Beispiel #1
0
def get_ascad_trace_set(name, data, meta, limit=None):
    """
    Convert ASCAD data to a TraceSet object.
    """
    data_x, data_y = data
    traces = []
    plaintexts = []
    keys = []
    masks = []
    limit = len(data_x) if limit is None else min(len(data_x), limit)

    for i in range(0, limit):
        traces.append(data_x[i])
        plaintexts.append(meta[i]['plaintext'])
        keys.append(meta[i]['key'])
        masks.append(meta[i]['masks'])

    traces = np.array(traces)
    plaintexts = np.array(plaintexts)
    keys = np.array(keys)
    masks = np.array(masks)

    trace_set = TraceSet(name='ascad-%s' % name, traces=traces, plaintexts=plaintexts, ciphertexts=None, keys=keys, masks=masks)
    trace_set.window = Window(begin=0, end=len(trace_set.traces[0].signal))
    trace_set.windowed = True

    return trace_set
Beispiel #2
0
    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}

        if epoch % self.metric_freq != 0 or epoch == 0:
            return
        if self.trace_set is not None:
            # Fetch inputs from trace_set
            x = AIInput(self.conf).get_trace_set_inputs(self.trace_set)

            if self.cnn:
                x = np.expand_dims(x, axis=-1)

            encodings = self.model.predict(x)  # Output: [?, 16]

            # Store encodings as fake traceset
            keys = np.array([trace.key for trace in self.trace_set.traces])
            plaintexts = np.array(
                [trace.plaintext for trace in self.trace_set.traces])
            fake_ts = TraceSet(traces=encodings,
                               plaintexts=plaintexts,
                               keys=keys,
                               name="fake_ts")
            fake_ts.window = Window(begin=0, end=encodings.shape[1])
            fake_ts.windowed = True

            for i in range(self.key_low, self.key_high):
                if len(set(keys[:, i])) > 1:
                    print(
                        "Warning: nonidentical key bytes detected. Skipping rank calculation"
                    )
                    print("Subkey %d:" % i)
                    print(keys[:, i])
                    break
                rank, confidence = calculate_traceset_rank(
                    fake_ts, i, keys[0][i], self.conf
                )  # TODO: It is assumed here that all true keys of the test set are the same
                self._save_best_rank_model(rank, confidence)
                logs['rank %d' % i] = rank
                logs['confidence %d' % i] = confidence
            #self._save_best_rank_model(np.mean(ranks))
        else:
            print("Warning: no trace_set supplied to RankCallback")