Beispiel #1
0
def fullShellPair(ang=2 * np.pi, secalign=[0, 0, 0, 0, 0, 0]):
    """
    Trace a full shell optic with misalignments of the secondary
    with respect to primary. Allow azimuthal extent to be a variable.
    """
    #Set up ray bundle
    rays = sources.subannulus(220., 220.6, ang, 100000, zhat=-1.)
    tran.transform(rays, 0, 0, -8400., 0, 0, 0)
    theta = np.arctan2(rays[2], rays[1])

    #Trace through optics
    surf.wolterprimary(rays, 220., 8400.)
    tran.reflect(rays)
    tran.transform(rays, 0, 0, 8400., 0, 0, 0)
    tran.transform(rays, *secalign)
    tran.transform(rays, 0, 0, -8400., 0, 0, 0)
    surf.woltersecondary(rays, 220., 8400.)
    tran.reflect(rays)
    tran.transform(rays, 0, 0, 8400., 0, 0, 0)
    tran.itransform(rays, *secalign)

    #Go to focus
    tran.transform(rays, 0, 0, -8400., 0, 0, 0)
    surf.flat(rays)

    #Plot misalignment curves
    ##    plt.plot(theta,rays[1],'.')
    ##    plt.plot(theta,rays[2],'.')
    plt.plot(rays[1], rays[2], '.')

    return rays, theta
Beispiel #2
0
def placeWolterPair(rays, misalign=np.zeros(6)):
    """
    Place the X-ray test mirror pair in the beam path.
    Assume rays are at XY plane with -z mean direction
    Nominal position of intersection plane is 1.5 m
    past chamber entrance with mirror optical axis
    coincident with chamber optical axis.
    Can supply misalignment about X=0,Y=0 in intersection plane.
    """
    #Go to nominal intersection plane
    tran.transform(rays, 0, 0, -1500., 0, 0, 0)
    #Apply misalignments
    tran.transform(rays, *misalign)
    #Go to focus and place primary
    tran.transform(rays, 0, 0, -8400, 0, 0, 0)
    pdb.set_trace()
    surf.wolterprimary(rays, 220., 8400.)
    tran.reflect(rays)
    pdb.set_trace()
    #Vignette rays not landing in active mirror area
    indz = np.logical_and(rays[3] > 8426., rays[3] < 8526.)
    ind = np.logical_and(np.abs(rays[2]) < 50., indz)
    rays = tran.vignette(rays, ind=ind)
    #Place secondary
    pdb.set_trace()
    surf.woltersecondary(rays, 220., 8400.)
    tran.reflect(rays)
    #Vignette rays not landing in active mirror area
    indz = np.logical_and(rays[3] > 8276., rays[3] < 8376.)
    ind = np.logical_and(np.abs(rays[2]) < 50., indz)
    rays = tran.vignette(rays, ind=ind)
    #Go back up to nominal intersection plane
    tran.transform(rays, 0, 0, 8400, 0, 0, 0)
    tran.itransform(rays, *misalign)
    return rays
Beispiel #3
0
def singleOptic(N, misalign=np.zeros(6)):
    """Trace single primary mirror from SLF finite
    source distance.
    """
    #Define some Wolter parameters
    r1 = conic.primrad(8600., 220., 8400.)
    dphi = 100. / 220. / 2
    #Set up subannulus
    rays = sources.subannulus(220., r1, dphi * 1.25, N)
    ##    #Set direction cosines
    ##    srcdist = 89.61e3+(1.5e3-misalign[2])
    ##    raydist = sqrt(srcdist**2+\
    ##                   (rays[1]-misalign[0])**2+\
    ##                   (rays[2]-misalign[1])**2)
    ##    l = (rays[1]-misalign[0])/raydist
    ##    m = (rays[2]-misalign[1])/raydist
    ##    n = -sqrt(1. - l**2 - m**2)
    ##    rays = [rays[0],rays[1],rays[2],rays[3],l,m,n,rays[7],rays[8],rays[9]]
    #Go to mirror node and apply rotational misalignment
    tran.transform(rays, 220., 0, 0, misalign[3], misalign[4], misalign[5])
    tran.transform(rays, -220., 0, 0, 0, 0, 0)
    #Place Wolter surfaces
    tran.transform(rays, 0, 0, -8400., 0, 0, 0)
    surf.wolterprimary(rays, 220., 8400.)
    tran.reflect(rays)
    #Vignette rays not landing in active mirror area
    indz = np.logical_and(rays[3] > 8426., rays[3] < 8526.)
    ind = np.logical_and(np.abs(rays[2]) < 50., indz)
    rays = tran.vignette(rays, ind=ind)
    #Go to focus
    surf.flat(rays)
    f = surf.focusI(rays) - 8400.

    return rays  #anal.hpd(rays)/abs(f)*180/pi*60**2,abs(f)
Beispiel #4
0
def sourceAlignment(dx, dy, dz):
    """
    Set up a trace of rays from the fiber source to
    the OAP. Determine wavefront error of collimated
    beam.
    """
    #Source
    rays = sources.circularbeam(125. / 4, 10000)
    tran.pointTo(rays, dx, dy, -775. / 2 + dz, reverse=1)
    rays[0] = np.sqrt((rays[1] + dx)**2 + (rays[2] + dy)**2 +
                      (775. / 2 + dz)**2)
    pdb.set_trace()

    #Go to focus
    tran.transform(rays, 0, 0, 0, np.pi / 2, 0, 0)
    tran.transform(rays, 0, -775. / 2, -775. / 2, 0, 0, 0)

    #Trace to parabola
    surf.conic(rays, 775., -1., nr=1.)
    tran.reflect(rays)

    #Restrict to 5" diameter
    ##    ind = np.logical_and(rays[3]>387.5-62.5,rays[3]<387.5+62.5)
    ##    tran.vignette(rays,ind=ind)

    #Reflect
    ##    for i in range(7,10):
    ##        rays[i] = -rays[i]
    tran.transform(rays, 0, 0, 775. / 2, 0, 0, 0)
    surf.flat(rays, nr=1.)

    pdb.set_trace()

    #Get OPD
    opd, dx0, dy0 = anal.interpolateVec(rays, 0, 200, 200)
    opd = man.remove2DLeg(opd, xo=1, yo=0)
    opd = man.remove2DLeg(opd, xo=0, yo=1)
    pv = ana.ptov(opd)

    plt.figure('OPD')
    plt.imshow(opd)
    plt.colorbar()

    wavesl = np.gradient(opd, dx0)
    resy = fit.legendre2d(wavesl[0], xo=2, yo=2)
    resx = fit.legendre2d(wavesl[1], xo=2, yo=2)
    resy[0][np.isnan(opd)] = np.nan
    resx[0][np.isnan(opd)] = np.nan

    plt.figure('Y')
    plt.imshow(resy[0] * 180 / np.pi * 60**2)
    plt.colorbar()

    plt.figure('X')
    plt.imshow(resx[0] * 180 / np.pi * 60**2)
    plt.colorbar()

    return pv * 1e6
Beispiel #5
0
def distortTrace(cone1,sag1,roc1,cone2,sag2,roc2,despace=0.,secondaryTilt=0.,\
                 nominal=True):
    """
    Trace rays through a Wolter mirror pair with low
    order distortions. Distortions can be applied to
    either primary or secondary or both.
    axial sag, azimuthal sag, and cone angle are included.
    
