Beispiel #1
0
    def _data_frame_view(self):
        """ Return the view used by the editor.
        """

        return View(
            Item(
                self._target_name(self.name),
                id='tabular_editor',
                show_label=False,
                editor=TabularEditor(
                    show_titles=self.factory.show_titles,
                    editable=self.factory.editable,
                    adapter=self.adapter,
                    selected=self._target_name(self.factory.selected),
                    selected_row=self._target_name(self.factory.selected_row),
                    selectable=self.factory.selectable,
                    activated=self._target_name(self.factory.selected),
                    activated_row=self._target_name(
                        self.factory.activated_row),  # noqa
                    clicked=self._target_name(self.factory.clicked),
                    dclicked=self._target_name(self.factory.dclicked),
                    right_clicked=self._target_name(
                        self.factory.right_clicked),  # noqa
                    right_dclicked=self._target_name(
                        self.factory.right_dclicked),  # noqa
                    column_clicked=self._target_name(
                        self.factory.column_clicked),  # noqa
                    column_right_clicked=self._target_name(
                        self.factory.column_right_clicked),  # noqa
                    operations=self.factory.operations,
                    update=self._target_name(self.factory.update),
                    refresh=self._target_name(self.factory.refresh),
                )),
            id='data_frame_editor',
            resizable=True)
Beispiel #2
0
class TableViewController(HasTraits):
    """Separate table view for the data set matrix."""
    # table = Array()
    table = Property()
    rows = List()
    title_text = Str(u"Result table", auto_set=True)
    cp_clip = Button('Copy to clipboard')
    ad = ArrayAdapter()
    tab_ed = TabularEditor(
        adapter=ad,
        operations=[],
        editable=False,
        show_titles=True,
        # multi_select=True,
    )

    trait_view = View(
        Group(
            Item(
                'table',
                editor=tab_ed,
                show_label=False,
                style='readonly',
            ),
            Group(
                Item('cp_clip', show_label=False),
                orientation="horizontal",
            ),
            layout="normal",
        ),
        width=0.3,
        height=0.3,
        resizable=True,
        buttons=[OKButton],
        handler=TitleHandler(),
    )

    def _get_table(self):
        return array(self.rows)

    def set_col_names(self, names):
        self.ad.columns = []
        for i, name in enumerate(names):
            self.ad.columns.append((name, i))

    def add_row(self, row_data, row_name):
        self.rows.append(row_data)

    def _cp_clip_changed(self, info):
        tf = tempfile.TemporaryFile()
        savetxt(tf, self.table, fmt='%.2f', delimiter='\t', newline='\n')
        tf.seek(0)
        txt_mat = tf.read()
        clipboard.data = txt_mat
    def traits_view(self):
        nclasses = self.beta.shape[1]
        w_table = WIDTH_CELL * nclasses
        h_table = HEIGHT_CELL * nclasses
        w_view = min(MAX_WIDTH, w_table + W_MARGIN)
        h_view = min(MAX_HEIGHT, h_table + HEIGHT_CELL + H_MARGIN)

        view = View(
            VGroup(
                Label('Beta parameters (prior over pi):'),
                UItem('beta',
                      editor=TabularEditor(
                          adapter=Array2DAdapter(ncolumns=nclasses,
                                                 format='%.4f',
                                                 show_index=True,
                                                 count_from_one=False),
                          ),
                      width = w_table,
                      height = HEIGHT_CELL,
                      padding = 10
                ),
                Label('Alpha parameters (prior over theta):'),
                UItem('alpha',
                      editor=TabularEditor(
                          adapter=Array2DAdapter(ncolumns=nclasses,
                                                 format='%.4f',
                                                 show_index=True,
                                                 count_from_one=False),
                          ),
                      width = w_table,
                      height = h_table,
                      padding = 10
                ),
            ),
            width = w_view,
            height = h_view,
            scrollable = True,
            resizable = True,
            buttons = ['OK', 'Cancel']
        )
        return view
 def traits_view(self):
     ncolumns = len(self.data[0])
     w_table = min(WIDTH_CELL * ncolumns, MAX_WIDTH)
     w_view = min(w_table + W_MARGIN, MAX_WIDTH)
     return View(Group(
         Item('data',
              editor=TabularEditor(adapter=Array2DAdapter(
                  ncolumns=ncolumns, format='%s', show_index=True)),
              show_label=False,
              width=w_table,
              padding=10), ),
                 title='Annotations',
                 width=w_view,
                 height=800,
                 resizable=True,
                 buttons=OKCancelButtons)
Beispiel #5
0
    def _data_frame_view(self):
        """ Return the view used by the editor.
        """

