global + center, directions=directions)
	if flux != None:
		cosangle = 2.*N.sin(N.sqrt(N.sum((rays_direction-source_direction)**2))/2.)
		rayb.set_energy(x*y/num_rays*flux*N.ones(num_rays)*N.cos(cosangle))
	else:
		rayb.set_energy(N.ones(num_rays)/float(num_rays)/procs)
	return rayb
Beispiel #26
0
class TestObjectBuilding1(unittest.TestCase):
    """Tests an object composed of sphere surfaces"""
    def setUp(self):
        self.assembly = Assembly()
        surface1 = Surface(HemisphereGM(3.),
                           optics_callables.perfect_mirror,
                           location=N.array([0, 0, -1.]),
                           rotation=general_axis_rotation(N.r_[1, 0, 0], N.pi))
        surface2 = Surface(HemisphereGM(3.),
                           optics_callables.perfect_mirror,
                           location=N.array([0, 0, 1.]))

        self.object = AssembledObject()
        self.object.add_surface(surface1)
        self.object.add_surface(surface2)
        self.assembly.add_object(self.object)

        dir = N.c_[[0, 0, 1.], [0, 0, 1.]]
        position = N.c_[[0, 0, -3.], [0, 0, -1.]]

        self._bund = RayBundle(position, dir, energy=N.ones(2))

    def test_object(self):
        """Tests that the assembly heirarchy works at a basic level"""
        self.engine = TracerEngine(self.assembly)

        inters = self.engine.ray_tracer(self._bund, 1, .05)[0]
        correct_inters = N.c_[[0, 0, 2], [0, 0, -2]]

        N.testing.assert_array_almost_equal(inters, correct_inters)

    def test_translation(self):
        """Tests an assembly that has been translated"""
        trans = N.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 1],
                         [0, 0, 0, 1]])
        self.assembly.transform_children(trans)

        self.engine = TracerEngine(self.assembly)

        params = self.engine.ray_tracer(self._bund, 1, .05)[0]
        correct_params = N.c_[[0, 0, 3], [0, 0, -1]]

        N.testing.assert_array_almost_equal(params, correct_params)

    def test_rotation_and_translation(self):
        """Tests an assembly that has been translated and rotated"""
        self._bund = RayBundle()
        self._bund.set_vertices(N.c_[[0, -5, 1], [0, 5, 1]])
        self._bund.set_directions(N.c_[[0, 1, 0], [0, 1, 0]])
        self._bund.set_energy(N.r_[[1, 1]])
        self._bund.set_ref_index(N.r_[[1, 1]])

        trans = generate_transform(N.r_[[1, 0, 0]], N.pi / 2, N.c_[[0, 0, 1]])
        self.assembly.transform_children(trans)

        self.engine = TracerEngine(self.assembly)

        params = self.engine.ray_tracer(self._bund, 1, .05)[0]
        correct_params = N.c_[[0, -2, 1]]

        N.testing.assert_array_almost_equal(params, correct_params)
Beispiel #27
0
def solar_disk_bundle(num_rays,
                      center,
                      direction,
                      radius,
                      ang_range,
                      flux=None,
                      radius_in=0.,
                      angular_span=[0., 2. * N.pi],
                      x_cut=None,
                      procs=1,
                      rays_direction=None):
    """
	Generates a ray bundle emanating from a disk, with each surface element of 
	the disk having the same ray density. The rays all point at directions uniformly 
	distributed between a given angle range from a given direction.
	Setting of the bundle's energy is left to the caller.
	
	Arguments:
	num_rays - number of rays to generate.
	center - a column 3-array with the 3D coordinate of the disk's center
	direction - a 1D 3-array with the unit average direction vector for the
		bundle.
	radius - of the disk.
	ang_range - in radians, the maximum deviation from <direction>.
	flux - if not None, the ray bundle's energy is set such that each ray has
		an equal amount of energy, and the total energy is flux*pi*radius**2
	radius_in - Inner radius if the disc is pierced
	angular_span - wedge of the disc to consider
	
	Returns: 
	A RayBundle object with the above characteristics set.
	"""

    radius = float(radius)
    radius_in = float(radius_in)
    a = pillbox_sunshape_directions(num_rays, ang_range)