    """
    #Define ray subannulus
    r1 = surf.con.primrad(8600., 1000., 8400.)
    ang = 260. / 1000.  #arc length over radius is angular extent
    rays = sources.subannulus(1000., r1, ang, 10**3)
    tran.transform(rays, 0, 0, 0, np.pi, 0, 0)  #Point in -z
    tran.transform(rays, 0, 0, -10000, 0, 0, 0)  #Converge from above

    #Trace to primary
    surf.primaryLL(rays,1000.,8400.,8600,8400,ang,[cone1,sag1,roc1],\
                   [1,2,0],[0,0,2])
    #Vignette rays missing
    ind = np.logical_and(rays[3] < 8600., rays[3] > 8400.)
    rays = tran.vignette(rays, ind)
    numin = float(len(rays[1]))
    #Reflect
    tran.reflect(rays)

    #Apply secondary misalignment
    tran.transform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                   0)
    tran.transform(rays, 0, 0, despace, 0, secondaryTilt, 0)
    tran.itransform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                    0)
    #Trace to secondary
    surf.secondaryLL(rays,1000.,8400.,8400.,8200.,ang,[cone2,sag2,roc2],\
                     [1,2,0],[0,0,2])
    #Vignette rays missing
    ind = np.logical_and(rays[3] < 8400., rays[3] > 8200.)
    rays = tran.vignette(rays, ind)
    numout = float(len(rays[1]))
    #Reflect
    tran.reflect(rays)
    #Reverse secondary misalignment
    tran.transform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                   0)
    tran.itransform(rays, 0, 0, despace, 0, secondaryTilt, 0)
    tran.itransform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                    0)

    #Go to focus
    if nominal is True:
        surf.flat(rays)
    else:
        surf.focusI(rays)

    #Return merit function
    return rays  #anal.hpd(rays)/8400.,numout/numin
Beispiel #6
0
def mirrorPair(N,srcdist=89.61e3+1.5e3,primalign=np.zeros(6),\
               secalign=np.zeros(6),rrays=False,f=None,\
               plist=[[0],[0],[0]],hlist=[[0],[0],[0]]):
    """
    SLF finite source trace
    """
    #Establish subannulus of rays
    rays = sources.subannulus(220., 221., 100. / 220., N, zhat=-1.)
    #Transform to node position
    tran.transform(rays, 220, 0, 0, 0, 0, 0)
    #Set up finite source distance
    raydist = sqrt(srcdist**2 + rays[1]**2 + rays[2]**2)
    rays[4] = rays[1] / raydist
    rays[5] = rays[2] / raydist
    rays[6] = -sqrt(1. - rays[4]**2 - rays[5]**2)

    #Place mirror pair
    coords = [tran.tr.identity_matrix()] * 4
    tran.transform(rays,-220+conic.primrad(8450.,220.,8400.),0,50.,0,0,0,\
                   coords=coords)
    tran.transform(rays, *primalign, coords=coords)
    tran.transform(rays,-conic.primrad(8450.,220.,8400.),0,-8450.,0,0,0,\
                   coords=coords)
    ##    surf.wolterprimary(rays,220.,8400.)
    surf.primaryLL(rays, 220., 8400., 8500., 8400., 100. / 220, *plist)
    rays = tran.vignette(rays,ind=np.logical_and(rays[3]<8500.,\
                                                 rays[3]>8400.))
    tran.reflect(rays)
    #Place secondary in primary's reference frame
    tran.transform(rays,conic.secrad(8350.,220.,8400.),0,8350.,0,0,0,\
                   coords=coords)
    tran.transform(rays, *secalign, coords=coords)
    tran.itransform(rays,conic.secrad(8350.,220.,8400.),0,8350.,0,0,0,\
                   coords=coords)
    ##    surf.woltersecondary(rays,220.,8400.)
    surf.secondaryLL(rays, 220., 8400., 1., 8400., 8300., 100. / 220, *hlist)
    rays = tran.vignette(rays,ind=np.logical_and(rays[3]<8400.,\
                                                 rays[3]>8300.))
    tran.reflect(rays)

    #Go back to nominal node reference frame and down to focus
    rays = tran.applyT(rays, coords, inverse=True)

    if f is None:
        f = -surf.focusI(rays)
        print f
    else:
        tran.transform(rays, 0, 0, -f, 0, 0, 0)
        surf.flat(rays)

    if rrays is True:
        return rays

    return anal.hpd(rays)/f * 180/np.pi * 60.**2, \
           airnp.mean(rays[1]), np.mean(rays[2])
Beispiel #7
0
def traceThroughPrimary(rays,mask,primalign=np.zeros(6),\
                        detalign=np.zeros(6),primCoeffs=None,cenSig=0.):
    """
    Trace rays through the primary mirror and then down to a focus.
    Need to simulate an initial misalignment and then applying
    an optimization algorithm to align primary to beam.
    Merit function should include the random error in spot centroiding
    primCoeffs is a list of coefficients, axial orders, and azimuthal orders
    Use global coordinate systems to determine sign conventions
    """
    #Move to primary reference frame - rays 200 mm above node
    tran.transform(rays, 0, 0, -200., 0, 0, 0)
    glo = [tran.tr.identity_matrix()] * 4
    #Move to mirror tangent point and apply misalignment
    tran.transform(rays,
                   conic.primrad(8450., 220., 8400.),
                   0,
                   50,
                   0,
                   0,
                   0,
                   coords=glo)
    tran.transform(rays, 0, 0, 0, *primalign[3:], coords=glo)
    tran.itransform(rays,
                    conic.primrad(8450., 220., 8400.),
                    0,
                    50,
                    0,
                    0,
                    0,
                    coords=glo)
    tran.transform(rays, 0, 0, -8400., 0, 0, 0, coords=glo)
    #Trace to Wolter surface
    if primCoeffs is None:
        surf.wolterprimary(rays, 220., 8400.)
    else:
        surf.primaryLL(rays,220.,8400.,8500.,8400.,100./220.,\
                       *primCoeffs)
    rays = tran.applyT(rays, glo, inverse=True)
    #Rays are now at primary in global coordinate system
    #(origin on optical axis and at nominal node height)
    #Now reflect and trace down to the detector
    tran.reflect(rays)
    tran.transform(rays, 0, 0, -conic.primfocus(220., 8400.), 0, 0, 0)
    #Apply detector misalignment
    tran.transform(rays, *detalign)
    surf.flat(rays)
    #Pick out spot centroids
    cen = [anal.centroid(rays, weights=mask == i) for i in range(mask[-1] + 1)]
    cen = np.transpose(np.array(cen))
    #Add centroiding error
    if cenSig > 0:
        cen = cen + np.random.normal(scale=cenSig, size=np.shape(cen))

