def require_apex(test_case):
    """
    Decorator marking a test that requires apex
    """
    if not is_apex_available():
        return unittest.skip("test requires apex")(test_case)
    else:
        return test_case
    def _run_finetune(self, gpus: int, distributed_retriever: str = "pytorch"):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        output_dir = os.path.join(tmp_dir, "output")
        data_dir = os.path.join(tmp_dir, "data")
        self._create_dummy_data(data_dir=data_dir)

        testargs = f"""
                --data_dir {data_dir} \
                --output_dir {output_dir} \
                --model_name_or_path facebook/rag-sequence-base \
                --model_type rag_sequence \
                --do_train \
                --do_predict \
                --n_val -1 \
                --val_check_interval 1.0 \
                --train_batch_size 2 \
                --eval_batch_size 1 \
                --max_source_length 25 \
                --max_target_length 25 \
                --val_max_target_length 25 \
                --test_max_target_length 25 \
                --label_smoothing 0.1 \
                --dropout 0.1 \
                --attention_dropout 0.1 \
                --weight_decay 0.001 \
                --adam_epsilon 1e-08 \
                --max_grad_norm 0.1 \
                --lr_scheduler polynomial \
                --learning_rate 3e-04 \
                --num_train_epochs 1 \
                --warmup_steps 4 \
                --gradient_accumulation_steps 1 \
                --distributed-port 8787 \
                --use_dummy_dataset 1 \
                --distributed_retriever {distributed_retriever} \
            """.split()

        if gpus > 0:
            testargs.append(f"--gpus={gpus}")
            if is_apex_available():
                testargs.append("--fp16")
        else:
            testargs.append("--gpus=0")
            testargs.append("--distributed_backend=ddp_cpu")
            testargs.append("--num_processes=2")

        cmd = [sys.executable,
               str(Path(finetune_rag.__file__).resolve())] + testargs
        execute_subprocess_async(cmd, env=self.get_env())

        metrics_save_path = os.path.join(output_dir, "metrics.json")
        with open(metrics_save_path) as f:
            result = json.load(f)
        return result
    def _run_finetune(self, gpus: int, distributed_retriever: str = "pytorch"):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        output_dir = os.path.join(tmp_dir, "output")
        data_dir = "/dccstor/dialog/sfeng/projects/transformers_dialdoc/data_v2/dd_generation_structure_two"
        # self._create_dummy_data(data_dir=data_dir)

        testargs = f"""
                --data_dir /dccstor/dialog/sfeng/projects/transformers_dialdoc/data_v2/dd_generation_structure_two \
                --output_dir output \
                --index_name custom \
                --index_path /dccstor/dialog/sfeng/projects/transformers_dialdoc/data_v2/dd_knowledge_dataset-token-dpr_new/my_knowledge_dataset_hnsw_index.faiss \
                --passages_path /dccstor/dialog/sfeng/projects/transformers_dialdoc/data_v2/dd_knowledge_dataset-token-dpr_new/my_knowledge_dataset \
                --model_name_or_path facebook/rag-token-base \
                --model_type rag_token \
                --do_train \
                --do_predict \
                --n_val -1 \
                --val_check_interval 1.0 \
                --train_batch_size 4 \
                --eval_batch_size 8 \
                --max_source_length 25 \
                --max_target_length 25 \
                --val_max_target_length 25 \
                --test_max_target_length 25 \
                --label_smoothing 0.1 \
                --dropout 0.1 \
                --attention_dropout 0.1 \
                --weight_decay 0.001 \
                --adam_epsilon 1e-08 \
                --max_grad_norm 0.1 \
                --lr_scheduler polynomial \
                --learning_rate 3e-04 \
                --num_train_epochs 1 \
                --warmup_steps 4 \
                --gradient_accumulation_steps 1 \
                --distributed-port 8787 \
                --use_dummy_dataset 1 \
                --distributed_retriever {distributed_retriever} \
            """.split()

        if gpus > 0:
            testargs.append(f"--gpus={gpus}")
            if is_apex_available():
                testargs.append("--fp16")
        else:
            testargs.append("--gpus=0")
            # testargs.append("--distributed_backend=ddp_cpu")
            testargs.append("--num_processes=1")

        cmd = [sys.executable,
               str(Path(finetune_rag.__file__).resolve())] + testargs
        execute_subprocess_async(cmd, env=self.get_env())
Beispiel #4
0
def main(opts):
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )

    # load model & tokenizer
    try:
        tokenizer = AutoTokenizer.from_pretrained(opts.model_name_or_path)
    except OSError:
        logger.warning(
            "Tokenizer not in named directory. Checking parent directory")
        tokenizer = AutoTokenizer.from_pretrained(
            f"{opts.model_name_or_path}/..")

