def get_galnorm(seeing, pixsc): from tractor.patch import ModelMask S = 32 W,H = S*2+1, S*2+1 psf_sigma = seeing / 2.35 / pixsc tim = tractor.Image(data=np.zeros((H,W)), inverr=np.ones((H,W)), psf=tractor.NCircularGaussianPSF([psf_sigma], [1.]), wcs=tractor.NullWCS(pixscale=pixsc)) gal = SimpleGalaxy(tractor.PixPos(S,S), tractor.Flux(1.)) mm = ModelMask(0, 0, W, H) galmod = gal.getModelPatch(tim, modelMask=mm).patch galmod = np.maximum(0, galmod) galmod /= galmod.sum() return np.sqrt(np.sum(galmod**2))
def fit_general_gaussian(self, img, sig1, xi, yi, fluxi, psf_r=15, ps=None): import tractor H, W = img.shape ix = int(np.round(xi)) iy = int(np.round(yi)) xlo = max(0, ix - psf_r) xhi = min(W, ix + psf_r + 1) ylo = max(0, iy - psf_r) yhi = min(H, iy + psf_r + 1) xx, yy = np.meshgrid(np.arange(xlo, xhi), np.arange(ylo, yhi)) r2 = (xx - xi)**2 + (yy - yi)**2 keep = (r2 < psf_r**2) pix = img[ylo:yhi, xlo:xhi].copy() ie = np.zeros_like(pix) ie[keep] = 1. / sig1 psf = tractor.NCircularGaussianPSF([4.], [1.]) tim = tractor.Image(data=pix, inverr=ie, psf=psf) src = tractor.PointSource(tractor.PixPos(xi - xlo, yi - ylo), tractor.Flux(fluxi)) tr = tractor.Tractor([tim], [src]) src.pos.addGaussianPrior('x', 0., 1.) doplot = (ps is not None) if doplot: mod0 = tr.getModelImage(0) tim.freezeAllBut('psf') psf.freezeAllBut('sigmas') # print('Optimizing params:') # tr.printThawedParams() #print('Parameter step sizes:', tr.getStepSizes()) optargs = dict(priors=False, shared_params=False) for step in range(50): dlnp, x, alpha = tr.optimize(**optargs) if dlnp == 0: break # Now fit only the PSF size tr.freezeParam('catalog') # print('Optimizing params:') # tr.printThawedParams() for step in range(50): dlnp, x, alpha = tr.optimize(**optargs) if dlnp == 0: break # fwhms.append(psf.sigmas[0] * 2.35 * self.pixscale) if doplot: mod1 = tr.getModelImage(0) chi1 = tr.getChiImage(0) # Now switch to a non-isotropic PSF s = psf.sigmas[0] #print('Isotropic fit sigma', s) s = np.clip(s, 1., 5.) tim.psf = tractor.GaussianMixturePSF(1., 0., 0., s**2, s**2, 0.) #print('Optimizing params:') #tr.printThawedParams() try: for step in range(50): dlnp, x, alpha = tr.optimize(**optargs) #print('PSF:', tim.psf) if dlnp == 0: break except: import traceback print('Error during fitting PSF in a focus frame; not to worry') traceback.print_exc() print( '(The above was just an error during fitting one star in a focus frame; not to worry.)' ) # Don't need to re-fit source params because PSF ampl and mean # can fit for flux and position. if doplot: mod2 = tr.getModelImage(0) chi2 = tr.getChiImage(0) kwa = dict(vmin=-3 * sig1, vmax=50 * sig1, cmap='gray') plt.clf() plt.subplot(2, 3, 1) plt.title('Image') dimshow(pix, ticks=False, **kwa) plt.subplot(2, 3, 2) plt.title('Initial model') dimshow(mod0, ticks=False, **kwa) plt.subplot(2, 3, 3) plt.title('Isotropic model') dimshow(mod1, ticks=False, **kwa) plt.subplot(2, 3, 4) plt.title('Final model') dimshow(mod2, ticks=False, **kwa) plt.subplot(2, 3, 5) plt.title('Isotropic chi') dimshow(chi1, vmin=-10, vmax=10, ticks=False) plt.subplot(2, 3, 6) plt.title('Final chi') dimshow(chi2, vmin=-10, vmax=10, ticks=False) plt.suptitle('PSF fit') ps.savefig() return tim.psf.getParams()[-3:]
def main(): # In LSST meas-deblend (on lsst6): # python examples/suprimePlot.py --data ~dstn/lsst/ACT-data -v 126969 -c 5 --data-range -100 300 --roi 0 500 0 500 --psf psf.fits --image img.fits --sources srcs.fits from optparse import OptionParser import sys parser = OptionParser(usage=('%prog <img> <psf> <srcs>')) parser.add_option('-v', '--verbose', dest='verbose', action='count', default=0, help='Make more verbose') opt, args = parser.parse_args() if len(args) != 3: parser.print_help() sys.exit(-1) if opt.verbose == 0: lvl = logging.INFO else: lvl = logging.DEBUG logging.basicConfig(level=lvl, format='%(message)s', stream=sys.stdout) imgfn, psffn, srcfn = args pimg = pyfits.open(imgfn) if len(pimg) != 4: print('Image must have 3 extensions') sys.exit(-1) img = pimg[1].data mask = pimg[2].data maskhdr = pimg[2].header var = pimg[3].data del pimg print('var', var.shape) #print var print('mask', mask.shape) #print mask print('img', img.shape) #print img mask = mask.astype(np.int16) for bit in range(16): on = ((mask & (1 << bit)) != 0) print('Bit', bit, 'has', np.sum(on), 'pixels set') ''' MP_BAD = 0 Bit 0 has 2500 pixels set MP_SAT = 1 Bit 1 has 5771 pixels set MP_INTRP= 2 Bit 2 has 11269 pixels set MP_CR = 3 Bit 3 has 136 pixels set MP_EDGE = 4 Bit 4 has 11856 pixels set HIERARCH MP_DETECTED = 5 Bit 5 has 37032 pixels set ''' print('Mask header:', maskhdr) maskplanes = {} print('Mask planes:') for card in maskhdr.ascardlist(): if not card.key.startswith('MP_'): continue print(card.value, card.key) maskplanes[card.key[3:]] = card.value print('Variance range:', var.min(), var.max()) print('Image median:', np.median(img.ravel())) invvar = 1. / var invvar[var == 0] = 0. invvar[var < 0] = 0. sig = np.sqrt(np.median(var)) H, W = img.shape for k, v in maskplanes.items(): plt.clf() I = ((mask & (1 << v)) != 0) rgb = np.zeros((H, W, 3)) clipimg = np.clip((img - (-3. * sig)) / (13. * sig), 0, 1) cimg = clipimg.copy() cimg[I] = 1 rgb[:, :, 0] = cimg cimg = clipimg.copy() cimg[I] = 0 rgb[:, :, 1] = cimg rgb[:, :, 2] = cimg plt.imshow(rgb, interpolation='nearest', origin='lower') plt.title(k) plt.savefig('mask-%s.png' % k.lower()) badmask = sum([(1 << maskplanes[k]) for k in ['BAD', 'SAT', 'INTRP', 'CR']]) # HACK -- left EDGE sucks badmask += (1 << maskplanes['EDGE']) #badmask = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3) #badmask |= (1 << 4) print('Masking out: 0x%x' % badmask) invvar[(mask & badmask) != 0] = 0. assert (all(np.isfinite(img.ravel()))) assert (all(np.isfinite(invvar.ravel()))) psf = pyfits.open(psffn)[0].data print('psf', psf.shape) psf /= psf.sum() from tractor.emfit import em_fit_2d from tractor.fitpsf import em_init_params # Create Gaussian mixture model PSF approximation. S = psf.shape[0] # number of Gaussian components K = 3 w, mu, sig = em_init_params(K, None, None, None) II = psf.copy() II /= II.sum() # HIDEOUS HACK II = np.maximum(II, 0) print('Multi-Gaussian PSF fit...') xm, ym = -(S / 2), -(S / 2) em_fit_2d(II, xm, ym, w, mu, sig) print('w,mu,sig', w, mu, sig) mypsf = tractor.GaussianMixturePSF(w, mu, sig) P = mypsf.getPointSourcePatch(S / 2, S / 2) mn, mx = psf.min(), psf.max() ima = dict(interpolation='nearest', origin='lower', vmin=mn, vmax=mx) plt.clf() plt.subplot(1, 2, 1) plt.imshow(psf, **ima) plt.subplot(1, 2, 2) pimg = np.zeros_like(psf) P.addTo(pimg) plt.imshow(pimg, **ima) plt.savefig('psf.png') sig = np.sqrt(np.median(var)) plt.clf() plt.hist(img.ravel(), 100, range=(-3. * sig, 3. * sig)) plt.savefig('imghist.png') srcs = fits_table(srcfn) print('Initial:', len(srcs), 'sources') # Trim sources with x=0 or y=0 srcs = srcs[(srcs.x != 0) * (srcs.y != 0)] print('Trim on x,y:', len(srcs), 'sources left') # Zero out nans & infs for c in ['theta', 'a', 'b']: I = np.logical_not(np.isfinite(srcs.get(c))) srcs.get(c)[I] = 0. # Set sources with flux=NaN to something more sensible... I = np.logical_not(np.isfinite(srcs.flux)) srcs.flux[I] = 1. # Sort sources by flux. srcs = srcs[np.argsort(-srcs.flux)] # Trim sources that are way outside the image. margin = 8. * np.maximum(srcs.a, srcs.b) H, W = img.shape srcs = srcs[(srcs.x > -margin) * (srcs.y > -margin) * (srcs.x < (W + margin) * (srcs.y < (H + margin)))] print('Trim out-of-bounds:', len(srcs), 'sources left') wcs = tractor.FitsWcs(Sip(imgfn, 1)) #wcs = tractor.NullWCS() timg = tractor.Image(data=img, invvar=invvar, psf=mypsf, wcs=wcs, sky=tractor.ConstantSky(0.), photocal=tractor.NullPhotoCal(), name='image') inverr = timg.getInvError() assert (all(np.isfinite(inverr.ravel()))) tsrcs = [] for s in srcs: #pos = tractor.PixPos(s.x, s.y) pos = tractor.RaDecPos(s.ra, s.dec) if s.a > 0 and s.b > 0: eflux = tractor.Flux(s.flux / 2.) dflux = tractor.Flux(s.flux / 2.) re, ab, phi = s.a, s.b / s.a, 90. - s.theta