    return cen
Beispiel #8
0
def sourceToChamber(N, misalign=np.zeros(6)):
    """
    Trace randomly sampled rays from the TruFocus X-ray source
    to the 1.22 m diameter entrance to the test chamber.
    A-B from Jeff K.'s memo is 89.61
    Use oversized sub-apertured annulus, applying translations
    """
    #Define some Wolter parameters
    r1 = conic.primrad(8600., 220., 8400.)
    dphi = 100. / 220. / 2
    #Set up subannulus
    rays = sources.subannulus(220., r1, dphi * 1.25, N)
    #Set direction cosines
    srcdist = 89.61e3 + (1.5e3 - misalign[2])
    raydist = sqrt(srcdist**2+\
                   (rays[1]-misalign[0])**2+\
                   (rays[2]-misalign[1])**2)
    l = (rays[1] - misalign[0]) / raydist
    m = (rays[2] - misalign[1]) / raydist
    n = -sqrt(1. - l**2 - m**2)
    rays = [
        rays[0], rays[1], rays[2], rays[3], l, m, n, rays[7], rays[8], rays[9]
    ]
    #Go to mirror node and apply rotational misalignment
    tran.transform(rays, 220., 0, 0, misalign[3], misalign[4], misalign[5])
    tran.transform(rays, -220., 0, 0, 0, 0, 0)
    #Place Wolter surfaces
    tran.transform(rays, 0, 0, -8400., 0, 0, 0)
    surf.wolterprimary(rays, 220., 8400.)
    tran.reflect(rays)
    #Vignette rays not landing in active mirror area
    indz = np.logical_and(rays[3] > 8426., rays[3] < 8526.)
    ind = np.logical_and(np.abs(rays[2]) < 50., indz)
    rays = tran.vignette(rays, ind=ind)
    #Place secondary
    surf.woltersecondary(rays, 220., 8400.)
    tran.reflect(rays)
    #Vignette rays not landing in active mirror area
    indz = np.logical_and(rays[3] > 8276., rays[3] < 8376.)
    ind = np.logical_and(np.abs(rays[2]) < 50., indz)
    rays = tran.vignette(rays, ind=ind)
    #Go back up to intersection plane
    tran.transform(rays, 0, 0, 8400, 0, 0, 0)
    #Reverse misalignments
    tran.itransform(rays, -220., 0, 0, 0, 0, 0)
    tran.itransform(rays, 0, 0, 0, misalign[3], misalign[4], misalign[5])
    tran.itransform(rays, 220, 0, 0, 0, 0, 0)
    #Now back in nominal intersection coordinate system
    #Go to focus
    f = -9253.3858232
    tran.transform(rays, 0, 0, f, 0, 0, 0)
    surf.flat(rays)

    return rays  #anal.hpd(rays)/abs(f)*60**2*180/pi
Beispiel #9
0
def placeSPO(rays):
    """Place an SPO pair, presuming you are already at the intersection
    node
    """
    #Place primary
    surf.spoPrimary(rays, 737., 12.e3)
    tran.reflect(rays)
    #Place secondary
    surf.spoSecondary(rays, 737., 12.e3)
    tran.reflect(rays)

    return
Beispiel #10
0
def findGratingPosition(N, hubdist=11832.911, order=1, wave=4.4, disp=0.):
    """Place the SPO pair, find the focus, and then go back
    up to grating placement
    """
    #Set up SPO
    rays = traceSource(N)
    placeSPO(rays)
    #SPO intersection plane is global coordinate system

    #Go to focus
    gratc = [tran.tr.identity_matrix()] * 4
    surf.focusI(rays, coords=gratc)
    #Go back up to grating point
    tran.transform(rays,
                   0,
                   0,
                   np.mean(-11828.856 * rays[6]),
                   0,
                   0,
                   0,
                   coords=gratc)
    surf.flat(rays)

    #Place grating
    #Get to XY centroid of beam, now at center of grating
    tran.transform(rays, np.mean(rays[1]), 0, 0, 0, 0, 0, coords=gratc)
    gratc2 = np.copy(gratc)
    #Rotate to proper incidence angle
    tran.steerX(rays, coords=gratc2)
    tran.transform(rays, 0, 0, 0, 0, pi / 2 - 1.5 * pi / 180, 0, coords=gratc2)
    surf.flat(rays)
    tran.transform(rays, 0, 0, 0, 0, 0, pi / 2, coords=gratc2)
    #Go to hub and diffract
    #Add yaw
    yaw = grat.blazeYaw(1.5 * pi / 180, 2.4, 3, 160.)
    tran.transform(rays, 0, 0, 0, 0, 0, yaw, coords=gratc2)
    tran.transform(rays, 0, -hubdist + disp, 0, 0, 0, 0, coords=gratc2)
    tran.reflect(rays)
    tran.radgrat(rays, 160. / hubdist, order, wave)
    pdb.set_trace()
    #Go back to reference frame of grating
    rays = tran.applyT(rays, gratc2, inverse=True)  #Back to global
    #rays = tran.applyT(rays,gratc) #forward to grating

    #Go to focus
    focusc = [tran.tr.identity_matrix()] * 4
    surf.focusY(rays, coords=focusc)
    #Get rid of mean X and Y
    tran.transform(rays,np.mean(rays[1]),np.mean(rays[2]),0,0,0,0,\
                   coords=focusc)

    return rays,[gratc[1][i][-1] for i in range(3)],\
           [focusc[1][i][-1] for i in range(3)]
Beispiel #11
0
def pairRaytrace(secondaryTilt, despace):
    """Trace the distorted mirror pair. Assume no gap for now.
    Vignette rays that land outside active mirror areas."""
    #Define ray subannulus
    r1 = surf.con.primrad(8600., 1000., 8400.)
    ang = 260. / 1000.  #arc length over radius is angular extent
    rays = sources.subannulus(1000., r1, ang, 10**3)
    tran.transform(rays, 0, 0, 0, np.pi, 0, 0)  #Point in -z
    tran.transform(rays, 0, 0, -10000, 0, 0, 0)  #Converge from above

    #Trace to primary
    surf.primaryLL(rays, 1000., 8400., 8600, 8400, ang, res[0], res[2], res[1])
    #Vignette rays missing
    ind = np.logical_and(rays[3] < 8600., rays[3] > 8400.)
    rays = tran.vignette(rays, ind)
    numin = float(len(rays[1]))
    #Reflect
    tran.reflect(rays)
    #Bring to midplane of despaced secondary

    #Apply secondary misalignment
    tran.transform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                   0)
    tran.transform(rays, 0, 0, despace, 0, secondaryTilt, 0)
    tran.itransform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                    0)
    #Trace to secondary
    surf.secondaryLL(rays, 1000., 8400., 8400., 8200., ang, res2[0], res2[2],
                     res2[1])
    #Vignette rays missing
    ind = np.logical_and(rays[3] < 8400., rays[3] > 8200.)
    rays = tran.vignette(rays, ind)
    numout = float(len(rays[1]))
    #Reflect
    tran.reflect(rays)
    #Reverse secondary misalignment
    tran.transform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                   0)
    tran.itransform(rays, 0, 0, despace, 0, secondaryTilt, 0)
    tran.itransform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                    0)

    #Go to focus
    surf.focusI(rays)

    #Get centroid
    cx, cy = anal.centroid(rays)

    #Return merit function
    return anal.rmsCentroid(
        rays) / 8400. * 180 / np.pi * 60**2, numout / numin, cx, cy
Beispiel #12
0
def singleOptic2(n,misalign=np.zeros(6),srcdist=89.61e3+1.5e3,az=100.,\
                 returnRays=False,f=None,\
                 plist=[[0],[0],[0]],\
                 ax=100.):
    """Alternative SLF finite source trace"""
    #Establish subannulus of rays
    r0 = conic.primrad(8426., 220., 8400.)
    r1 = conic.primrad(8426. + ax, 220., 8400.)
    rays = sources.subannulus(r0, r1, az / 220., n, zhat=-1.)
    #Transform to node position
    tran.transform(rays, 220, 0, 0, 0, 0, 0)
    #Set up finite source distance
    raydist = sqrt(srcdist**2 + rays[1]**2 + rays[2]**2)
    l = rays[1] / raydist
    m = rays[2] / raydist
    n = -sqrt(1. - l**2 - m**2)
    rays = [
        raydist, rays[1], rays[2], rays[3], l, m, n, rays[7], rays[8], rays[9]
    ]
    #Align perfectly to beam
    tran.steerX(rays)
    #Apply misalignment
    tran.transform(rays, *misalign)
    #Place mirror
    tran.transform(rays, -220., 0, -8400., 0, 0, 0)
    ##    surf.wolterprimarynode(rays,220,8400.)
    surf.primaryLL(rays, 220., 8400., 8426. + ax, 8426., az / 220., *plist)
    rays = tran.vignette(rays,ind=np.logical_and(rays[3]<8400.+ax,\
                                                 rays[3]>8400.))
    tran.itransform(rays, -220., 0., -8400., 0, 0, 0)
    #Vignette rays not landing in active mirror area
    ind = np.logical_and(rays[3] > 26., rays[3] < (26. + ax))
    ##    ind = np.logical_and(np.abs(rays[2])<az/2.,indz)
    rays = tran.vignette(rays, ind=ind)
    #Reverse misalignment
    tran.itransform(rays, *misalign)
    #Reflect and go to surface
    tran.reflect(rays)
    if f is None:
        f = surf.focusI(rays)
    else:
        tran.transform(rays, 0, 0, f, 0, 0, 0)
        surf.flat(rays)
    #Get centroid
    cx, cy = anal.centroid(rays)

    if returnRays is True:
        return rays

    return anal.hpd(rays) / abs(f) * 180 / pi * 60**2, f, cx
Beispiel #13
0
def testRadApprox(num,order=1,wave=1.,radapprox=False,N=3,f=None,yaw=0.,\
                  azwidth=66.*.68,autofocus=False,returnMet=False,axwidth=2.5):
    """