    model = AutoModelForMaskedLM.from_pretrained(opts.model_name_or_path)
    model.eval()
    if torch.cuda.is_available():
        model.cuda()
    if opts.fp16:
        if not is_apex_available():
            raise ImportError("Please install apex to use fp16 training.")
        model = amp.initialize(
            model, opt_level="O1")  # default level from transformers

    # store decoder for quickly producing logits from hidden states
    os.makedirs(opts.output_dir, exist_ok=opts.overwrite)
    torch.save(opts, f"{opts.output_dir}/args.bin")
    if model.config.model_type == "bert":
        torch.save(model.cls.predictions.decoder,
                   f"{opts.output_dir}/linear.pt")
    if model.config.model_type == "roberta":
        torch.save(model.lm_head.decoder, f"{opts.output_dir}/linear.pt")

    with shelve.open(f"{opts.output_dir}/db") as out_db, torch.no_grad():
        build_db_batched(
            source_path=opts.source_path,
            target_path=opts.target_path,
            out_db=out_db,
            model=model,
            tokenizer=tokenizer,
            truncation=opts.truncation_strategy,
            batch_size=opts.batch_size,
            output_dtype=np.float16 if opts.fp16 else np.float32,
            mask_spans=opts.mask_spans,
            num_samples=opts.num_samples,
        )
Beispiel #5
0
def main(opts):
    linear = torch.load(f'{opts.bert_hidden}/linear.pt').cuda()
    if opts.fp16:
        if not is_apex_available():
            raise ImportError("Please install apex to use fp16 training.")
        linear = amp.initialize(
            linear, opt_level="O1")  # default level from transformers

    with shelve.open(f'{opts.bert_hidden}/db', 'r') as db, \
         shelve.open(f'{opts.bert_hidden}/topk', 'c') as topk_db:
        for key, value in tqdm(db.items(),
                               total=len(db),
                               desc='computing topk...'):
            bert_hidden = torch.tensor(tensor_loads(value)).cuda()
            topk = linear(bert_hidden).topk(dim=-1, k=opts.topk)
            dump = dump_topk(
                topk, dtype=torch.float16 if opts.fp16 else torch.float32)
            topk_db[key] = dump
Beispiel #6
0
def is_cuda_and_apex_available():
    is_using_cuda = torch.cuda.is_available() and torch_device == "cuda"
    return is_using_cuda and is_apex_available()
Beispiel #7
0
    def train(self, model_path: Optional[str] = None):
        """
        Main training entry point.

        Args:
            model_path (:obj:`str`, `optional`):
                Local path to the model if the model to train has been instantiated from a local path. If present,
                training will resume from the optimizer/scheduler states loaded here.
        """
        train_dataloader = self.get_train_dataloader()
        if self.args.max_steps > 0:
            t_total = self.args.max_steps
            num_train_epochs = (
                self.args.max_steps // (len(train_dataloader) // self.args.gradient_accumulation_steps) + 1
            )
        else:
            t_total = int(len(train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs)
            num_train_epochs = self.args.num_train_epochs

        self.create_optimizer_and_scheduler(num_training_steps=t_total)

        # Check if saved optimizer or scheduler states exist
        if (
            model_path is not None
            and os.path.isfile(os.path.join(model_path, "optimizer.pt"))
            and os.path.isfile(os.path.join(model_path, "scheduler.pt"))
        ):
            # Load in optimizer and scheduler states
            self.optimizer.load_state_dict(
                torch.load(os.path.join(model_path, "optimizer.pt"), map_location=self.args.device)
            )
            self.lr_scheduler.load_state_dict(torch.load(os.path.join(model_path, "scheduler.pt")))

        model = self.model
        if self.args.fp16 and _use_apex:
            if not is_apex_available():
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
            model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level)

        # multi-gpu training (should be after apex fp16 initialization)
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Distributed training (should be after apex fp16 initialization)
        if self.args.local_rank != -1:
            model = torch.nn.parallel.DistributedDataParallel(
                model,
                device_ids=[self.args.local_rank],
                output_device=self.args.local_rank,
                find_unused_parameters=True,
            )

        if self.tb_writer is not None:
            self.tb_writer.add_text("args", self.args.to_json_string())
            self.tb_writer.add_hparams(self.args.to_sanitized_dict(), metric_dict={})