    # Rotate to a frame in which <direction> is Z:
    if rays_direction == None:
        rays_direction = direction
    perp_rot = rotation_to_z(rays_direction)
    directions = N.sum(perp_rot[..., None] * a[None, ...], axis=1)
    # Locations:
    # See [1]
    xi1 = random.uniform(size=num_rays)
    thetas = random.uniform(low=angular_span[0],
                            high=angular_span[1],
                            size=num_rays)
    rs = N.sqrt(radius_in**2. + xi1 * (radius**2. - radius_in**2.))
    xs = rs * N.cos(thetas)
    ys = rs * N.sin(thetas)

    # Rotate locations to the plane defined by <direction>:
    vertices_local = N.vstack((xs, ys, N.zeros(num_rays)))
    if x_cut != None:
        vertices_local = vertices_local[:, xs < x_cut]
        missing_rays = num_rays - vertices_local.shape[1]
        while missing_rays > 0:
            xi1 = random.uniform(size=2 * missing_rays)
            thetas = random.uniform(low=angular_span[0],
                                    high=angular_span[1],
                                    size=2 * missing_rays)
            rs = N.sqrt(radius_in**2. + xi1 * (radius**2. - radius_in**2.))
            xs = rs * N.cos(thetas)
            ys = rs * N.sin(thetas)
            vertices_local = N.concatenate(
                (vertices_local, N.vstack(
                    (xs, ys, N.zeros(2 * missing_rays)))),
                axis=1)
            vertices_local = vertices_local[:, vertices_local[0] < x_cut]
            missing_rays = num_rays - vertices_local.shape[1]
        if missing_rays < 0:
            vertices_local = vertices_local[:, :num_rays]

    vertices_global = N.dot(perp_rot, vertices_local)
    rayb = RayBundle(vertices=vertices_global + center, directions=directions)
    if flux != None:
        cosangle = 2. * N.sin(
            N.sqrt(N.sum((rays_direction - direction)**2)) / 2.)
        rayb.set_energy(N.pi * (radius**2. - radius_in**2.) / num_rays * flux *
                        N.ones(num_rays) * N.cos(cosangle))
    else:
        rayb.set_energy(N.ones(num_rays) / float(num_rays) / procs)
    return rayb
Beispiel #28
0
def triangular_bundle(num_rays,
                      A,
                      B,
                      C,
                      direction=None,
                      ang_range=N.pi / 2.,
                      flux=None,
                      procs=1):
    """
	Triangular ray-casting surface. A, B and C are 3D coordinates of the vertices. Right hand rule determines the normal vector direction.
	Arguments:
	- num_rays: the number of rays 
	- A: The first summit of the triangle and its anchor point.
	- AB and AC the vertices of the sides of the triangle in its plane of reference.
	- direction: The direction around which rays are escaping the source. If None, the direction is the normal.
	- ang_range: the angular range of the rays emitted by the source

	Returns: 
	- A ray bundle object for tracing
	"""
    # Triangle ray vertices:
    # Declare random numbers:
    r1 = N.vstack(N.random.uniform(size=num_rays))
    r2 = N.vstack(N.random.uniform(size=num_rays))

    AB = B - A
    AC = C - A
    sqrtr1 = N.sqrt(r1)
    vertices = (A + sqrtr1 * (1. - r2) * AB +
                r2 * sqrtr1 * AC).T  # Triangle point picking

    # Local referential directions:
    a = pillbox_sunshape_directions(num_rays, ang_range)
    # Normal vector:
    normal = N.cross(AB, AC)
    normal = normal / N.sqrt(N.sum(normal**2))

    if direction is None:
        direction = normal

    # Rotate to a frame in which <direction> is direction:
    rot = rotation_to_z(direction)
    directions = N.sum(rot[..., None] * a[None, ...], axis=1)

    rayb = RayBundle()

    rayb.set_vertices(vertices)
    rayb.set_directions(directions)

    # Heron's formula for triangle surface area
    l1 = N.sqrt(N.sum(AB**2))
    l2 = N.sqrt(N.sum(AC**2))
    l3 = N.sqrt(N.sum((-AB + AC)**2))
    s = (l1 + l2 + l3) / 2.
    area = N.sqrt(s * (s - l1) * (s - l2) * (s - l3))
    if flux != None:
        cosangle = 2. * N.arcsin(0.5 * N.sqrt(N.sum((direction - normal)**2)))
        rayb.set_energy(area / num_rays * flux * N.ones(num_rays) *
                        N.cos(cosangle))
    else:
        rayb.set_energy(N.ones(num_rays) / float(num_rays) / procs)

    return rayb