    """
    #Set up converging source
    rays = source.convergingbeam2(12e3,-azwidth/2,azwidth/2,\
                                  -axwidth/2,axwidth/2,num,0.)
    tran.transform(rays,0,0,12e3,0,0,0)
    tran.transform(rays,0,0,0,88.5*np.pi/180.,0,0)
    tran.transform(rays,0,0,0,0,0,yaw)
    surf.flat(rays)

    #Place grating
    if radapprox is False:
        tran.reflect(rays)
        tran.transform(rays,0,-12e3,0,0,0,0)
        tran.radgrat(rays,160./12e3,order,wave)
        tran.transform(rays,0,12e3,0,0,0,0)
        tran.transform(rays,0,0,0,0,0,-yaw)
    else:
        tran.reflect(rays)
        gratedges = np.linspace(-50.,50.,N+1)
        for i in range(N):
            ind = np.logical_and(rays[2]>gratedges[i],\
                             rays[2]<gratedges[i+1])
            d = (12e3+np.mean(gratedges[i:i+2]))/12e3*160.
            if np.sum(ind)>0:
                tran.grat(rays,d,-order,wave,ind=ind)
        tran.transform(rays,0,0,0,0,0,-yaw)


    #Go to focal plane
    tran.transform(rays,0,0,0,-88.5*np.pi/180.,0,0)
    tran.transform(rays,0,0,0,0,0,np.pi/2)

    if f is not None:
        try:
            tran.transform(rays,0,0,-f,0,0,0)
            surf.flat(rays)
        except:
            pdb.set_trace()

    if autofocus is True:
        surf.focusY(rays)

    if returnMet is True:
        return anal.hpdY(rays)/12e3*180/np.pi*60**2
    
    return rays
Beispiel #14
0
def createWavefront(rad, num, coeff, rorder=None, aorder=None):
    """Bounce rays off of Zernike surface. Use flat to
    bring rays to a common plane, leaving the OPD as twice
    the figure error of the Zernike surface.
    """
    #Create set of rays
    rays = sources.circularbeam(rad, num)
    #Reflect to Zernike surface
    surf.zernsurf(rays, coeff, rad, nr=1., rorder=rorder, aorder=aorder)
    tran.reflect(rays)
    tran.transform(rays, 0, 0, 0, np.pi, 0, 0)
    surf.flat(rays, nr=1.)
    #Wavefront now has the proper Zernike form, rays pointing in
    #+z direction
    return rays
Beispiel #15
0
def traceSPO(N,rin=700.,rout=737.,azwidth=66.,srcdist=89.61e3+1.5e3,\
             scatter=False):
    """
    Trace a set of rays through an SPO module using a
    finite source distance. Ignore vignetting, we are
    only interested in aberrations.
    Set up a subannulus, apply finite source effect,
    and then simply translate to inner SPO radius and
    trace outward.
    Let x be the radial direction, y the azimuthal
    """
    #Establish subannulus of rays
    rays = source.subannulus(rin,rout,azwidth/rin,N,zhat=-1.)
    #Transform to node position
    mx = np.mean([rin,rout])
    tran.transform(rays,mx,0,0,0,0,0)
    #Set up finite source distance
    raydist = np.sqrt(srcdist**2+rays[1]**2+rays[2]**2)
    l = rays[1]/raydist
    m = rays[2]/raydist
    n = -np.sqrt(1.-l**2-m**2)
    rays = [raydist,rays[1],rays[2],rays[3],l,m,n,rays[7],rays[8],rays[9]]
    #Align perfectly to beam
    #tran.steerX(rays)
    tran.transform(rays,0,0,0,0,-np.mean(rays[4]),0)
    
    #Move to SPO optical axis and trace through shells
    tran.transform(rays,-mx,0,0,0,0,0)
    R = np.arange(rin,rout+.605,.605)
    rad = np.sqrt(rays[1]**2+rays[2]**2)
    for r in R:
        #Collect relevant rays
        ind = np.logical_and(rad>r,rad<r+.605)
        if np.sum(ind)==0:
            continue
        #Trace them through system
        surf.spoPrimary(rays,r,12e3,ind=ind)
        tran.reflect(rays,ind=ind)
        surf.spoSecondary(rays,r,12e3,ind=ind)
        tran.reflect(rays,ind=ind)
    #Rays are now at secondary surfaces,
    #Add scatter
    if scatter is True:
        rays[4] = rays[4] + np.random.normal(scale=15./2.35*5e-6,size=N)
        rays[5] = rays[5] + np.random.normal(scale=1.5/2.35*5e-6,size=N)
        rays[6] = -np.sqrt(1.-rays[5]**2-rays[4]**2)
    return rays
Beispiel #16
0
def singleEllipse(n,misalign=np.zeros(6),srcdist=89.61e3+1.5e3,az=100.,\
                 returnRays=False,f=None,\
                 plist=[[0],[0],[0]],\
                 ax=100.,psi=psiE):
    """Alternative SLF finite source trace"""
    #Establish subannulus of rays
    r0 = conic.primrad(8426., 220., 8400.)
    r1 = conic.primrad(8426. + ax, 220., 8400.)
    rays = sources.subannulus(r0, r1, az / 220., n, zhat=-1.)
    tran.pointTo(rays, 0., 0., srcdist, reverse=1.)
    #Transform to node position
    tran.transform(rays, 220, 0, 0, 0, 0, 0)
    #Apply misalignment
    tran.transform(rays, *misalign)
    #Place mirror
    tran.transform(rays, -220., 0, -8400., 0, 0, 0)
    ##    surf.wolterprimarynode(rays,220,8400.)
    surf.ellipsoidPrimaryLL(rays,220.,8400.,srcdist,psi,8426.+ax,8426.,\
                            az/220.,*plist)
    tran.itransform(rays, -220., 0., -8400., 0, 0, 0)
    #Vignette rays not landing in active mirror area
    ind = np.logical_and(rays[3] > 26., rays[3] < (26. + ax))
    ##    ind = np.logical_and(np.abs(rays[2])<az/2.,indz)
    rays = tran.vignette(rays, ind=ind)
    #Reverse misalignment
    tran.itransform(rays, *misalign)
    #Reflect and go to surface
    tran.reflect(rays)
    if f is None:
        f = surf.focusI(rays)
    else:
        tran.transform(rays, 0, 0, f, 0, 0, 0)
        surf.flat(rays)
    #Get centroid
    cx, cy = anal.centroid(rays)

    if returnRays is True:
        return rays

    return anal.hpd(rays) / abs(f) * 180 / pi * 60**2  #,f,cx
Beispiel #17
0
def perfectCyl(rays, align=np.zeros(6)):
    """
    Trace rays from perfect cylinder with potential misalignment
    Assume rays are traced to tangent plane of nominal optic position
    +z points back toward CGH
    Leave with reference frame at tangent plane of nominal surface
    """
    #Apply misalignment
    tran.transform(rays, *align)
    #Trace cylinder
    tran.transform(rays, 0, 0, 220., 0, 0, 0)
    #Get cylindrical axis in +x direction
    tran.transform(rays, 0, 0, 0, 0, 0, pi / 2)
    surf.cyl(rays, 220., nr=1.)
    tran.reflect(rays)
    tran.itransform(rays, 0, 0, 0, 0, 0, pi / 2)
    tran.itransform(rays, 0, 0, 220., 0, 0, 0)
    #Go back to nominal tangent plane
    tran.itransform(rays, *align)
    surf.flat(rays, nr=1.)