        return View(
            Item(
                self._target_name(self.name),
                id="tabular_editor",
                show_label=False,
                editor=TabularEditor(
                    show_titles=self.factory.show_titles,
                    editable=self.factory.editable,
                    adapter=self.adapter,
                    selected=self._target_name(self.factory.selected),
                    selected_row=self._target_name(self.factory.selected_row),
                    selectable=self.factory.selectable,
                    multi_select=self.factory.multi_select,
                    activated=self._target_name(self.factory.activated),
                    activated_row=self._target_name(
                        self.factory.activated_row),  # noqa
                    clicked=self._target_name(self.factory.clicked),
                    dclicked=self._target_name(self.factory.dclicked),
                    scroll_to_row=self._target_name(
                        self.factory.scroll_to_row),  # noqa
                    scroll_to_position_hint=(
                        self.factory.scroll_to_position_hint),
                    scroll_to_column=self._target_name(
                        self.factory.scroll_to_column),  # noqa
                    right_clicked=self._target_name(
                        self.factory.right_clicked),  # noqa
                    right_dclicked=self._target_name(
                        self.factory.right_dclicked),  # noqa
                    column_clicked=self._target_name(
                        self.factory.column_clicked),  # noqa
                    column_right_clicked=self._target_name(
                        self.factory.column_right_clicked),  # noqa
                    operations=self.factory.operations,
                    update=self._target_name(self.factory.update),
                    refresh=self._target_name(self.factory.refresh),
                ),
            ),
            id="data_frame_editor",
            resizable=True,
        )
Beispiel #6
0
class ClusterEditor(HasTraits):
    # Options for track aggregation
    auto_aggregate = Bool(False)
    compute_prototypes = Bool(False)
    # XXX: this should be True for non-interactive use
    render_tracks = Bool(False)
    tracks_drawn = Bool(False)
    render_clusters = Bool(False)
    clusters_drawn = Bool(False)
    interactive = Bool(False)
    clusters = List(Instance(Cluster))
    parameters = []

    # Data
    track_sets = List(Instance(TrackDataset))
    pre_filter_matrix = Array
    pre_filter_connections = Array
    post_filter_matrix = Array
    post_filter_connections = Array

    # 3d plotting
    scene3d = Instance(MlabSceneModel)

    # Collect labels?
    label_lookup = List()

    # static_color from browserbuilder
    subject_colors = List()

    # post-processing algorithm, defaults to "None"
    post_processor = Instance(AcrossSubjectPostproc, ())
    filter_operation = DelegatesTo("post_processor")

    # local ui
    cluster_editor_group = cluster_editor_group

    # convenience for saving tracks or screenshots after a search
    save_name = Str

    def __init__(self, **traits):
        """ Creates a panel for editing cluster assignments.
        """
        super(ClusterEditor, self).__init__(**traits)
        self.cluster_editor_group = cluster_editor_group

    @on_trait_change('+parameter')
    def aggregation_param_changed(self, obj, name, old, new):
        print name, "parameter on aggregator changed"
        if name in self.parameters and self.auto_aggregate:
            self.update_clusters()

    def _auto_aggregate_changed(self):
        print "+ automatic aggregation changed:", self.auto_aggregate
        if self.auto_aggregate:
            self.update_clusters()

    def set_track_sets(self, tsets):
        """
        The entry point for streamline data to the aggregator.
        Some of the logic implemented here depends on whether a
        postprocessor will be used
        """
        # Remove the old track_sets
        self.clear_tracks()

        # set the new track_sets
        self.track_sets = tsets
        if self.render_tracks:
            self.draw_tracks()

    def set_track_source(self, tsource):
        pass

    def _render_tracks_changed(self):
        """
        When render_tracks gets changed, the render_tracks property
        on the items in ``track_source`` gets changed so that future
        subsets of them will inherit it.