eshape = gal.GalaxyShape(re, ab, phi) dshape = gal.GalaxyShape(re, ab, phi) print('Fluxes', eflux, dflux) tsrc = gal.CompositeGalaxy(pos, eflux, eshape, dflux, dshape) else: flux = tractor.Flux(s.flux) print('Flux', flux) tsrc = tractor.PointSource(pos, flux) tsrcs.append(tsrc) chug = tractor.Tractor([timg]) for src in tsrcs: if chug.getModelPatch(timg, src) is None: print('Dropping non-overlapping source:', src) continue chug.addSource(src) print('Kept a total of', len(chug.catalog), 'sources') ima = dict(interpolation='nearest', origin='lower', vmin=-3. * sig, vmax=10. * sig) chia = dict(interpolation='nearest', origin='lower', vmin=-5., vmax=5.) plt.clf() plt.imshow(img, **ima) plt.colorbar() plt.savefig('img.png') plt.clf() plt.imshow(invvar, interpolation='nearest', origin='lower') plt.colorbar() plt.savefig('invvar.png') mod = chug.getModelImages()[0] plt.clf() plt.imshow(mod, **ima) plt.colorbar() plt.savefig('mod-0.png') chi = chug.getChiImage(0) plt.clf() plt.imshow(chi, **chia) plt.colorbar() plt.savefig('chi-0.png') for step in range(5): cat = chug.getCatalog() for src in cat: if chug.getModelPatch(timg, src) is None: print('Dropping non-overlapping source:', src) chug.removeSource(src) print('Kept a total of', len(chug.catalog), 'sources') #cat = chug.getCatalog() #for i,src in enumerate([]): #for i,src in enumerate(chug.getCatalog()): #for i in range(len(cat)): i = 0 while i < len(cat): src = cat[i] #print 'Step', i #for j,s in enumerate(cat): # x,y = timg.getWcs().positionToPixel(s, s.getPosition()) # print ' ', # if j == i: # print '*', # print '(%6.1f, %6.1f)'%(x,y), s print('Optimizing source', i, 'of', len(cat)) x, y = timg.getWcs().positionToPixel(src.getPosition(), src) print('(%6.1f, %6.1f)' % (x, y), src) # pre = src.getModelPatch(timg) s1 = str(src) print('src1 ', s1) dlnp1, X, a = chug.optimizeCatalogFluxes(srcs=[src]) s2 = str(src) dlnp2, X, a = chug.optimizeCatalogAtFixedComplexityStep(srcs=[src], sky=False) s3 = str(src) #post = src.getModelPatch(timg) print('src1 ', s1) print('src2 ', s2) print('src3 ', s3) print('dlnp', dlnp1, dlnp2) if chug.getModelPatch(timg, src) is None: print('After optimizing, no overlap!') print('Removing source', src) chug.removeSource(src) i -= 1 i += 1 # plt.clf() # plt.subplot(2,2,1) # img = timg.getImage() # (x0,x1,y0,y1) = pre.getExtent() # plt.imshow(img, **ima) # ax = plt.axis() # plt.plot([x0,x0,x1,x1,x0], [y0,y1,y1,y0,y0], 'k-', lw=2) # plt.axis(ax) # plt.subplot(2,2,3) # plt.imshow(pre.getImage(), **ima) # plt.subplot(2,2,4) # plt.imshow(post.getImage(), **ima) # plt.savefig('prepost-s%i-s%03i.png' % (step, i)) # # mod = chug.getModelImages()[0] # plt.clf() # plt.imshow(mod, **ima) # plt.colorbar() # plt.savefig('mod-s%i-s%03i.png' % (step, i)) # chi = chug.getChiImage(0) # plt.clf() # plt.imshow(chi, **chia) # plt.colorbar() # plt.savefig('chi-s%i-s%03i.png' % (step, i)) #dlnp,x,a = chug.optimizeCatalogFluxes() #print 'fluxes: dlnp', dlnp #dlnp,x,a = chug.optimizeCatalogAtFixedComplexityStep() #print 'opt: dlnp', dlnp mod = chug.getModelImages()[0] plt.clf() plt.imshow(mod, **ima) plt.colorbar() plt.savefig('mod-%i.png' % (step + 1)) chi = chug.getChiImage(0) plt.clf() plt.imshow(chi, **chia) plt.colorbar() plt.savefig('chi-%i.png' % (step + 1)) return for step in range(5): chug.optimizeCatalogFluxes() mod = chug.getModelImages()[0] plt.clf() plt.imshow(mod, **ima) plt.colorbar() plt.savefig('mod-s%i.png' % step) chi = chug.getChiImage(0) plt.clf() plt.imshow(chi, **chia) plt.colorbar() plt.savefig('chi-s%i.png' % step)