    return
Beispiel #18
0
def alignTrace(inc,impact,grating,detector,order=0):
    """Traces UV laser rays to grating. Beam impact misalignment
    is handled with a single coordinate transformations right after
    source definition. Grating orientation is handled with
    symmetric coordinate transformations.
    inc - nominal beam glancing angle, must be less than
        50.39 deg for 262 nm light
    impact - 6 element array giving beam impact transform
    grating - 6 element array giving grating misalignment
    """
    #Set up source with single ray, diffraction plane
    #is XZ, glancing angle from XY plane, ray starts out
    #pointing +x and -z
    rays = sources.pointsource(0.,1)
    tran.transform(rays,0,0,0,0,-np.pi/2-inc,0)
    #Perform beam impact misalignment transform, rotation first
    tran.transform(rays,*np.concatenate(((0,0,0),impact[3:])))
    tran.transform(rays,*np.concatenate((impact[:3],(0,0,0))))
    #Perform grating misalignment
    tran.transform(rays,*grating)
    #Linear grating
    surf.flat(rays)
    tran.reflect(rays)
    tran.grat(rays,160.,order,262.)
    #Reverse misalignment transformation
    tran.itransform(rays,*grating)
    #Go to detector depending on order
    if order is not 0:
        tran.transform(rays,-200.,0,0,0,0,0)
    else:
        tran.transform(rays,200.,0,0,0,0,0)
    #Trace to detector
    tran.transform(rays,0,0,0,0,-np.pi/2,0)
    tran.transform(rays,*detector)
    surf.flat(rays)
    #Return ray position
    return rays[1],rays[2]
Beispiel #19
0
def createWavefront(rad,num,coeff,rorder=None,aorder=None,\
                    slitwidth=3.,masknum=15,trans=np.zeros(2)):
    """Bounce rays off of Zernike surface. Use flat to
    bring rays to a common plane, leaving the OPD as twice
    the figure error of the Zernike surface.
    Use subannulus so as not to waste rays in beginning
    of simulation
    Group rays for a given mask slit together using a
    Hartmann vector. Vignette everything else.
    Assume masknum slits 3 mm wide distributed evenly
    over the mirror aperture
    """
    #Create set of rays
    r1 = conic.primrad(8500., 220., 8400.)
    #Loop through Hartmann mask
    maskcenters = np.linspace(-48.5 / 220., 48.5 / 220., masknum)
    for i in range(masknum):
        trays = sources.subannulus(220., r1, slitwidth / 220.,
                                   round(num / masknum))
        tran.transform(trays, 0, 0, 0, 0, 0, maskcenters[i])
        try:
            rays = [np.concatenate([rays[ti], trays[ti]]) for ti in range(10)]
            mask = np.concatenate([mask, np.repeat(i, round(num / masknum))])
        except:
            rays = trays
            mask = np.repeat(i, round(num / masknum))

    tran.transform(rays, 220.3 + trans[0], trans[1], 0, 0, 0, 0)
    #Reflect to Zernike surface
    surf.zernsurf(rays, coeff, rad, nr=1., rorder=rorder, aorder=aorder)
    tran.reflect(rays)
    surf.flat(rays, nr=1.)
    tran.transform(rays, -220.3, 0, 0, 0, 0, 0)
    #Wavefront now has the proper Zernike form, rays pointing in
    #-z direction
    return rays, mask
Beispiel #20
0
def tracePrimary(primCoeffs=None, primalign=np.zeros(6)):
    """
    Trace rays from focus to primary, off retroreflector,
    then back to focus. Return spot centroids.
    """
    #Set up source
    primfoc = conic.primfocus(220., 8400.)
    r1 = conic.primrad(8500., 220., 8400.)
    rays = sources.subannulus(220., r1, 100. / 220, 100000, zhat=1.)
    tran.pointTo(rays, 0., 0., -primfoc, reverse=1.)
    theta = np.arctan2(rays[2], rays[1])

    #Trace to primary
    tran.transform(rays, *primalign)
    tran.transform(rays, 0., 0, -8400., 0, 0, 0)
    if primCoeffs is None:
        surf.wolterprimary(rays, 220., 8400.)
    else:
        surf.primaryLL(rays,220.,8400.,8500.,8400.,100./220.,\
                       *primCoeffs)
    tran.transform(rays, 0, 0, 8400., 0, 0, 0)
    tran.itransform(rays, *primalign)
    tran.reflect(rays)

    #Reflect and come back
    tran.transform(rays, 0, 0, 400., 0, 0, 0)
    surf.flat(rays)
    tran.reflect(rays)
    tran.transform(rays, 0, 0, -400., 0, 0, 0)

    #Trace to primary
    tran.transform(rays, *primalign)
    tran.transform(rays, 0., 0, -8400., 0, 0, 0)
    if primCoeffs is None:
        surf.wolterprimary(rays, 220., 8400.)
    else:
        surf.primaryLL(rays,220.,8400.,8500.,8400.,100./220.,\
                       *primCoeffs)
    ind = np.logical_and(rays[3] > 8400., rays[3] < 8500.)
    tran.vignette(rays, ind=ind)
    tran.transform(rays, 0, 0, 8400., 0, 0, 0)
    tran.itransform(rays, *primalign)
    tran.reflect(rays)

    #Go to primary focus
    tran.transform(rays, 0, 0, -primfoc, 0, 0, 0)
    surf.flat(rays)