        # Train!
        if is_torch_tpu_available():
            total_train_batch_size = self.args.train_batch_size * xm.xrt_world_size()
        else:
            total_train_batch_size = (
                self.args.train_batch_size
                * self.args.gradient_accumulation_steps
                * (torch.distributed.get_world_size() if self.args.local_rank != -1 else 1)
            )
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", self.num_examples(train_dataloader))
        logger.info("  Num Epochs = %d", num_train_epochs)
        logger.info("  Instantaneous batch size per device = %d", self.args.per_device_train_batch_size)
        logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d", total_train_batch_size)
        logger.info("  Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps)
        logger.info("  Total optimization steps = %d", t_total)

        self.global_step = 0
        self.epoch = 0
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
        # Check if continuing training from a checkpoint
        if model_path is not None:
            # set global_step to global_step of last saved checkpoint from model path
            try:
                self.global_step = int(model_path.split("-")[-1].split("/")[0])
                epochs_trained = self.global_step // (len(train_dataloader) // self.args.gradient_accumulation_steps)
                steps_trained_in_current_epoch = self.global_step % (
                    len(train_dataloader) // self.args.gradient_accumulation_steps
                )

                logger.info("  Continuing training from checkpoint, will skip to saved global_step")
                logger.info("  Continuing training from epoch %d", epochs_trained)
                logger.info("  Continuing training from global step %d", self.global_step)
                logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
            except ValueError:
                self.global_step = 0
                logger.info("  Starting fine-tuning.")

        tr_loss = 0.0
        logging_loss = 0.0
        model.zero_grad()
        train_iterator = trange(
            epochs_trained, int(num_train_epochs), desc="Epoch", disable=not self.is_local_process_zero()
        )
        for epoch in train_iterator:
            if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
                train_dataloader.sampler.set_epoch(epoch)

            if is_torch_tpu_available():
                parallel_loader = pl.ParallelLoader(train_dataloader, [self.args.device]).per_device_loader(
                    self.args.device
                )
                epoch_iterator = tqdm(parallel_loader, desc="Iteration", disable=not self.is_local_process_zero())
            else:
                epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=not self.is_local_process_zero())

            # Reset the past mems state at the beginning of each epoch if necessary.
            if self.args.past_index >= 0:
                self._past = None

            for step, inputs in enumerate(epoch_iterator):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    continue

                tr_loss += self.training_step(model, inputs)

                if (step + 1) % self.args.gradient_accumulation_steps == 0 or (
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
                    len(epoch_iterator) <= self.args.gradient_accumulation_steps
                    and (step + 1) == len(epoch_iterator)
                ):
                    if self.args.fp16 and _use_native_amp:
                        self.scaler.unscale_(self.optimizer)
                        torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)
                    elif self.args.fp16 and _use_apex:
                        torch.nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), self.args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)

                    if is_torch_tpu_available():
                        xm.optimizer_step(self.optimizer)
                    elif self.args.fp16 and _use_native_amp:
                        self.scaler.step(self.optimizer)
                        self.scaler.update()
                    else:
                        self.optimizer.step()

                    self.lr_scheduler.step()
                    model.zero_grad()
                    self.global_step += 1
                    self.epoch = epoch + (step + 1) / len(epoch_iterator)

                    if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or (
                        self.global_step == 1 and self.args.logging_first_step
                    ):
                        logs: Dict[str, float] = {}
                        logs["loss"] = (tr_loss - logging_loss) / self.args.logging_steps
                        # backward compatibility for pytorch schedulers
                        logs["learning_rate"] = (
                            self.lr_scheduler.get_last_lr()[0]
                            if version.parse(torch.__version__) >= version.parse("1.4")
                            else self.lr_scheduler.get_lr()[0]
                        )
                        logging_loss = tr_loss

                        self.log(logs)

                    if self.args.evaluate_during_training and self.global_step % self.args.eval_steps == 0:
                        self.evaluate()

                    if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0:
                        # In all cases (even distributed/parallel), self.model is always a reference
                        # to the model we want to save.
                        if hasattr(model, "module"):
                            assert (
                                model.module is self.model
                            ), f"Module {model.module} should be a reference to self.model"
                        else:
                            assert model is self.model, f"Model {model} should be a reference to self.model"
                        # Save model checkpoint
                        output_dir = os.path.join(self.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.global_step}")

                        self.save_model(output_dir)

                        if self.is_world_process_zero():
                            self._rotate_checkpoints()

                        if is_torch_tpu_available():
                            xm.rendezvous("saving_optimizer_states")
                            xm.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                        elif self.is_world_process_zero():
                            torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))

                if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
                    epoch_iterator.close()
                    break
            if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
                train_iterator.close()
                break
            if self.args.tpu_metrics_debug or self.args.debug:
                if is_torch_tpu_available():
                    # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                    xm.master_print(met.metrics_report())
                else:
                    logger.warning(
                        "You enabled PyTorch/XLA debug metrics but you don't have a TPU "
                        "configured. Check your training configuration if this is unexpected."
                    )

        if self.tb_writer:
            self.tb_writer.close()
        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of training
            delattr(self, "_past")