def run(self, ps=None, focus=False, momentsize=5, n_fwhm=100): import pylab as plt from astrometry.util.plotutils import dimshow, plothist from legacyanalysis.ps1cat import ps1cat import photutils import tractor fn = self.fn ext = self.ext pixsc = self.pixscale F = fitsio.FITS(fn) primhdr = F[0].read_header() self.primhdr = primhdr img, hdr = self.read_raw(F, ext) self.hdr = hdr # pre sky-sub mn, mx = np.percentile(img.ravel(), [25, 98]) self.imgkwa = dict(vmin=mn, vmax=mx, cmap='gray') if self.debug and ps is not None: plt.clf() dimshow(img, **self.imgkwa) plt.title('Raw image') ps.savefig() M = 200 plt.clf() plt.subplot(2, 2, 1) dimshow(img[-M:, :M], ticks=False, **self.imgkwa) plt.subplot(2, 2, 2) dimshow(img[-M:, -M:], ticks=False, **self.imgkwa) plt.subplot(2, 2, 3) dimshow(img[:M, :M], ticks=False, **self.imgkwa) plt.subplot(2, 2, 4) dimshow(img[:M, -M:], ticks=False, **self.imgkwa) plt.suptitle('Raw image corners') ps.savefig() img, trim_x0, trim_y0 = self.trim_edges(img) fullH, fullW = img.shape if self.debug and ps is not None: plt.clf() dimshow(img, **self.imgkwa) plt.title('Trimmed image') ps.savefig() M = 200 plt.clf() plt.subplot(2, 2, 1) dimshow(img[-M:, :M], ticks=False, **self.imgkwa) plt.subplot(2, 2, 2) dimshow(img[-M:, -M:], ticks=False, **self.imgkwa) plt.subplot(2, 2, 3) dimshow(img[:M, :M], ticks=False, **self.imgkwa) plt.subplot(2, 2, 4) dimshow(img[:M, -M:], ticks=False, **self.imgkwa) plt.suptitle('Trimmed corners') ps.savefig() band = self.get_band(primhdr) exptime = primhdr['EXPTIME'] airmass = primhdr['AIRMASS'] print('Band', band, 'Exptime', exptime, 'Airmass', airmass) zp0 = self.nom.zeropoint(band, ext=self.ext) sky0 = self.nom.sky(band) kx = self.nom.fiducial_exptime(band).k_co # Find the sky value and noise level sky, sig1 = self.get_sky_and_sigma(img) sky1 = np.median(sky) skybr = -2.5 * np.log10(sky1 / pixsc / pixsc / exptime) + zp0 print('Sky brightness: %8.3f mag/arcsec^2' % skybr) print('Fiducial: %8.3f mag/arcsec^2' % sky0) img -= sky self.remove_sky_gradients(img) # Post sky-sub mn, mx = np.percentile(img.ravel(), [25, 98]) self.imgkwa = dict(vmin=mn, vmax=mx, cmap='gray') if ps is not None: plt.clf() dimshow(img, **self.imgkwa) plt.title('Sky-sub image: %s-%s' % (os.path.basename(fn).replace( '.fits', '').replace('.fz', ''), ext)) plt.colorbar() ps.savefig() # Read WCS header and compute boresight wcs = self.get_wcs(hdr) ra_ccd, dec_ccd = wcs.pixelxy2radec((fullW + 1) / 2., (fullH + 1) / 2.) # Detect stars psfsig = self.nominal_fwhm / 2.35 detsn = self.detection_map(img, sig1, psfsig, ps) slices = self.detect_sources(detsn, self.det_thresh, ps) print(len(slices), 'sources detected') if len(slices) < 20: slices = self.detect_sources(detsn, 10., ps) print(len(slices), 'sources detected') ndetected = len(slices) camera = primhdr.get('INSTRUME', '').strip().lower() # -> "decam" / "mosaic3" meas = dict(band=band, airmass=airmass, skybright=skybr, pixscale=pixsc, primhdr=primhdr, hdr=hdr, wcs=wcs, ra_ccd=ra_ccd, dec_ccd=dec_ccd, extension=ext, camera=camera, ndetected=ndetected) if ndetected == 0: print('NO SOURCES DETECTED') return meas xx, yy = [], [] fx, fy = [], [] mx2, my2, mxy = [], [], [] wmx2, wmy2, wmxy = [], [], [] # "Peak" region to centroid P = momentsize H, W = img.shape for i, slc in enumerate(slices): y0 = slc[0].start x0 = slc[1].start subimg = detsn[slc] imax = np.argmax(subimg) y, x = np.unravel_index(imax, subimg.shape) if (x0 + x) < P or (x0 + x) > W - 1 - P or (y0 + y) < P or ( y0 + y) > H - 1 - P: #print('Skipping edge peak', x0+x, y0+y) continue xx.append(x0 + x) yy.append(y0 + y) pkarea = detsn[y0 + y - P:y0 + y + P + 1, x0 + x - P:x0 + x + P + 1] from scipy.ndimage.measurements import center_of_mass cy, cx = center_of_mass(pkarea) #print('Center of mass', cx,cy) fx.append(x0 + x - P + cx) fy.append(y0 + y - P + cy) #print('x,y', x0+x, y0+y, 'vs centroid', x0+x-P+cx, y0+y-P+cy) ### HACK -- measure source ellipticity # go back to the image (not detection map) #subimg = img[slc] subimg = img[y0 + y - P:y0 + y + P + 1, x0 + x - P:x0 + x + P + 1].copy() subimg /= subimg.sum() ph, pw = subimg.shape px, py = np.meshgrid(np.arange(pw), np.arange(ph)) mx2.append(np.sum(subimg * (px - cx)**2)) my2.append(np.sum(subimg * (py - cy)**2)) mxy.append(np.sum(subimg * (px - cx) * (py - cy))) # Gaussian windowed version s = 1. wimg = subimg * np.exp(-0.5 * ((px - cx)**2 + (py - cy)**2) / s**2) wimg /= np.sum(wimg) wmx2.append(np.sum(wimg * (px - cx)**2)) wmy2.append(np.sum(wimg * (py - cy)**2)) wmxy.append(np.sum(wimg * (px - cx) * (py - cy))) mx2 = np.array(mx2) my2 = np.array(my2) mxy = np.array(mxy) wmx2 = np.array(wmx2) wmy2 = np.array(wmy2) wmxy = np.array(wmxy) # semi-major/minor axes and position angle theta = np.rad2deg(np.arctan2(2 * mxy, mx2 - my2) / 2.) theta = np.abs(theta) * np.sign(mxy) s = np.sqrt(((mx2 - my2) / 2.)