        Additionally, the visibility of already-existing streamlines
        will get toggled.
        """
        # Apply the new "render_tracks" to
        for tds in self.track_sets:
            tds.render_tracks = self.render_tracks

        print "+ render_tracks changed to", self.render_tracks
        #print "\t+ setting track_source's render_tracks attribute"
        #self.track_source.set_render_tracks(self.render_tracks)
        self.scene3d.disable_render = True
        # Tracks are drawn
        if self.tracks_drawn:
            print "\t+ toggling glyph visibility on previously drawn tracks"
            for tds in self.track_sets:
                tds.set_track_visibility(self.render_tracks)
        else:
            if self.render_tracks:
                self.draw_tracks()
        self.scene3d.disable_render = False
        print "+ Done."

    def _render_clusters_changed(self):
        print "+ render_clusters changed to", self.render_clusters
        self.scene3d.disable_render = True
        for tds in self.track_sets:
            tds.set_cluster_visibility(self.render_clusters)
        self.scene3d.disable_render = False

    #def update_clusters(self):
    #""" Creates new clusters when a aggregation parameter has been
    #changed. Will CREATE MayaVi objects if ``self.interactive``
    #and ``self.render_clusters`` are true.
    #"""

    #print "+ Updating cluster assignments."
    #_clusters = []
    #self.label_lookup = []
    ## If interactive, convert the tds to something that can render
    ##if self.render_tracks:
    ##    print "\t++ rendering tracks"
    ##    self.draw_tracks()
    ## Update the clusters in each TrackDataset through self.aggregate()
    ## NOTE: Someday this could be parallelized
    #for tnum, tds in enumerate(self.track_sets):
    #print "\t+ cluster %d of %d" % (tnum+1, len(self.track_sets))
    #clusts = self.aggregate(tds)
    #tds.set_clusters(clusts)
    #_clusters += tds.clusters # collect the colorized version
    #self.clusters = _clusters
    ## Take care of the graphics
    #if self.render_clusters:
    #print "\t++ rendering tracks"
    #self.draw_clusters()
    #print "+ Aggregation Complete"

    def update_clusters(self):
        """ Creates new clusters when a aggregation parameter has been
        changed. Will CREATE MayaVi objects if ``self.interactive``
        and ``self.render_clusters`` are true.
        """

        print "+ Updating cluster assignments."
        _clusters = []
        self.label_lookup = []
        for tnum, tds in enumerate(self.track_sets):
            labels = self.aggregate(tds)
            tds.labels = labels
            clusts = []
            # -----------------------------------------------------
            # Convert the labels array to a list of Cluster objects
            labels, occurrences = np.unique(labels, return_inverse=True)
            for labelnum, label in enumerate(labels):
                indices = np.flatnonzero(occurrences == labelnum)
                if self.compute_prototypes:
                    prototype = self.make_prototype(tds.tracks[indices])
                else:
                    prototype = None

                clusts.append(
                    Cluster(ntracks=len(indices),
                            id_number=label,
                            indices=indices,
                            scan_id=tds.scan_id))
            # This grabs the colors from the rendered streamlines
            tds.set_clusters(clusts)
            _clusters += tds.clusters  # collect the colorized version
        self.clusters = _clusters
        # Take care of the graphics
        if self.render_clusters:
            print "\t++ rendering tracks"
            self.draw_clusters()
        print "+ Aggregation Complete"

    ## Must be overwritten by a subclass
    def aggregate(self, track_datasets):
        raise NotImplementedError()

    def make_prototype(self, tracks):
        raise NotImplementedError()

    def draw_tracks(self):
        print "+ called draw_tracks"
        self.scene3d.disable_render = True
        if not self.render_tracks: return
        if self.tracks_drawn:
            print "\t+ Clearing pre-existing tracks"
            self.clear_tracks()

        print "\t+ Drawing the tracks"
        for tds in self.track_sets:
            tds.draw_tracks()
        self.tracks_drawn = True
        self.scene3d.disable_render = False
        print "++ Done"

    def add_tracks(self, tds):
        """ Adds a TrackDataset to the working set """
        tds.render_tracks = self.render_tracks
        self.track_sets.append(tds)
        if self.render_tracks:
            self.scene3d.disable_render = True
            self.track_sets[-1].draw_tracks()
            self.tracks_drawn = True
            self.scene3d.disable_render = False
        if self.render_clusters:
            self.scene3d.disable_render = True
            self.track_sets[-1].draw_clusters()
            self.tracks_drawn = True
            self.scene3d.disable_render = False

    def draw_clusters(self):
        if not self.render_clusters: return
        print "+ Drawing Clusters"
        self.scene3d.disable_render = True
        for tds in self.track_sets:
            tds.draw_clusters()
        self.scene3d.disable_render = False

    def clear_tracks(self):
        for trk in self.track_sets:
            trk.remove_glyphs()
        self.tracks_drawn = False

    def clear_clusters(self):
        pass

    cluster_table = TabularEditor(adapter=ClusterAdapter(), editable=False)

    cluster_rows = Group(Item(name='clusters',
                              editor=cluster_table,
                              height=400,
                              show_label=False),
                         label="Aggregation Options",
                         show_border=True)
    algorithm_widgets = Group()