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
        return TrainOutput(self.global_step, tr_loss / self.global_step)
Beispiel #8
0
from .file_utils import is_torch_tpu_available
from .integrations import is_comet_available, is_tensorboard_available, is_wandb_available
from .modeling_utils import PreTrainedModel
from .optimization import AdamW, get_linear_schedule_with_warmup
from .trainer_utils import PREFIX_CHECKPOINT_DIR, EvalPrediction, PredictionOutput, TrainOutput, set_seed
from .training_args import TrainingArguments


_use_native_amp = False
_use_apex = False

# Check if Pytorch version >= 1.6 to switch between Native AMP and Apex
if version.parse(torch.__version__) < version.parse("1.6"):
    from transformers.file_utils import is_apex_available

    if is_apex_available():
        from apex import amp
    _use_apex = True
else:
    _use_native_amp = True
    from torch.cuda.amp import autocast


if is_torch_tpu_available():
    import torch_xla.core.xla_model as xm
    import torch_xla.debug.metrics as met
    import torch_xla.distributed.parallel_loader as pl

if is_tensorboard_available():
    try:
        from torch.utils.tensorboard import SummaryWriter
    def train(self, model_path: Optional[str] = None, trial: Union["optuna.Trial", Dict[str, Any]] = None):
        """
        Main training entry point.
        Args:
            model_path (:obj:`str`, `optional`):
                Local path to the model if the model to train has been instantiated from a local path. If present,
                training will resume from the optimizer/scheduler states loaded here.
            trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`):
                The trial run or the hyperparameter dictionary for hyperparameter search.
        """
        # This might change the seed so needs to run first.
        self._hp_search_setup(trial)

        # Model re-init
        if self.model_init is not None:
            # Seed must be set before instantiating the model when using model_init.
            set_seed(self.args.seed)
            model = self.model_init()
            self.model = model.to(self.args.device)

            # Reinitializes optimizer and scheduler
            self.optimizer, self.lr_scheduler = None, None

        # Data loader and number of training steps
        train_dataloader = self.get_train_dataloader()
        num_update_steps_per_epoch = len(train_dataloader) // self.args.gradient_accumulation_steps
        num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
        if self.args.max_steps > 0:
            t_total = self.args.max_steps
            num_train_epochs = self.args.max_steps // num_update_steps_per_epoch + int(
                self.args.max_steps % num_update_steps_per_epoch > 0
            )
        else:
            t_total = int(num_update_steps_per_epoch * self.args.num_train_epochs)
            num_train_epochs = self.args.num_train_epochs
            self.args.max_steps = t_total

        self.create_optimizer_and_scheduler(num_training_steps=t_total)

        # Check if saved optimizer or scheduler states exist
        if (
            model_path is not None
            and os.path.isfile(os.path.join(model_path, "optimizer.pt"))
            and os.path.isfile(os.path.join(model_path, "scheduler.pt"))
        ):
            # Load in optimizer and scheduler states
            self.optimizer.load_state_dict(
                torch.load(os.path.join(model_path, "optimizer.pt"), map_location=self.args.device)
            )
            self.lr_scheduler.load_state_dict(torch.load(os.path.join(model_path, "scheduler.pt")))

        model = self.model
        if self.args.fp16 and _use_apex:
            if not is_apex_available():
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
            model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level)

        # multi-gpu training (should be after apex fp16 initialization)
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Distributed training (should be after apex fp16 initialization)
        if self.args.local_rank != -1:
            model = torch.nn.parallel.DistributedDataParallel(
                model,
                device_ids=[self.args.local_rank],
                output_device=self.args.local_rank,
                find_unused_parameters=True,
            )

        if self.tb_writer is not None:
            self.tb_writer.add_text("args", self.args.to_json_string())
            self.tb_writer.add_hparams(self.args.to_sanitized_dict(), metric_dict={})

        # Train!
        if is_torch_tpu_available():
            total_train_batch_size = self.args.train_batch_size * xm.xrt_world_size()
        else:
            total_train_batch_size = (
                self.args.train_batch_size
                * self.args.gradient_accumulation_steps
                * (torch.distributed.get_world_size() if self.args.local_rank != -1 else 1)
            )
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", self.num_examples(train_dataloader))
        logger.info("  Num Epochs = %d", num_train_epochs)
        logger.info("  Instantaneous batch size per device = %d", self.args.per_device_train_batch_size)
        logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d", total_train_batch_size)
        logger.info("  Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps)
        logger.info("  Total optimization steps = %d", t_total)

        self.global_step = 0
        self.epoch = 0
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
        # Check if continuing training from a checkpoint
        if model_path is not None:
            # set global_step to global_step of last saved checkpoint from model path
            try:
                self.global_step = int(model_path.split("-")[-1].split(os.path.sep)[0])

                epochs_trained = self.global_step // num_update_steps_per_epoch
                steps_trained_in_current_epoch = self.global_step % (num_update_steps_per_epoch)

                logger.info("  Continuing training from checkpoint, will skip to saved global_step")
                logger.info("  Continuing training from epoch %d", epochs_trained)
                logger.info("  Continuing training from global step %d", self.global_step)
                logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
            except ValueError:
                self.global_step = 0
                logger.info("  Starting fine-tuning.")