**2 + mxy**2) a = np.sqrt((mx2 + my2) / 2. + s) b = np.sqrt((mx2 + my2) / 2. - s) ell = 1. - b / a wtheta = np.rad2deg(np.arctan2(2 * wmxy, wmx2 - wmy2) / 2.) wtheta = np.abs(wtheta) * np.sign(wmxy) ws = np.sqrt(((wmx2 - wmy2) / 2.)**2 + wmxy**2) wa = np.sqrt((wmx2 + wmy2) / 2. + ws) wb = np.sqrt((wmx2 + wmy2) / 2. - ws) well = 1. - wb / wa fx = np.array(fx) fy = np.array(fy) xx = np.array(xx) yy = np.array(yy) if ps is not None: plt.clf() dimshow(detsn, vmin=-3, vmax=50, cmap='gray') ax = plt.axis() plt.plot(fx, fy, 'go', mec='g', mfc='none', ms=10) plt.colorbar() plt.title('Detected sources') plt.axis(ax) ps.savefig() # show centroids too # plt.plot(xx, yy, 'go', mec='g', mfc='none', ms=8) # plt.axis(ax) # ps.savefig() # if ps is not None: # plt.clf() # plt.subplot(2,1,1) # mx = np.percentile(np.append(mx2,my2), 99) # ha = dict(histtype='step', range=(0,mx), bins=50) # plt.hist(mx2, color='b', label='mx2', **ha) # plt.hist(my2, color='r', label='my2', **ha) # plt.hist(mxy, color='g', label='mxy', **ha) # plt.legend() # plt.xlim(0,mx) # plt.subplot(2,1,2) # mx = np.percentile(np.append(wmx2,wmy2), 99) # ha = dict(histtype='step', range=(0,mx), bins=50, lw=3, alpha=0.3) # plt.hist(wmx2, color='b', label='wx2', **ha) # plt.hist(wmy2, color='r', label='wy2', **ha) # plt.hist(wmxy, color='g', label='wxy', **ha) # plt.legend() # plt.xlim(0,mx) # plt.suptitle('Source moments') # ps.savefig() # # #mx = np.percentile(np.abs(np.append(mxy,wmxy)), 99) # plt.clf() # plt.subplot(2,1,1) # ha = dict(histtype='step', range=(0,1), bins=50) # plt.hist(ell, color='g', label='ell', **ha) # plt.hist(well, color='g', lw=3, alpha=0.3, label='windowed ell', **ha) # plt.legend() # plt.subplot(2,1,2) # ha = dict(histtype='step', range=(-90,90), bins=50) # plt.hist(theta, color='g', label='theta', **ha) # plt.hist(wtheta, color='g', lw=3, alpha=0.3, # label='windowed theta', **ha) # plt.xlim(-90,90) # plt.legend() # plt.suptitle('Source ellipticities & angles') # ps.savefig() # Cut down to stars whose centroids are within 1 pixel of their peaks... #keep = (np.hypot(fx - xx, fy - yy) < 2) #print(sum(keep), 'of', len(keep), 'stars have centroids within 2 of peaks') #print('mean dx', np.mean(fx-xx), 'dy', np.mean(fy-yy), 'pixels') #assert(float(sum(keep)) / len(keep) > 0.9) #fx = fx[keep] #fy = fy[keep] apxy = np.vstack((fx, fy)).T ap = [] aprad_pix = self.aprad / pixsc aper = photutils.CircularAperture(apxy, aprad_pix) p = photutils.aperture_photometry(img, aper) apflux = p.field('aperture_sum') # Manual aperture photometry to get clipped means in sky annulus sky_inner_r, sky_outer_r = [r / pixsc for r in self.skyrad] sky = [] for xi, yi in zip(fx, fy): ix = int(np.round(xi)) iy = int(np.round(yi)) skyR = int(np.ceil(sky_outer_r)) xlo = max(0, ix - skyR) xhi = min(W, ix + skyR + 1) ylo = max(0, iy - skyR) yhi = min(H, iy + skyR + 1) xx, yy = np.meshgrid(np.arange(xlo, xhi), np.arange(ylo, yhi)) r2 = (xx - xi)**2 + (yy - yi)**2 inannulus = ((r2 >= sky_inner_r**2) * (r2 < sky_outer_r**2)) skypix = img[ylo:yhi, xlo:xhi][inannulus] #print('ylo,yhi, xlo,xhi', ylo,yhi, xlo,xhi, 'img subshape', img[ylo:yhi, xlo:xhi].shape, 'inann shape', inannulus.shape) s, nil = sensible_sigmaclip(skypix) sky.append(s) sky = np.array(sky) apflux2 = apflux - sky * (np.pi * aprad_pix**2) good = (apflux2 > 0) * (apflux > 0) apflux = apflux[good] apflux2 = apflux2[good] fx = fx[good] fy = fy[good] # Read in the PS1 catalog, and keep those within 0.25 deg of CCD center # and those with main sequence colors pscat = ps1cat(ccdwcs=wcs) stars = pscat.get_stars() #print('Got