    def default_traits_view(self):
        return View(self.cluster_editor_group)

    browser_view = View(
        HSplit(Item('scene3d',
                    editor=SceneEditor(scene_class=Scene),
                    height=500,
                    width=500),
               cluster_editor_group,
               show_labels=False), )
Beispiel #7
0
class AlgorithmParameterHandler(Handler):
    def setattr(self, info, obj, name, value):
        print "name:", name
        print "value:", value

cluster_editor_group = \
        VGroup( Group(
            Item("auto_aggregate"),
            #Item("render_clusters"),
            Item("render_tracks"),
                 ),
                 Include("algorithm_widgets"),
                     Group(Item("clusters",
                      name='clusters',
                      editor=TabularEditor(
                          adapter=ClusterAdapter(),
                          editable=False),
                      height=400, width=200, show_label=False),
                      label="Clusters/Segments List",
                      show_border=True)
                    )


class ClusterEditor(HasTraits):
    # Options for track aggregation
    auto_aggregate = Bool(False)
    compute_prototypes = Bool(False)
    # XXX: this should be True for non-interactive use
    render_tracks = Bool(False)
    tracks_drawn = Bool(False)
    render_clusters = Bool(False)
Beispiel #8
0
class TableViewController(ModelView):
    """Separate table view for the data set matrix."""
    table = Array()
    cp_clip = Button('Copy to clipboard')
    ad = ArrayAdapter()
    tab_ed = TabularEditor(
        adapter=ad,
        operations=[],
        editable=False,
        show_titles=True,
        # multi_select=True,
    )

    trait_view = View(
        Group(
            Item(
                'table',
                editor=tab_ed,
                show_label=False,
                style='readonly',
            ),
            Group(
                Item('cp_clip', show_label=False),
                orientation="horizontal",
            ),
            layout="normal",
        ),
        title='Data set matrix',
        width=0.3,
        height=0.3,
        resizable=True,
        buttons=[OKButton],
    )

    def init_info(self, info):
        la = []
        self.ad.index = self.model.data.list_data()
        self.ad.index.sort()
        for name in self.ad.index:
            # FIXME: Lot of hack here
            # needs redesign
            if name in [
                    'ell_full_x', 'ell_full_y', 'ell_half_x', 'ell_half_y',
                    'pcy1', 'pcy2'
            ]:
                continue
            vec = self.model.data.get_data(name)
            la.append(vec)
        self.table = array(la)
        rows, cols = self.table.shape
        # self.ad.columns = [('i', 'index')]
        self.ad.columns = []
        for i in range(cols):
            self.ad.columns.append((str(i), i))
        # self.ad.columns=[('en', 0), ('to', 1), ('tre', 2)]

    def object_cp_clip_changed(self, info):
        tf = tempfile.TemporaryFile()
        savetxt(tf, self.table, fmt='%.2f', delimiter='\t', newline='\n')
        tf.seek(0)
        txt_mat = tf.read()
        clipboard.data = txt_mat
Beispiel #9
0
class SegmentationEditor(ClusterEditor):
    # Options for track aggregation
    render_segments = Bool(False)
    segments_drawn = Bool(False)
    segments = List(Instance(Segment))
    parameters = []

    # Collect labels?
    segment_lookup = List()

    # local ui
    segment_editor_group = segment_editor_group

    def __init__(self, **traits):
        """ Creates a panel for editing cluster assignments.
        """
        super(SegmentationEditor, self).__init__(**traits)
        self.segment_editor_group = segment_editor_group

    def update_clusters(self):
        self.update_segments()

    def _auto_aggregate_changed(self):
        print "+ automatic aggregation changed:", self.auto_aggregate
        if self.auto_aggregate:
            self.update_segments()

    @on_trait_change('+parameter')
    def aggregation_param_changed(self, obj, name, old, new):
        print name, "parameter on aggregator changed"
        if name in self.parameters and self.auto_aggregate:
            self.update_segments()

    def _render_segments_changed(self):
        print "+ render_segments changed to", self.render_segments
        self.scene3d.disable_render = True
        for tds in self.track_sets:
            tds.set_segment_visibility(self.render_segments)
        self.scene3d.disable_render = False

    def update_segments(self):
        """ Creates new segments when a aggregation parameter has been
        changed. Will CREATE MayaVi objects if ``self.interactive``
        and ``self.render_segments`` are true.
        """

        print "+ Updating segment assignments."
        _segments = []
        for tnum, tds in enumerate(self.track_sets):
            __segments = []
            segments = self.segment(tds)
            number_of_labeled_segments, indices = summarize_segments(segments)
            labels = sorted(number_of_labeled_segments.keys())
            for labelnum, label in enumerate(labels):
                __segments.append(
                    Segment(ntracks=len(indices[label]),
                            segment_id=label,
                            indices=np.array(indices[label]),
                            scan_id=tds.scan_id,
                            segments=segments,
                            ncoords=number_of_labeled_segments[label]))