        tr_loss_sum = 0.0
        loss_sum = defaultdict(float)
        best = {self.best_metric: None}
        model.zero_grad()
        disable_tqdm = self.args.disable_tqdm or not self.is_local_process_zero()
        train_pbar = trange(epochs_trained, int(np.ceil(num_train_epochs)), desc="Epoch", disable=disable_tqdm)
        for epoch in range(epochs_trained, int(np.ceil(num_train_epochs))):
            if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
                train_dataloader.sampler.set_epoch(epoch)

            if is_torch_tpu_available():
                parallel_loader = pl.ParallelLoader(train_dataloader, [self.args.device]).per_device_loader(
                    self.args.device
                )
                epoch_iterator = parallel_loader
            else:
                epoch_iterator = train_dataloader

            # Reset the past mems state at the beginning of each epoch if necessary.
            if self.args.past_index >= 0:
                self._past = None

            epoch_pbar = tqdm(epoch_iterator, desc="Iteration", disable=disable_tqdm)
            for step, inputs in enumerate(epoch_iterator):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    epoch_pbar.update(1)
                    continue

                model.train()
                inputs = self._prepare_inputs(inputs)

                inputs["output_attentions"] = self.length_drop_args.length_config is not None

                layer_config = sample_layer_configuration(
                    model.config.num_hidden_layers,
                    layer_dropout_prob=self.length_drop_args.layer_dropout_prob,
                    layer_dropout=0,
                )
                inputs["layer_config"] = layer_config

                inputs["length_config"] = self.length_drop_args.length_config

                outputs = model(**inputs)
                # Save past state if it exists
                if self.args.past_index >= 0:
                    self._past = outputs[self.args.past_index]
                task_loss = self.div_loss(outputs[0])
                if self.length_drop_args.length_adaptive:
                    loss_sum["full"] += task_loss.item()
                loss = task_loss
                if self.length_drop_args.length_adaptive:
                    loss = loss / (self.length_drop_args.num_sandwich + 2)

                tr_loss_sum += loss.item()
                if self.args.fp16 and _use_native_amp:
                    self.scaler.scale(loss).backward()
                elif self.args.fp16 and _use_apex:
                    with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                # inplace distillation
                if self.length_drop_args.length_adaptive:
                    logits = outputs[1].detach()

                    for i in range(self.length_drop_args.num_sandwich + 1):
                        inputs["output_attentions"] = True

                        layer_config = sample_layer_configuration(
                            model.config.num_hidden_layers,
                            layer_dropout_prob=self.length_drop_args.layer_dropout_prob,
                            layer_dropout=(self.length_drop_args.layer_dropout_bound if i == 0 else None),
                            layer_dropout_bound=self.length_drop_args.layer_dropout_bound,
                        )
                        inputs["layer_config"] = layer_config

                        length_config = sample_length_configuration(
                            self.args.max_seq_length,
                            model.config.num_hidden_layers,
                            layer_config,
                            length_drop_ratio=(self.length_drop_args.length_drop_ratio_bound if i == 0 else None),
                            length_drop_ratio_bound=self.length_drop_args.length_drop_ratio_bound,
                        )
                        inputs["length_config"] = length_config

                        outputs_sub = model(**inputs)
                        task_loss_sub = self.div_loss(outputs_sub[0])
                        if i == 0:
                            loss_sum["smallest"] += task_loss_sub.item()
                            loss_sum["sub"] += 0
                        else:
                            loss_sum["sub"] += task_loss_sub.item() / self.length_drop_args.num_sandwich

                        logits_sub = outputs_sub[1]
                        loss_fct = KLDivLoss(reduction="batchmean")
                        kl_loss = loss_fct(F.log_softmax(logits, -1), F.softmax(logits_sub, -1))
                        loss = self.div_loss(kl_loss)
                        loss_sum["kl"] += loss.item() / (self.length_drop_args.num_sandwich + 1)
                        loss = loss / (self.length_drop_args.num_sandwich + 2)

