Beispiel #1
0
def train_function(gpu, world_size, node_rank, gpus):
    import torch.multiprocessing
    torch.multiprocessing.set_sharing_strategy('file_system')

    torch.manual_seed(25)
    np.random.seed(25)

    rank = node_rank * gpus + gpu
    dist.init_process_group(
        backend='nccl',
        init_method='env://',
        world_size=world_size,
        rank=rank
    )

    width_size = 512
    batch_size = 32
    accumulation_step = 5
    device = torch.device("cuda:{}".format(gpu) if torch.cuda.is_available() else "cpu")

    if rank == 0:
        wandb.init(project='inception_v3', group=wandb.util.generate_id())
        wandb.config.width_size = width_size
        wandb.config.aspect_rate = 1
        wandb.config.batch_size = batch_size
        wandb.config.accumulation_step = accumulation_step

        shutil.rmtree('tensorboard_runs', ignore_errors=True)
        writer = SummaryWriter(log_dir='tensorboard_runs', filename_suffix=str(time.time()))

    ranzcr_df = pd.read_csv('train_folds.csv')
    ranzcr_train_df = ranzcr_df[ranzcr_df['fold'] != 1]

    chestx_df = pd.read_csv('chestx_pseudolabeled_data_lazy_balancing.csv')
    train_image_transforms = alb.Compose([
        alb.ImageCompression(quality_lower=65, p=0.5),
        alb.HorizontalFlip(p=0.5),
        alb.CLAHE(p=0.5),
        alb.OneOf([
            alb.GridDistortion(
                num_steps=8,
                distort_limit=0.5,
                p=1.0
            ),
            alb.OpticalDistortion(
                distort_limit=0.5,
                shift_limit=0.5,
                p=1.0,
            ),
            alb.ElasticTransform(alpha=3, p=1.0)],
            p=0.7
        ),
        alb.RandomResizedCrop(
            height=width_size,
            width=width_size,
            scale=(0.8, 1.2),
            p=0.7
        ),
        alb.RGBShift(p=0.5),
        alb.RandomSunFlare(p=0.5),
        alb.RandomFog(p=0.5),
        alb.RandomBrightnessContrast(p=0.5),
        alb.HueSaturationValue(
            hue_shift_limit=20,
            sat_shift_limit=20,
            val_shift_limit=20,
            p=0.5
        ),
        alb.ShiftScaleRotate(shift_limit=0.025, scale_limit=0.1, rotate_limit=20, p=0.5),
        alb.CoarseDropout(
            max_holes=12,
            min_holes=6,
            max_height=int(width_size / 6),
            max_width=int(width_size / 6),
            min_height=int(width_size / 6),
            min_width=int(width_size / 20),
            p=0.5
        ),
        alb.IAAAdditiveGaussianNoise(loc=0, scale=(2.5500000000000003, 12.75), per_channel=False, p=0.5),
        alb.IAAAffine(scale=1.0, translate_percent=None, translate_px=None, rotate=0.0, shear=0.0, order=1, cval=0,
                      mode='reflect', p=0.5),
        alb.IAAAffine(rotate=90., p=0.5),
        alb.IAAAffine(rotate=180., p=0.5),
        alb.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        ToTensorV2()
    ])
    train_set = NoisyStudentDataset(ranzcr_train_df, chestx_df, train_image_transforms,
                                    '../ranzcr/train', '../data', width_size=width_size)
    train_sampler = DistributedSampler(train_set, num_replicas=world_size, rank=rank, shuffle=True)
    train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=False, num_workers=4, sampler=train_sampler)

    ranzcr_valid_df = ranzcr_df[ranzcr_df['fold'] == 1]
    valid_image_transforms = alb.Compose([
        alb.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        ToTensorV2()
    ])
    valid_set = ImageDataset(ranzcr_valid_df, valid_image_transforms, '../ranzcr/train', width_size=width_size)
    valid_loader = DataLoader(valid_set, batch_size=batch_size, num_workers=4, pin_memory=False, drop_last=False)