PS1 stars:', len(stars)) # we add the color term later ps1band = ps1cat.ps1band[band] stars.mag = stars.median[:, ps1band] ok, px, py = wcs.radec2pixelxy(stars.ra, stars.dec) px -= 1 py -= 1 if ps is not None: #kwa = dict(vmin=-3*sig1, vmax=50*sig1, cmap='gray') # Add to the 'detected sources' plot # mn,mx = np.percentile(img.ravel(), [50,99]) # kwa = dict(vmin=mn, vmax=mx, cmap='gray') # plt.clf() # dimshow(img, **kwa) ax = plt.axis() #plt.plot(fx, fy, 'go', mec='g', mfc='none', ms=10) K = np.argsort(stars.mag) plt.plot(px[K[:10]] - trim_x0, py[K[:10]] - trim_y0, 'o', mec='m', mfc='none', ms=12, mew=2) plt.plot(px[K[10:]] - trim_x0, py[K[10:]] - trim_y0, 'o', mec='m', mfc='none', ms=8) plt.axis(ax) plt.title('PS1 stars') #plt.colorbar() ps.savefig() # we trimmed the image before running detection; re-add that margin fullx = fx + trim_x0 fully = fy + trim_y0 # Match PS1 to our detections, find offset radius = self.maxshift / pixsc I, J, dx, dy = self.match_ps1_stars(px, py, fullx, fully, radius, stars) print(len(I), 'spatial matches with large radius', self.maxshift, 'arcsec,', radius, 'pix') bins = 2 * int(np.ceil(radius)) #print('Histogramming with', bins, 'bins') histo, xe, ye = np.histogram2d(dx, dy, bins=bins, range=((-radius, radius), (-radius, radius))) # smooth histogram before finding peak -- fuzzy matching from scipy.ndimage.filters import gaussian_filter histo = gaussian_filter(histo, 1.) histo = histo.T mx = np.argmax(histo) my, mx = np.unravel_index(mx, histo.shape) shiftx = (xe[mx] + xe[mx + 1]) / 2. shifty = (ye[my] + ye[my + 1]) / 2. if ps is not None: plt.clf() plothist(dx, dy, range=((-radius, radius), (-radius, radius))) plt.xlabel('dx (pixels)') plt.ylabel('dy (pixels)') plt.title('Offsets to PS1 stars') ax = plt.axis() plt.axhline(0, color='b') plt.axvline(0, color='b') plt.plot(shiftx, shifty, 'o', mec='m', mfc='none', ms=15, mew=3) plt.axis(ax) ps.savefig() # Refine with smaller search radius radius2 = 3. / pixsc I, J, dx, dy = self.match_ps1_stars(px, py, fullx + shiftx, fully + shifty, radius2, stars) print(len(J), 'matches to PS1 with small radius', 3, 'arcsec') shiftx2 = np.median(dx) shifty2 = np.median(dy) #print('Stage-1 shift', shiftx, shifty) #print('Stage-2 shift', shiftx2, shifty2) sx = shiftx + shiftx2 sy = shifty + shifty2 print('Astrometric shift (%.0f, %.0f) pixels' % (sx, sy)) if self.debug and ps is not None: plt.clf() plothist(dx, dy, range=((-radius2, radius2), (-radius2, radius2))) plt.xlabel('dx (pixels)') plt.ylabel('dy (pixels)') plt.title('Offsets to PS1 stars') ax = plt.axis() plt.axhline(0, color='b') plt.axvline(0, color='b') plt.plot(shiftx2, shifty2, 'o', mec='m', mfc='none', ms=15, mew=3) plt.axis(ax) ps.savefig() if ps is not None: mn, mx = np.percentile(img.ravel(), [50, 99]) kwa2 = dict(vmin=mn, vmax=mx, cmap='gray') plt.clf() dimshow(img, **kwa2) ax = plt.axis() plt.plot(fx[J], fy[J], 'go', mec='g', mfc='none', ms=10, mew=2) plt.plot(px[I] - sx - trim_x0, py[I] - sy - trim_y0, 'm+', ms=10, mew=2) plt.axis(ax) plt.title('Matched PS1 stars') plt.colorbar() ps.savefig() plt.clf() dimshow(img, **kwa2) ax = plt.axis() plt.plot(fx[J], fy[J], 'go', mec='g', mfc='none', ms=10, mew=2) K = np.argsort(stars.mag) plt.plot(px[K[:10]] - sx - trim_x0, py[K[:10]] - sy - trim_y0, 'o', mec='m', mfc='none', ms=12, mew=2) plt.plot(px[K[10:]] - sx - trim_x0, py[K[10:]] - sy - trim_y0, 'o', mec='m', mfc='none', ms=8, mew=2) plt.axis(ax) plt.title('All PS1 stars') plt.colorbar() ps.savefig() # Now cut to just *stars* with good colors stars.gicolor = stars.median[:, 0] - stars.median[:, 2] keep = (stars.gicolor > 0.4) * (stars.gicolor < 2.7) stars.cut(keep) if len(stars) == 0: print('No overlap or too few stars in PS1') return None px = px[keep] py = py[keep] # Re-match I, J, dx, dy = self.match_ps1_stars(px, py, fullx + sx, fully + sy, radius2, stars) print('Cut to', len(stars), 'PS1 stars with good colors; matched', len(I)) nmatched = len(I) meas.update(dx=sx, dy=sy, nmatched=nmatched) if