    return rays, theta
Beispiel #21
0
def traceOPG(rays,hubdist=11832.911,yaw=0.,order=1,wave=1.,ang=2.5/11832.911,\
             gpitch=0.,gyaw=0.,groll=0.,\
             radapprox=False):
    """
    Trace the OPG module. Probably ignore vignetting again.
    Place perfect OPG surfaces at the correct angular distance
    to make this a reasonable approximation.
    Assume reference frame is in center of module with -z
    pointing toward hub - achieved with steerX/steerY and
    rotate inc before this function call
    Create vector to keep track of which grating each ray
    diffracts from. Separate LSFs can be identified using
    this vector.
    """
    #Establish starting coordinate system
    coords = [tran.tr.identity_matrix()]*4
    #Get -x pointing to hub
    #Question whether to rotate about z to swap x and y
    tran.transform(rays,0,0,0,0,0,-pi/2,coords=coords)
    tran.transform(rays,0,0,0,pi/2,0,0,coords=coords)
    #Go to hub, then rotate to extreme grating surface
    tran.transform(rays,0,0,0,0,0,yaw,coords=coords) #possible blaze
    tran.transform(rays,0,-11832.911,0,0,0,0,coords=coords)
    tran.transform(rays,0,0,0,-ang*7,0,0,coords=coords) #minus sign ambiguity
    #Loop through gratings, tracing rays
    left = np.repeat(True,len(rays[1]))
    record = np.zeros(len(rays[1]))
    for i in range(15):
        #If no rays left, we are done
        if np.sum(left) == 0:
            continue
        #Rays with small incidence angle removed
        indg = np.abs(np.arcsin(rays[6])) > .001
        ind = np.logical_and(left,indg)
        if np.sum(ind)==0:
            tran.transform(rays,0,0,0,ang,0,0,coords=coords)
            continue
        #Trace rays to surface
        tyaw = np.random.uniform(low=-gyaw,high=gyaw)
        tpitch = np.random.uniform(low=-gpitch,high=gpitch)
        troll = np.random.uniform(low=-groll,high=groll)
        tran.transform(rays,0,11832.911,0,0,0,0,ind=ind)
        tran.transform(rays,0,0,0,tpitch,troll,tyaw,ind=ind)
        surf.flat(rays,ind=ind)
        tran.itransform(rays,0,0,0,tpitch,troll,tyaw,ind=ind)
        tran.itransform(rays,0,11832.911,0,0,0,0,ind=ind)
        #Identify relevant rays
        ind = np.logical_and(rays[2]>11832.911-96./2,rays[2]<11832.911+96./2)
        ind = np.logical_and(ind,left)
        #Remove these rays from the set that remain
        left = np.logical_and(left,np.invert(ind))
        if np.sum(ind)==0:
            tran.transform(rays,0,0,0,ang,0,0,coords=coords)
            continue
        #Record which grating these rays diffracted from
        record[ind] = i+1
        #Diffract this set of rays
        tran.reflect(rays,ind=ind)
        tran.transform(rays,0,11832.911-hubdist,0,0,0,0,coords=coords)
        
        if radapprox is False:
            tran.radgrat(rays,160./hubdist,order,wave,ind=ind)
        else:
            ind3 = np.logical_and(rays[2]<11832.911+48.,\
                                 rays[2]>11832.911+48-9.282)
            ind4 = np.logical_and(ind3,ind)
            if np.sum(ind4)>0:
                tran.grat(rays,160.,order,wave,ind=ind4)

            ind3 = np.logical_and(rays[2]<11832.911+48.-9.282,\
                                 rays[2]>11832.911+48-9.282-18.564)
            ind4 = np.logical_and(ind3,ind)
            if np.sum(ind4)>0:
                tran.grat(rays,159.75,order,wave,ind=ind4)

            ind3 = np.logical_and(rays[2]<11832.911+48.-9.282-18.564,\
                                 rays[2]>11832.911+48-9.282-18.564*2)
            ind4 = np.logical_and(ind3,ind)
            if np.sum(ind4)>0:
                tran.grat(rays,159.5,order,wave,ind=ind4)

            ind3 = np.logical_and(rays[2]<11832.911+48.-9.282-18.564*2,\
                                 rays[2]>11832.911+48-9.282-18.564*3)
            ind4 = np.logical_and(ind3,ind)
            if np.sum(ind4)>0:
                tran.grat(rays,159.25,order,wave,ind=ind4)

            ind3 = np.logical_and(rays[2]<11832.911+48.-9.282-18.564*3,\
                                 rays[2]>11832.911+48-9.282-18.564*4)
            ind4 = np.logical_and(ind3,ind)
            if np.sum(ind4)>0:
                tran.grat(rays,159.,order,wave,ind=ind4)

            ind3 = np.logical_and(rays[2]<11832.911+48.-9.282-18.564*4,\
                                 rays[2]>11832.911+48-9.282-18.564*4-12.462)
            ind4 = np.logical_and(ind3,ind)
            if np.sum(ind4)>0:
                tran.grat(rays,158.75,order,wave,ind=ind4)
            #pdb.set_trace()
            
        tran.transform(rays,0,hubdist-11832.911,0,0,0,0,coords=coords)
        #Rotate to next grating
        tran.transform(rays,0,0,0,ang,0,0,coords=coords)
    #Go back to original coordinate system
    rays = tran.applyT(rays,coords,inverse=True)

    return rays,record
Beispiel #22
0
def gratArray(rays,outerrad,hubdist,angle,inc,l=95.,bestFocus=None,\
              weights=None,order=0,blazeYaw=0.,wave=1.,offX=0.,\
              coords=None,vis=False):
    """Trace rays leaving SPO petal to the fanned grating array.
    Start with outermost radius and rotate grating array about
    the hub. Define outermost grating position by max ray radius
    at desired axial height.
    Rays have been traced to bottom of outermost grating.
    """
    #Visualization bookkeeping
    xg, yg, zg = [np.zeros(len(rays[1]))] * 3

    x, y = rays[1:3]
    #Dummy rays to ensure return of reference frame
    ##    rays2 = sources.subannulus(220.,223.,10.*pi/180,100)
    #Put origin at bottom of outermost grating
    tran.transform(rays, outerrad, 0, 0, 0, 0, 0, coords=coords)
    ##    PT.transform(rays2,outerrad,0,0,0,0,0)
    #Go to proper incidence angle of grating
    tran.transform(rays, 0, 0, 0, 0, 0, -pi / 2, coords=coords)
    tran.transform(rays, 0, 0, 0, -pi / 2 - angle + inc, 0, 0, coords=coords)
    ##    PT.transform(rays2,0,0,0,0,0,-pi/2)
    ##    PT.transform(rays2,0,0,0,-pi/2-angle+inc,0,0)
    #Go to hub
    tran.transform(rays, 0, 0, 0, 0, 0, blazeYaw, coords=coords)  #Put in blaze
    tran.transform(rays, 0, hubdist, 0, 0, 0, 0, coords=coords)
    ##    PT.transform(rays2,0,0,0,0,0,blazeYaw) #Put in blaze
    ##    PT.transform(rays2,0,hubdist,0,0,0,0)
    #Trace out gratings until no rays hit a grating
    #Flat
    #Indices
    #Reflect
    #Apply Grating
    #Next
    #Edit to only flat rays with a substantial incidence angle
    indg = np.abs(np.arcsin(rays[6])) > .001
    surf.flat(rays, ind=indg)
    rho = -sqrt(x**2 + y**2) * np.sign(y)
    ind = np.logical_and(rho > hubdist, rho < l + hubdist)
    ##    pdb.set_trace()
    ind2 = np.copy(ind)
    #offx subtracted to prevent numerical vignetting...this
    #is accounted for with numerical factors, so don't want
    #any rays to be missed
    ang = l * sin(inc - offX) / hubdist * .95

    i = 0
    prev = np.copy(ind)
    #Loop condition needs to be rays not diffracted > 0
    while np.sum(prev) < len(rays[1]):
        i = i + 1
        if np.sum(ind2) > 0:
            tran.reflect(rays, ind=ind2)
            tran.radgrat(rays, 160. / hubdist, order, wave, ind=ind2)
        tran.transform(rays, 0, 0, 0, ang, 0, 0, coords=coords)
        ##        PT.transform(rays2,0,0,0,ang,0,0)
        indg = np.abs(np.arcsin(rays[6])) > .001
        indg = np.logical_and(np.invert(prev), indg)
        surf.flat(rays, ind=indg)
        ##        pdb.set_trace()
        #Determine rays hitting new grating
        rho = -sqrt(x**2 + y**2) * np.sign(y)
        ind = np.logical_and(rho > hubdist, rho < l + hubdist)
        ind2 = np.logical_and(np.invert(prev), ind)  #Remove previous rays
        prev = np.logical_or(prev, ind)  #Add rays hitting new grating
        #sys.stdout.write('%i \r' % i)
        #sys.stdout.flush()
    tran.reflect(rays, ind=ind2)
    tran.radgrat(rays, 160. / hubdist, order, wave, ind=ind2)