            # This grabs the colors from the rendered streamlines
            tds.set_segments(__segments)
            _segments += tds.segments  # collect the colorized version
        self.segments = _segments
        # Take care of the graphics
        if self.render_segments:
            print "\t++ rendering tracks"
            self.draw_segments()
        print "+ Aggregation Complete"

    ## Must be overwritten by a subclass
    def segment(self, track_datasets):
        raise NotImplementedError()

    def draw_segments(self):
        if not self.render_segments: return
        print "+ Drawing Segments"
        self.scene3d.disable_render = True
        for tds in self.track_sets:
            tds.draw_segments()
        self.scene3d.disable_render = False

    segment_table = TabularEditor(adapter=SegmentAdapter(), editable=False)

    segment_rows = Group(Item(name='segments',
                              editor=segment_table,
                              height=400,
                              show_label=False),
                         label="Segmentation Options",
                         show_border=True)
    algorithm_widgets = Group()

    def default_traits_view(self):
        return View(self.segment_editor_group)

    browser_view = View(
        HSplit(Item('scene3d',
                    editor=SceneEditor(scene_class=Scene),
                    height=500,
                    width=500),
               segment_editor_group,
               show_labels=False), )
Beispiel #10
0
        return col


from ..cluster_ui import ClusterEditor, ClusterAdapter

segment_editor_group = \
        VGroup( Group(
            Item("auto_aggregate"),
            Item("render_segments"),
            Item("render_tracks"),
                 ),
                 Include("algorithm_widgets"),
                     Group(Item("segments",
                      name='segments',
                      editor=TabularEditor(
                          adapter=SegmentAdapter(),
                          editable=False),
                      height=400, width=200, show_label=False),
                      label="Segmentation Options",
                      show_border=True)
                    )


class SegmentationEditor(ClusterEditor):
    # Options for track aggregation
    render_segments = Bool(False)
    segments_drawn = Bool(False)
    segments = List(Instance(Segment))
    parameters = []

    # Collect labels?
    def default_traits_view(self):
        """
        The editable traits in the algorithm_widgets will depend on the atlas
        and therefore we must build the ui on the fly
        """
        if self.track_source is None:
            raise ValueError("Must have a track_source set to determine traits")


        self.possible_atlases = self.atlas_parameters.keys()
        groups = []
        # Loop over the available atlases
        for atlas_name in self.possible_atlases:
            # define a trait for each editable parameter
            group_items = []
            for editable_param, possible_values in \
                    self.atlas_parameters[atlas_name].iteritems():
                # use a modified version of the param name as a new trait
                new_trait_name = atlas_name + "_" + editable_param
                self.parameters.append(new_trait_name)
                self.add_trait(new_trait_name,Enum(possible_values,parameter=True))
                setattr(self,new_trait_name,possible_values[0])
                #self.on_trait_change(new_trait_name,self.atlas_parameter_trait_changed)
                group_items.append(
                    Item(new_trait_name, label=editable_param)
                )
            groups.append(
                Group(
                      *tuple(group_items),
                      visible_when="atlas_name=='%s'" % atlas_name,
                      show_border=True,
                      label=atlas_name+" parameters")
            )

        # widgets for editing algorithm parameters
        traits_view = View(
          # All cluster editors have these
          Group(
            Group(
              Item("auto_aggregate"),
              Item("render_clusters"),
              Item("render_tracks"),
            ),
            Group(
              Item(name="min_tracks",
                    editor=RangeEditor(mode="slider",
                    high = 100,low = 0,format = "%i")),
              # Specific to the dynamic atlas class
              Item("atlas_name", editor= EnumEditor(name="possible_atlases")),
              Group(*tuple(groups)),
              # Actions for altering internals
              Group(
              Item("b_plot_connection_vector"),
              Item("b_query_region_pairs"),
              Item("b_change_postproc"),
              show_labels=False,orientation="horizontal"),
            ),
            Group(
              Item("clusters",
                    name='clusters',
                    editor=TabularEditor(
                             adapter=ClusterAdapter(),
                             editable=False),
              height=400, width=200, show_label=False),
              label="Aggregation Options",
              show_border=True)
            )
          )
        return traits_view