focus: meas.update(img=img, hdr=hdr, primhdr=primhdr, fx=fx, fy=fy, px=px - trim_x0 - sx, py=py - trim_y0 - sy, sig1=sig1, stars=stars, moments=(mx2, my2, mxy, theta, a, b, ell), wmoments=(wmx2, wmy2, wmxy, wtheta, wa, wb, well), apflux=apflux, apflux2=apflux2) return meas #print('Mean astrometric shift (arcsec): delta-ra=', -np.mean(dy)*0.263, 'delta-dec=', np.mean(dx)*0.263) # Compute photometric offset compared to PS1 # as the PS1 minus observed mags colorterm = self.colorterm_ps1_to_observed(stars.median, band) stars.mag += colorterm ps1mag = stars.mag[I] if False and ps is not None: plt.clf() plt.semilogy(ps1mag, apflux2[J], 'b.') plt.xlabel('PS1 mag') plt.ylabel('DECam ap flux (with sky sub)') ps.savefig() plt.clf() plt.semilogy(ps1mag, apflux[J], 'b.') plt.xlabel('PS1 mag') plt.ylabel('DECam ap flux (no sky sub)') ps.savefig() apmag2 = -2.5 * np.log10(apflux2) + zp0 + 2.5 * np.log10(exptime) apmag = -2.5 * np.log10(apflux) + zp0 + 2.5 * np.log10(exptime) if ps is not None: plt.clf() plt.plot(ps1mag, apmag[J], 'b.', label='No sky sub') plt.plot(ps1mag, apmag2[J], 'r.', label='Sky sub') # ax = plt.axis() # mn = min(ax[0], ax[2]) # mx = max(ax[1], ax[3]) # plt.plot([mn,mx], [mn,mx], 'k-', alpha=0.1) # plt.axis(ax) plt.xlabel('PS1 mag') plt.ylabel('DECam ap mag') plt.legend(loc='upper left') plt.title('Zeropoint') ps.savefig() dm = ps1mag - apmag[J] dmag, dsig = sensible_sigmaclip(dm, nsigma=2.5) print('Mag offset: %8.3f' % dmag) print('Scatter: %8.3f' % dsig) if not np.isfinite(dmag) or not np.isfinite(dsig): print('FAILED TO GET ZEROPOINT!') meas.update(zp=None) return meas from scipy.stats import sigmaclip goodpix, lo, hi = sigmaclip(dm, low=3, high=3) dmagmed = np.median(goodpix) print(len(goodpix), 'stars used for zeropoint median') print('Using median zeropoint:') zp_med = zp0 + dmagmed trans_med = 10.**(-0.4 * (zp0 - zp_med - kx * (airmass - 1.))) print('Zeropoint %6.3f' % zp_med) print('Transparency: %.3f' % trans_med) dm = ps1mag - apmag2[J] dmag2, dsig2 = sensible_sigmaclip(dm, nsigma=2.5) #print('Sky-sub mag offset', dmag2) #print('Scatter', dsig2) if ps is not None: plt.clf() plt.plot(ps1mag, apmag[J] + dmag - ps1mag, 'b.', label='No sky sub') plt.plot(ps1mag, apmag2[J] + dmag2 - ps1mag, 'r.', label='Sky sub') plt.xlabel('PS1 mag') plt.ylabel('DECam ap mag - PS1 mag') plt.legend(loc='upper left') plt.ylim(-0.25, 0.25) plt.axhline(0, color='k', alpha=0.25) plt.title('Zeropoint') ps.savefig() zp_obs = zp0 + dmag transparency = 10.**(-0.4 * (zp0 - zp_obs - kx * (airmass - 1.))) meas.update(zp=zp_obs, transparency=transparency) print('Zeropoint %6.3f' % zp_obs) print('Fiducial %6.3f' % zp0) print('Transparency: %.3f' % transparency) # print('Using sky-subtracted values:') # zp_sky = zp0 + dmag2 # trans_sky = 10.**(-0.4 * (zp0 - zp_sky - kx * (airmass - 1.))) # print('Zeropoint %6.3f' % zp_sky) # print('Transparency: %.3f' % trans_sky) fwhms = [] psf_r = 15 if n_fwhm not in [0, None]: Jf = J[:n_fwhm] for i, (xi, yi, fluxi) in enumerate(zip(fx[Jf], fy[Jf], apflux[Jf])): #print('Fitting source', i, 'of', len(Jf)) ix = int(np.round(xi)) iy = int(np.round(yi)) xlo = max(0, ix - psf_r) xhi = min(W, ix + psf_r + 1) ylo = max(0, iy - psf_r) yhi = min(H, iy + psf_r + 1) xx, yy = np.meshgrid(np.arange(xlo, xhi), np.arange(ylo, yhi)) r2 = (xx - xi)**2 + (yy - yi)**2 keep = (r2 < psf_r**2) pix = img[ylo:yhi, xlo:xhi].copy() ie = np.zeros_like(pix) ie[keep] = 1. / sig1 #print('fitting source at', ix,iy) #print('number of active pixels:', np.sum(ie > 0), 'shape', ie.shape) psf = tractor.NCircularGaussianPSF([4.], [1.]) tim = tractor.Image(data=pix, inverr=ie, psf=psf) src = tractor.PointSource(tractor.PixPos(xi - xlo, yi - ylo), tractor.Flux(fluxi)) tr = tractor.Tractor([tim], [src]) #print('Posterior before prior:', tr.getLogProb()) src.pos.addGaussianPrior('x', 0., 1.) #print('Posterior after prior:', tr.getLogProb()) doplot = (i < 5) * (ps is not None) if doplot: mod0 = tr.getModelImage(0) tim.freezeAllBut('psf') psf.freezeAllBut('sigmas') # print('Optimizing