    ##    #Go to focal plane
    ##    PT.transform(rays,0,-hubdist,0,0,0,0)
    ##    PT.transform(rays,0,0,0,0,0,-blazeYaw) #Reverse blaze
    ##    #Currently at bottom point of innermost grating
    ##    pdb.set_trace()

    if vis is True:
        #Get hub position
        hub = tran.applyTPos(0, 0, 0, coords, inverse=True)
        pyfits.writeto('HubPos.fits', np.array(hub), clobber=True)

    #Get back to original outermost grating reference frame
    tran.transform(rays, 0, 0, 0, -ang * i, 0, 0, coords=coords)
    tran.transform(rays, 0, -hubdist, 0, 0, 0, 0, coords=coords)
    tran.transform(rays, 0, 0, 0, 0, 0, -blazeYaw, coords=coords)
    tran.transform(rays, 0, 0, 0, pi / 2 + angle - inc, 0, 0, coords=coords)
    tran.transform(rays, 0, 0, 0, 0, 0, pi / 2, coords=coords)
    tran.transform(rays, -outerrad, 0, 0, 0, 0, 0, coords=coords)

    ##    PT.transform(rays2,0,0,0,-ang*i,0,0)
    ##    PT.transform(rays2,0,-hubdist,0,0,0,0)
    ##    PT.transform(rays2,0,0,0,0,0,-blazeYaw)
    ##    PT.transform(rays2,0,0,0,pi/2+angle-inc,0,0)
    ##    PT.transform(rays2,0,0,0,0,0,pi/2)
    ##    PT.transform(rays2,-outerrad,0,0,0,0,0)

    #Export grating ray positions
    if vis is True:
        rays2 = tran.applyT(rays, coords, inverse=True)
        pyfits.writeto('GratingPos.fits',\
                       np.array([rays2[1],rays2[2],rays2[3]]),\
                       clobber=True)
        pdb.set_trace()

    #Should be there
    surf.flat(rays)

    ##    PT.transform(rays,0,hubdist,0,0,0,0)
    ##    PT.transform(rays,0,0,0,-ang*i+pi/2+angle-inc,0,0)
    ##    PT.transform(rays,0,0,0,0,0,pi/2)
    ##    PT.flat(rays)

    #Find focus
    if bestFocus is None:
        return surf.focusY(rays, weights=weights)


##
##    #Focus already found, tracing diffracted line
##    PT.transform(rays,0,0,bestFocus,0,0,0)
##    PT.flat(rays)

    return None
Beispiel #23
0
def reproduceChevron(num,rin=220.,axlength=100.,azwidth=50.,F=8.4e3,\
                     hubdist=8e3,radapprox=False,order=1,wave=.83,f=None,\
                     autofocus=False,returnMet=False,yaw=0.,N=1,\
                     gratalign=np.zeros(6)):
    #Create Wolter beam
    rout = conic.primrad(F+axlength,rin,F)
    rays = source.subannulus(rin,rout,azwidth/rin,num,zhat=-1.)
    surf.wolterprimary(rays,rin,F)
    tran.reflect(rays)
    surf.woltersecondary(rays,rin,F)
    tran.reflect(rays)
    tran.transform(rays,0,0,0,0,0,np.pi/2)

    #Go to focus
    surf.focusI(rays)
    #Steer beam
    coords = [tran.tr.identity_matrix()]*4
    tran.transform(rays,0,0,0,np.mean(rays[5]),-np.mean(rays[4]),0)
    pdb.set_trace()
    #Go up to grating
    tran.transform(rays,0,0,hubdist/np.cos(1.5*np.pi/180),0,0,0)
    #Go to incidence angle
    tran.transform(rays,0,0,0,91.5*np.pi/180,0,0)
    tran.transform(rays,0,0,0,0,0,yaw)
    #Apply grating misalignment
    tran.transform(rays,*gratalign)
    surf.flat(rays)
    #Get rid of rays outside grating
    ind = np.logical_and(np.abs(rays[2])<16,np.abs(rays[1])<25/2.)
    rays = tran.vignette(rays,ind=ind)

    plt.figure('grat')
    plt.clf()
    plt.plot(rays[1],rays[2],'.')
    plt.title('Beam Footprint')

    #Place grating
    if radapprox is False:
        tran.reflect(rays)
        tran.transform(rays,0,-hubdist,0,0,0,0)
        tran.radgrat(rays,160./hubdist,order,wave)
        tran.transform(rays,0,hubdist,0,0,0,0)
    else:
        tran.reflect(rays)
        gratedges = np.linspace(-16.,16.,N+1)
        for i in range(N):
            ind = np.logical_and(rays[2]>gratedges[i],\
                             rays[2]<gratedges[i+1])
            d = (hubdist+np.mean(gratedges[i:i+2]))/hubdist*160.
            if np.sum(ind)>0:
                tran.grat(rays,d,-order,wave,ind=ind)


    #Go to focal plane
    tran.transform(rays,*gratalign)
    tran.transform(rays,0,0,0,0,0,-yaw)
    tran.transform(rays,0,0,0,-91.5*np.pi/180.,0,0)
    tran.transform(rays,0,0,0,0,0,np.pi/2)

    if f is not None:
        try:
            tran.transform(rays,0,0,-f,0,0,0)
            surf.flat(rays)
        except:
            pdb.set_trace()

    if autofocus is True:
        surf.focusY(rays)

    if returnMet is True:
        return anal.hpdY(rays)/F*180/np.pi*60**2

    plt.figure('LSF')
    plt.clf()
    plt.plot(rays[1],rays[2],'.')
    plt.title('LSF')
    
    return rays
Beispiel #24
0
def traceWedge(rays, t=25., wang=1. * np.pi / 180, pang=45. * np.pi / 180):
    """
    Make two copies of rays and trace through a wedged plate.
    Ignore multiple reflections.
    Interpolate one OPD onto the other, take difference
    modulo wavelength
    t = plate thickness (at narrow end)
    ang = wedge angle
    """
    #Make copy
    rays2 = np.copy(rays)

    #Trace first set
    ref1 = [tran.tr.identity_matrix()] * 4
    pdb.set_trace()
    tran.transform(rays, 0, 0, 300., pang, 0, 0, coords=ref1)
    surf.flat(rays, nr=1.)
    tran.reflect(rays)
    tran.transform(rays, 0, 0, 0, np.pi / 2 - pang, 0, 0, coords=ref1)
    tran.transform(rays, 0, 0, -300., 0, 0, 0, coords=ref1)
    ##    tran.steerY(rays,coords=ref1)
    surf.flat(rays, nr=1.)

    #Trace second set
    ref2 = [tran.tr.identity_matrix()] * 4
    pdb.set_trace()
    tran.transform(rays2, 0, 0, 300., pang, 0, 0, coords=ref2)
    surf.flat(rays2, nr=1.)
    #Refract into glass and reflect
    tran.refract(rays2, 1., nSiO2)
    tran.transform(rays2, 0, 0, t, 0, wang, 0, coords=ref2)
    surf.flat(rays2, nr=nSiO2)
    tran.reflect(rays2)
    #Refract out of glass
    ##    tran.itransform(rays2,0,0,t,wang,0,0,coords=ref2)
    tran.transform(rays2, 0, 0, 0, 0, -wang, 0, coords=ref2)
    tran.transform(rays2, 0, 0, -t, 0, 0, 0, coords=ref2)
    surf.flat(rays2, nr=nSiO2)
    tran.refract(rays2, nSiO2, 1.)
    #Go to focal plane
    rays2 = tran.applyT(rays2, ref2, inverse=True)
    rays2 = tran.applyT(rays2, ref1)
    surf.flat(rays2, nr=1.)