    # ranzcr_valid_df = ranzcr_df[ranzcr_df['fold'] == 1]
    # valid_image_transforms = alb.Compose([
    #     alb.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
    #     ToTensorV2()
    # ])
    # valid_set = ImageDataset(ranzcr_valid_df, valid_image_transforms, '../ranzcr/train', width_size=width_size)
    # valid_sampler = DistributedSampler(valid_set, num_replicas=world_size, rank=rank)
    # valid_loader = DataLoader(valid_set, batch_size=batch_size, num_workers=4, sampler=valid_sampler)

    checkpoints_dir_name = 'inception_v3_noisy_student_{}'.format(width_size)
    os.makedirs(checkpoints_dir_name, exist_ok=True)

    # model = EfficientNetNoisyStudent(11, pretrained_backbone=True,
    #                                  mixed_precision=True, model_name='tf_efficientnet_b7_ns')
    model = Inception(11, pretrained_backbone=True, mixed_precision=False, model_name='inception_v3')
    model = SyncBatchNorm.convert_sync_batchnorm(model)
    model.to(device)
    model = DistributedDataParallel(model, device_ids=[gpu])

    # class_weights = [354.625, 23.73913043478261, 2.777105767812362, 110.32608695652173,
    #                  52.679245283018865, 9.152656621728786, 4.7851333032083145,
    #                  8.437891632878731, 2.4620064899945917, 0.4034751151063363, 31.534942820838626]
    class_names = ['ETT - Abnormal', 'ETT - Borderline', 'ETT - Normal',
                   'NGT - Abnormal', 'NGT - Borderline', 'NGT - Incompletely Imaged', 'NGT - Normal',
                   'CVC - Abnormal', 'CVC - Borderline', 'CVC - Normal', 'Swan Ganz Catheter Present']
    scaler = GradScaler()
    criterion = torch.nn.BCEWithLogitsLoss()

    lr_start = 1e-4
    lr_end = 1e-6
    weight_decay = 0
    epoch_num = 20
    if rank == 0:
        wandb.config.model_name = checkpoints_dir_name
        wandb.config.lr_start = lr_start
        wandb.config.lr_end = lr_end
        wandb.config.weight_decay = weight_decay
        wandb.config.epoch_num = epoch_num
        wandb.config.optimizer = 'adam'
        wandb.config.scheduler = 'CosineAnnealingLR'
        wandb.config.is_loss_weights = 'no'

    optimizer = Adam(model.parameters(), lr=lr_start, weight_decay=weight_decay)
    scheduler = CosineAnnealingLR(optimizer, T_max=epoch_num, eta_min=lr_end, last_epoch=-1)

    max_val_auc = 0

    for epoch in range(epoch_num):
        train_loss, train_avg_auc, train_auc, train_rocs, train_data_pr, train_duration = one_epoch_train(
            model, train_loader, optimizer, criterion, device, scaler,
            iters_to_accumulate=accumulation_step, clip_grads=False)
        scheduler.step()

        if rank == 0:
            val_loss, val_avg_auc, val_auc, val_rocs, val_data_pr, val_duration = eval_model(
                model, valid_loader, device, criterion, scaler)

            wandb.log({'train_loss': train_loss, 'val_loss': val_loss,
                       'train_auc': train_avg_auc, 'val_auc': val_avg_auc, 'epoch': epoch})
            for class_name, auc1, auc2 in zip(class_names, train_auc, val_auc):
                wandb.log({'{} train auc'.format(class_name): auc1,
                           '{} val auc'.format(class_name): auc2, 'epoch': epoch})

            if val_avg_auc > max_val_auc:
                max_val_auc = val_avg_auc
                wandb.run.summary["best_accuracy"] = val_avg_auc

            print('EPOCH %d:\tTRAIN [duration %.3f sec, loss: %.3f, avg auc: %.3f]\t\t'
                  'VAL [duration %.3f sec, loss: %.3f, avg auc: %.3f]\tCurrent time %s' %
                  (epoch + 1, train_duration, train_loss, train_avg_auc,
                   val_duration, val_loss, val_avg_auc, str(datetime.now(timezone('Europe/Moscow')))))