params:') # tr.printThawedParams() #print('Parameter step sizes:', tr.getStepSizes()) optargs = dict(priors=False, shared_params=False) for step in range(50): dlnp, x, alpha = tr.optimize(**optargs) #print('dlnp', dlnp) #print('src', src) #print('psf', psf) if dlnp == 0: break # Now fit only the PSF size tr.freezeParam('catalog') # print('Optimizing params:') # tr.printThawedParams() for step in range(50): dlnp, x, alpha = tr.optimize(**optargs) #print('dlnp', dlnp) #print('src', src) #print('psf', psf) if dlnp == 0: break fwhms.append(psf.sigmas[0] * 2.35 * pixsc) if doplot: mod1 = tr.getModelImage(0) chi1 = tr.getChiImage(0) plt.clf() plt.subplot(2, 2, 1) plt.title('Image') dimshow(pix, **self.imgkwa) plt.subplot(2, 2, 2) plt.title('Initial model') dimshow(mod0, **self.imgkwa) plt.subplot(2, 2, 3) plt.title('Final model') dimshow(mod1, **self.imgkwa) plt.subplot(2, 2, 4) plt.title('Final chi') dimshow(chi1, vmin=-10, vmax=10) plt.suptitle('PSF fit') ps.savefig() fwhms = np.array(fwhms) fwhm = np.median(fwhms) print('Median FWHM: %.3f' % np.median(fwhms)) meas.update(seeing=fwhm) if False and ps is not None: lo, hi = np.percentile(fwhms, [5, 95]) lo -= 0.1 hi += 0.1 plt.clf() plt.hist(fwhms, 25, range=(lo, hi), histtype='step', color='b') plt.xlabel('FWHM (arcsec)') ps.savefig() if ps is not None: plt.clf() for i, (xi, yi) in enumerate(zip(fx[J], fy[J])[:50]): ix = int(np.round(xi)) iy = int(np.round(yi)) xlo = max(0, ix - psf_r) xhi = min(W, ix + psf_r + 1) ylo = max(0, iy - psf_r) yhi = min(H, iy + psf_r + 1) pix = img[ylo:yhi, xlo:xhi] slc = pix[iy - ylo, :].copy() slc /= np.sum(slc) p1 = plt.plot(slc, 'b-', alpha=0.2) slc = pix[:, ix - xlo].copy() slc /= np.sum(slc) p2 = plt.plot(slc, 'r-', alpha=0.2) ph, pw = pix.shape cx, cy = pw / 2, ph / 2 if i == 0: xx = np.linspace(0, pw, 300) dx = xx[1] - xx[0] sig = fwhm / pixsc / 2.35 yy = np.exp(-0.5 * (xx - cx)**2 / sig**2) # * np.sum(pix) yy /= (np.sum(yy) * dx) p3 = plt.plot(xx, yy, 'k-', zorder=20) #plt.ylim(-0.2, 1.0) plt.legend([p1[0], p2[0], p3[0]], ['image slice (y)', 'image slice (x)', 'fit']) plt.title('PSF fit') ps.savefig() return meas
H, W = 100, 100 pixscale = 0.262 ra, dec = 40., 10. psf_sigma = 1.4 # pixels v = psf_sigma**2 ps = pixscale / 3600. wcs = Tan(ra, dec, W / 2. + 0.5, H / 2. + 0.5, -ps, 0., 0., ps, float(W), float(H)) tim = tractor.Image(data=np.zeros((H, W), np.float32), inverr=np.ones((H, W), np.float32), psf=tractor.GaussianMixturePSF(1., 0., 0., v, v, 0.), wcs=tractor.ConstantFitsWcs(wcs)) src = RexGalaxy(tractor.RaDecPos(ra, dec), tractor.Flux(100.), LogRadius(0.)) tr = tractor.Tractor([tim], [src]) mod = tr.getModelImage(0) plt.clf() plt.imshow(mod, interpolation='nearest', origin='lower') plt.savefig('rex.png') # add noise with std 1. noisy = mod + np.random.normal(size=mod.shape) # make that the tim's data tim.data = noisy # reset the source params
# The cases we'll consider. The list of tuples are the per-pixel # noise and PSF standard deviation for the two images. for name, imageset in [ ('Case 1: Same noise and PSF', [(1., 2.), (1., 2.)]), ('Case 2: Different noise, same PSF', [(1., 2.), (2., 2.)]), ('Case 3: Same noise, different PSF', [(1., 2.), (1., 4.)]), ('Case 4: Different noise, different PSF', [(1., 2.), (0.5, 4.)]), ]: print() print(name) print() # We're simulating a single isolated point source src = tractor.PointSource(tractor.PixPos(W // 2, H // 2), tractor.Flux(trueflux)) # Produce tractor image objects with noise model, PSF model, etc tims = [] for noise, psf_size in imageset: tim = tractor.Image(np.zeros((H, W), np.float32), inverr=np.ones((H, W), np.float32) * (1. / noise), psf=tractor.NCircularGaussianPSF([psf_size], [1.]), photocal=tractor.LinearPhotoCal(1.)) # Create noiseless model image (simulated image) tr = tractor.Tractor([tim], [src]) mod = tr.getModelImage(0) tim.data = mod tims.append(tim) # First we'll run without any noise added to the images, to get estimates of ideal performance.