    #Both sets of rays at same plane, should have shear and tilt
    #Interpolate OPDs onto common grid
    opd1,dx,dy = anal.interpolateVec(rays,0,200,200,\
                               xr=[rays[1].min(),rays[1].max()],\
                               yr=[rays2[2].min(),rays[2].max()])
    opd2 = anal.interpolateVec(rays2,0,200,200,\
                               xr=[rays[1].min(),rays[1].max()],\
                               yr=[rays2[2].min(),rays[2].max()])[0]

    #Convert to complex phase
    opd1 = opd1 / .000635 * 2 * np.pi % (2 * np.pi)
    opd2 = opd2 / .000635 * 2 * np.pi % (2 * np.pi)
    opd1 = np.exp(1j * opd1)
    opd2 = np.exp(1j * opd2)

    #Compute intensity/interferogram
    return np.abs(opd1 + opd2)**2
Beispiel #25
0
def ellipsoidPair(N,srcdist=89.61e3+1.5e3,primalign=np.zeros(6),\
               secalign=np.zeros(6),rrays=False,f=None,\
                  plist=[[0],[0],[0]],hlist=[[0],[0],[0]]):
    """
    Trace an ellipsoid-hyperboloid telescope in SLF geometry.
    plist is [pcoeff,pax,paz]
    """
    #Establish subannulus of rays
    r1 = conic.ellipsoidRad(srcdist, 1., 220., 8400., 8500.)
    rays = sources.subannulus(220., r1, 100. / 220., N, zhat=-1.)
    tran.pointTo(rays, 0, 0, srcdist, reverse=1.)
    ##    #Transform to node position
    ##    tran.transform(rays,220,0,0,0,0,0)
    ##    #Set up finite source distance
    ##    raydist = sqrt(srcdist**2+rays[1]**2+rays[2]**2)
    ##    rays[4] = rays[1]/raydist
    ##    rays[5] = rays[2]/raydist
    ##    rays[6] = -sqrt(1.-rays[4]**2-rays[5]**2)

    #Place mirror pair
    coords = [tran.tr.identity_matrix()] * 4
    prad = conic.ellipsoidRad(srcdist, 1., 220., 8400., 8450.)
    tran.transform(rays,prad,0,50.,0,0,0,\
                   coords=coords)
    tran.transform(rays, *primalign, coords=coords)
    tran.transform(rays,-prad,0,-8450.,0,0,0,\
                   coords=coords)
    surf.ellipsoidPrimaryLL(rays,220.,8400.,srcdist,1.,8500.,8400.,100./220,\
                            *plist)
    #Vignette any rays outside of active area
    rays = tran.vignette(rays,ind=np.logical_and(rays[3]<8500.,\
                                                 rays[3]>8400.))
    ##    surf.ellipsoidPrimary(rays,220.,8400.,srcdist,1.)
    tran.reflect(rays)
    #Place secondary in primary's reference frame
    srad = conic.ehSecRad(srcdist, 1., 220., 8400., 8350.)
    tran.transform(rays,srad,0,8350.,0,0,0,\
                   coords=coords)
    tran.transform(rays, *secalign, coords=coords)
    tran.itransform(rays,srad,0,8350.,0,0,0,\
                   coords=coords)
    ##    surf.ellipsoidSecondary(rays,220.,8400.,srcdist,1.)
    surf.ellipsoidSecondaryLL(rays,220.,8400.,srcdist,1.,8400.,8300.,100./220,\
                              *hlist)
    rays = tran.vignette(rays,ind=np.logical_and(rays[3]<8400.,\
                                                 rays[3]>8300.))
    ang = anal.grazeAngle(rays)
    tran.reflect(rays)

    #Go back to nominal node reference frame and down to focus
    rays = tran.applyT(rays, coords, inverse=True)

    if f is None:
        f = -surf.focusI(rays)
        print f
    else:
        tran.transform(rays, 0, 0, -f, 0, 0, 0)
        surf.flat(rays)

    if rrays is True:
        return rays

    return anal.hpd(rays) / f * 180 / np.pi * 60.**2
Beispiel #26
0
def traceSPO(R,L,focVec,N,M,spanv,wave,d=.605,t=.775,offX=0.,offY=0.,\
             vis=None,ang=None,coords=None):
    """Trace SPO surfaces sequentially. Collect rays from
    each SPO shell and set them to the PT rays at the end.
    Start at the inner radius, use the wafer and pore thicknesses
    to vignette and compute the next radius, loop while
    radius is less than Rout.
    """
    #Ray bookkeeping arrays
    trays = [np.zeros(M * N) for n in range(10)]
    if vis is True:
        xp, yp, zp = [], [], []
        xs, ys, zs = [], [], []

    #Loop through shell radii and collect rays
    ref = np.zeros(M * N)
    for i in range(M):
        #Set up source annulus
        rays = sources.subannulus(R[i], R[i] + d, spanv[i], N, zhat=-1.)
        z, n = rays[3], rays[6]
        ##        #Transform rays to be above xy plane
        ##        tran.transform(rays,0,0,-100.,0,0,0,coords=coords)
        #Apply angular offset
        tran.transform(rays, 0, 0, 0, 0, 0, ang)
        #Get initial positions
        glob = None
        if vis is True:
            #Initial ray positions
            x0, y0, z0 = np.copy(rays[1]), np.copy(rays[2]), np.copy(rays[3])


##
##            #Establish 3d figure
##            fig = plt.figure('vis')
##            ax = fig.add_subplot(111,projection='3d')
#Trace to primary
        surf.spoPrimary(rays, R[i], focVec[i])

        #Export primary ray positions in global reference frame
        if vis is True:
            tran.transform(rays, 0, 0, -focVec[i], 0, 0, 0)
            xp = np.concatenate((xp, rays[1]))
            yp = np.concatenate((yp, rays[2]))
            zp = np.concatenate((zp, rays[3]))
            tran.transform(rays, 0, 0, focVec[i], 0, 0, 0)

        #Add offsets if they apply
        rays = [rays[0],rays[1],rays[2],rays[3],\
                rays[4]+offX,rays[5]+offY,\
                -np.sqrt(rays[6]**2-offX**2-offY**2),\
                rays[7],rays[8],rays[9]]
        tran.reflect(rays)

        #Compute reflectivity
        inc = anal.grazeAngle(rays)  #np.arcsin(l*ux+m*uy+n*uz)
        if np.size(wave) == 1:
            refl = sporef(inc * 180 / np.pi, 1239.8 / wave)
        else:
            refl = np.diag(
                sporef(inc * 180 / np.pi, 1239.8 / wave[i * N:(i + 1) * N]))

        #Trace to secondary
        surf.spoSecondary(rays, R[i], focVec[i])
        tran.reflect(rays)

        #Compute reflectivity
        inc = anal.grazeAngle(rays)  #inc = np.arcsin(l*ux+m*uy+n*uz)
        if np.size(wave) == 1:
            ref[i*N:(i+1)*N] = refl * sporef(inc*180/np.pi\
                                             ,1239.8/wave)
        else:
            ref[i*N:(i+1)*N] = refl * np.diag(sporef(inc*180/np.pi\
                                             ,1239.8/wave[i*N:(i+1)*N]))

        #Set plane to be at focus
        tran.transform(rays, 0, 0, -focVec[i], 0, 0, 0, coords=coords)
        #Collect rays
        try:
            for t in range(1, 7):
                temp = trays[t]
                temp[i * N:(i + 1) * N] = rays[t]
        except:
            pdb.set_trace()

    #Export secondary ray positions in global coordinate frame
    if vis is True:
        return trays, ref, [xp, yp, zp], [trays[1], trays[2], trays[3]]

    return trays, ref