            torch.save(model.module.state_dict(),
                       os.path.join(checkpoints_dir_name, '{}_epoch{}_val_auc{}_loss{}_train_auc{}_loss{}.pth'.format(
                           checkpoints_dir_name, epoch + 1, round(val_avg_auc, 3), round(val_loss, 3),
                           round(train_avg_auc, 3), round(train_loss, 3))))
    if rank == 0:
        wandb.finish()
                 lr=1e-4,
                 weight_decay=0)
scheduler = CosineAnnealingLR(optimizer, T_max=20, eta_min=1e-6, last_epoch=-1)
model = model.to(device)

for epoch in range(20):
    total_train_loss, train_avg_auc, train_auc, train_data_pr, train_duration = one_epoch_train(
        model,
        train_loader,
        optimizer,
        criterion,
        device,
        scaler,
        iters_to_accumulate=8,
        clip_grads=False)
    total_val_loss, val_avg_auc, val_auc, val_data_pr, val_duration = eval_model(
        model, val_loader, device, criterion, scaler)
    scheduler.step()

    writer.add_scalars('avg/loss', {
        'train': total_train_loss,
        'val': total_val_loss
    }, epoch)
    writer.add_scalars('avg/auc', {
        'train': train_avg_auc,
        'val': val_avg_auc
    }, epoch)
    writer.flush()

    print(
        'EPOCH %d:\tTRAIN [duration %.3f sec, loss: %.3f, avg auc: %.3f]\t\t'
        'VAL [duration %.3f sec, loss: %.3f, avg auc: %.3f]\tCurrent time %s' %
Beispiel #3
0
max_val_auc = 0

for epoch in range(epoch_num):
    train_loss, train_avg_auc, train_auc, train_rocs, train_data_pr, train_duration = train_one_epoch_pseudolabel(
        epoch,
        model,
        train_loader,
        unlabeled_loader,
        optimizer,
        labeled_criterion,
        unlabeled_criterion,
        device,
        scaler,
        iters_to_accumulate=accumulation_step,
        clip_grads=False)
    val_loss, val_avg_auc, val_auc, val_rocs, val_data_pr, val_duration = eval_model(
        model, val_loader, device, labeled_criterion, scaler)
    scheduler.step()

    writer.add_scalars('avg/loss', {
        'train': train_loss,
        'val': val_loss
    }, epoch)
    writer.add_scalars('avg/auc', {
        'train': train_avg_auc,
        'val': val_avg_auc
    }, epoch)
    for class_name, auc1, auc2 in zip(class_names, train_auc, val_auc):
        writer.add_scalars('AUC/{}'.format(class_name), {
            'train': auc1,
            'val': auc2
        }, epoch)
ranzcr_valid_df = ranzcr_df[ranzcr_df['fold'] == 1]
valid_image_transforms = alb.Compose([
    alb.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
    ToTensorV2()
])
valid_set = ImageDataset(ranzcr_valid_df,
                         valid_image_transforms,
                         '../ranzcr/train',
                         width_size=640)
valid_loader = DataLoader(valid_set,
                          batch_size=12,
                          num_workers=12,
                          pin_memory=False,
                          drop_last=False)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
criterion = torch.nn.BCEWithLogitsLoss()

scaler = GradScaler()
if torch.cuda.device_count() > 1:
    avg_model = torch.nn.DataParallel(avg_model)
avg_model = avg_model.to(device)

val_loss, val_avg_auc, val_auc, val_rocs, val_data_pr, val_duration = eval_model(
    avg_model, valid_loader, device, criterion, scaler)

torch.save(
    avg_model.module.state_dict(),
    os.path.join('effnet7_wa_val_auc{}_loss{}.pth'.format(
        round(val_avg_auc, 3), round(val_loss, 3))))