                        tr_loss_sum += loss.item()
                        if self.args.fp16 and _use_native_amp:
                            self.scaler.scale(loss).backward()
                        elif self.args.fp16 and _use_apex:
                            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                                scaled_loss.backward()
                        else:
                            loss.backward()

                if (step + 1) % self.args.gradient_accumulation_steps == 0 or (
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
                    (step + 1) == len(epoch_iterator) <= self.args.gradient_accumulation_steps
                ):
                    if self.args.fp16 and _use_native_amp:
                        self.scaler.unscale_(self.optimizer)
                        torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)
                    elif self.args.fp16 and _use_apex:
                        torch.nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), self.args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)

                    if is_torch_tpu_available():
                        xm.optimizer_step(self.optimizer)
                    elif self.args.fp16 and _use_native_amp:
                        self.scaler.step(self.optimizer)
                        self.scaler.update()
                    else:
                        self.optimizer.step()

                    self.lr_scheduler.step()
                    model.zero_grad()
                    self.global_step += 1
                    self.epoch = epoch + (step + 1) / len(epoch_iterator)

                    if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or (
                        self.global_step == 1 and self.args.logging_first_step
                    ):
                        # backward compatibility for pytorch schedulers
                        lr = (
                            self.lr_scheduler.get_last_lr()[0]
                            if version.parse(torch.__version__) >= version.parse("1.4")
                            else self.lr_scheduler.get_lr()[0]
                        )
                        loss = tr_loss_sum / self.args.logging_steps
                        tr_loss_sum = 0.0
                        logs = {"lr": lr, "loss": loss}
                        log_str = f"[{self.global_step:5d}] lr {lr:g} | loss {loss:2.3f}"

                        for key, value in loss_sum.items():
                            value /= self.args.logging_steps
                            loss_sum[key] = 0.0
                            logs[f"{key}_loss"] = value
                            log_str += f" | {key}_loss {value:2.3f}"

                        self.log(logs, "train")
                        logger.info(log_str)

                    '''
                    if (
                        self.args.evaluation_strategy == EvaluationStrategy.STEPS
                        and self.global_step % self.args.eval_steps == 0
                    ):
                        results = self.evaluate()
                        self._report_to_hp_search(trial, epoch, results)
                    '''

                    if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0:
                        # In all cases (even distributed/parallel), self.model is always a reference
                        # to the model we want to save.
                        if hasattr(model, "module"):
                            assert (
                                model.module is self.model
                            ), f"Module {model.module} should be a reference to self.model"
                        else:
                            assert model is self.model, f"Model {model} should be a reference to self.model"

                        if self.args.evaluate_during_training:
                            results = self.evaluate()
                            results = {k[5:]: v for k, v in results.items() if k.startswith("eval_")}
                            self.log(results, "dev")
                            msg = " | ".join([f"{k} {v:.3f}" for k, v in results.items()])
                            logger.info(f"  [{self.global_step:5d}] {msg}")

                        # Save model checkpoint
                        if self.args.save_only_best:
                            output_dirs = []
                        else:
                            checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.global_step}"
                            if self.hp_search_backend is not None and trial is not None:
                                run_id = (
                                    trial.number
                                    if self.hp_search_backend == HPSearchBackend.OPTUNA
                                    else tune.get_trial_id()
                                )
                                checkpoint_folder += f"-run-{run_id}"
                            output_dirs = [os.path.join(self.args.output_dir, checkpoint_folder)]
                            
                        if self.args.evaluate_during_training:
                            if best[self.best_metric] is None or results[self.best_metric] > best[self.best_metric]:
                                logger.info("Congratulations, best model so far!")
                                output_dirs.append(os.path.join(self.args.output_dir, "checkpoint-best"))
                                best = results

                        for output_dir in output_dirs:
                            self.save_model(output_dir)

                            if self.is_world_master() and self.tokenizer is not None:
                                self.tokenizer.save_pretrained(output_dir)

                            if self.is_world_process_zero():
                                self._rotate_checkpoints(use_mtime=True)

                            '''
                            if is_torch_tpu_available():
                                xm.rendezvous("saving_optimizer_states")
                                xm.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                                xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                            elif self.is_world_process_zero():
                                torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                                torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                            '''

                epoch_pbar.update(1)
                if 0 < self.args.max_steps <= self.global_step:
                    break
            epoch_pbar.close()
            train_pbar.update(1)

            '''
            if self.args.evaluation_strategy == EvaluationStrategy.EPOCH:
                results = self.evaluate()
                self._report_to_hp_search(trial, epoch, results)
            '''

            if self.args.tpu_metrics_debug or self.args.debug:
                if is_torch_tpu_available():
                    # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                    xm.master_print(met.metrics_report())
                else:
                    logger.warning(
                        "You enabled PyTorch/XLA debug metrics but you don't have a TPU "
                        "configured. Check your training configuration if this is unexpected."
                    )
            if 0 < self.args.max_steps <= self.global_step:
                break

        train_pbar.close()
        if self.tb_writer:
            self.tb_writer.close()
        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of training
            delattr(self, "_past")

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
        return self.global_step, best
    def train(self, model_path: Optional[str] = None, trial: Union["optuna.Trial", Dict[str, Any]] = None):
        """
        Main training entry point.

        Args:
            model_path (:obj:`str`, `optional`):
                Local path to the model if the model to train has been instantiated from a local path. If present,
                training will resume from the optimizer/scheduler states loaded here.
            trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`):
                The trial run or the hyperparameter dictionary for hyperparameter search.
        """
        # This might change the seed so needs to run first.
        self._hp_search_setup(trial)

        # Model re-init
        if self.model_init is not None:
            # Seed must be set before instantiating the model when using model_init.
            set_seed(self.args.seed)
            model = self.model_init()
            self.model = model.to(self.args.device)

            # Reinitializes optimizer and scheduler
            self.optimizer, self.lr_scheduler = None, None

        # Data loader and number of training steps
        train_dataloader = self.get_train_dataloader()
        if self.args.max_steps > 0:
            t_total = self.args.max_steps
            num_train_epochs = (
                self.args.max_steps // (len(train_dataloader) // self.args.gradient_accumulation_steps) + 1
            )
        else:
            t_total = int(len(train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs)
            num_train_epochs = self.args.num_train_epochs
            self.args.max_steps = t_total

        self.create_optimizer_and_scheduler(num_training_steps=t_total)

        # Check if saved optimizer or scheduler states exist
        if (
            model_path is not None
            and os.path.isfile(os.path.join(model_path, "optimizer.pt"))
            and os.path.isfile(os.path.join(model_path, "scheduler.pt"))
        ):
            # Load in optimizer and scheduler states
            self.optimizer.load_state_dict(
                torch.load(os.path.join(model_path, "optimizer.pt"), map_location=self.args.device)
            )
            self.lr_scheduler.load_state_dict(torch.load(os.path.join(model_path, "scheduler.pt")))

        model = self.model
        if self.args.fp16 and _use_apex:
            if not is_apex_available():
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
            model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level)

        # multi-gpu training (should be after apex fp16 initialization)
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Distributed training (should be after apex fp16 initialization)
        if self.args.local_rank != -1:
            model = torch.nn.parallel.DistributedDataParallel(
                model,
                device_ids=[self.args.local_rank],
                output_device=self.args.local_rank,
                find_unused_parameters=True,
            )

        if self.tb_writer is not None:
            self.tb_writer.add_text("args", self.args.to_json_string())
            self.tb_writer.add_hparams(self.args.to_sanitized_dict(), metric_dict={})

        # Train!
        if is_torch_tpu_available():
            total_train_batch_size = self.args.train_batch_size * xm.xrt_world_size()
        else:
            total_train_batch_size = (
                self.args.train_batch_size
                * self.args.gradient_accumulation_steps
                * (torch.distributed.get_world_size() if self.args.local_rank != -1 else 1)
            )
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", self.num_examples(train_dataloader))
        logger.info("  Num Epochs = %d", num_train_epochs)
        logger.info("  Instantaneous batch size per device = %d", self.args.per_device_train_batch_size)
        logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d", total_train_batch_size)
        logger.info("  Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps)
        logger.info("  Total optimization steps = %d", t_total)

        self.global_step = 0
        self.epoch = 0
        self.total_flos = 0
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
        # Check if continuing training from a checkpoint
        if model_path is not None:
            # set global_step to global_step of last saved checkpoint from model path
            try:
                self.global_step = int(model_path.split("-")[-1].split(os.path.sep)[0])
                self.total_flos = getattr(model.config, "total_flos", 0)

                epochs_trained = self.global_step // (len(train_dataloader) // self.args.gradient_accumulation_steps)
                steps_trained_in_current_epoch = self.global_step % (
                    len(train_dataloader) // self.args.gradient_accumulation_steps
                )

                logger.info("  Continuing training from checkpoint, will skip to saved global_step")
                logger.info("  Continuing training from epoch %d", epochs_trained)
                logger.info("  Continuing training from global step %d", self.global_step)
                logger.info("  Continuing training from %d non-embedding floating-point operations", self.total_flos)
                logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
            except ValueError:
                self.global_step = 0
                self.total_flos = 0
                logger.info("  Starting fine-tuning.")

        tr_loss = torch.tensor(0.0).to(self.args.device)
        logging_loss_scalar = 0.0
        model.zero_grad()

        disable_tqdm = self.args.disable_tqdm or not self.is_local_process_zero()
        train_pbar = trange(epochs_trained, int(np.ceil(num_train_epochs)), desc="Epoch", disable=disable_tqdm)
        for epoch in range(epochs_trained, int(np.ceil(num_train_epochs))):
            if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
                train_dataloader.sampler.set_epoch(epoch)

            if is_torch_tpu_available():
                parallel_loader = pl.ParallelLoader(train_dataloader, [self.args.device]).per_device_loader(
                    self.args.device
                )
                epoch_iterator = parallel_loader
            else:
                epoch_iterator = train_dataloader

            # Reset the past mems state at the beginning of each epoch if necessary.
            if self.args.past_index >= 0:
                self._past = None

            epoch_pbar = tqdm(epoch_iterator, desc="Iteration", disable=disable_tqdm)
            if (self.reducing_heads or self.annealing) and t_total < self.cooldown_steps:
                logger.warning("It never cools down!!! total steps: {}".format(t_total))
            for step, inputs in enumerate(epoch_iterator):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    epoch_pbar.update(1)
                    continue
                
                if (self.reducing_heads and self.global_step <= self.cooldown_steps):
                    num_of_heads = int(self.starting_num_of_heads - 
                                    self.global_step / self.cooldown_steps
                                    * (self.starting_num_of_heads - self.num_of_heads))
                else:
                    num_of_heads = self.num_of_heads
                # print("num of heads: {}".format(num_of_heads))

                if self.ste:
                    model.apply_dropout(num_of_heads, ste=self.ste)
                else:
                    if (self.annealing and self.global_step <= self.cooldown_steps):
                        temperature = np.exp(np.log(self.starting_temperature) - 
                                        self.global_step / self.cooldown_steps
                                        * (np.log(self.starting_temperature) - np.log(self.temperature)))
                    else:
                        temperature = self.temperature
                    # print("temperature: {}".format(temperature))

                    model.apply_dropout(num_of_heads, temperature=temperature)

                tr_loss += self.training_step(model, inputs)
                self.total_flos += self.floating_point_ops(inputs)

                if (step + 1) % self.args.gradient_accumulation_steps == 0 or (
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
                    len(epoch_iterator) <= self.args.gradient_accumulation_steps
                    and (step + 1) == len(epoch_iterator)
                ):
                    if self.args.fp16 and _use_native_amp:
                        self.scaler.unscale_(self.optimizer)
                        torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)
                    elif self.args.fp16 and _use_apex:
                        torch.nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), self.args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)

                    if is_torch_tpu_available():
                        xm.optimizer_step(self.optimizer)
                    elif self.args.fp16 and _use_native_amp:
                        self.scaler.step(self.optimizer)
                        self.scaler.update()
                    else:
                        self.optimizer.step()

                    self.lr_scheduler.step()
                    model.zero_grad()
                    if self.intermediate_masks and (self.global_step % 1000 == 0 or self.global_step == t_total - 1):
                        torch.save(model.get_masks(), os.path.join(self.args.output_dir, "mask" + str(self.global_step) + ".pt"))
                    self.global_step += 1
                    self.epoch = epoch + (step + 1) / len(epoch_iterator)

                    if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or (
                        self.global_step == 1 and self.args.logging_first_step
                    ):
                        logs: Dict[str, float] = {}
                        tr_loss_scalar = tr_loss.item()
                        logs["loss"] = (tr_loss_scalar - logging_loss_scalar) / self.args.logging_steps
                        # backward compatibility for pytorch schedulers
                        logs["learning_rate"] = (
                            self.lr_scheduler.get_last_lr()[0]
                            if version.parse(torch.__version__) >= version.parse("1.4")
                            else self.lr_scheduler.get_lr()[0]
                        )
                        logging_loss_scalar = tr_loss_scalar

                        self.log(logs)

                    if self.args.evaluate_during_training and self.global_step % self.args.eval_steps == 1:
                        metrics = self.evaluate()
                        self._report_to_hp_search(trial, epoch, metrics)

                    if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0:
                        # In all cases (even distributed/parallel), self.model is always a reference
                        # to the model we want to save.
                        if hasattr(model, "module"):
                            assert (
                                model.module is self.model
                            ), f"Module {model.module} should be a reference to self.model"
                        else:
                            assert model is self.model, f"Model {model} should be a reference to self.model"
                        # Save model checkpoint
                        checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.global_step}"
                        if self.hp_search_backend is not None and trial is not None:
                            run_id = (
                                trial.number
                                if self.hp_search_backend == HPSearchBackend.OPTUNA
                                else tune.get_trial_id()
                            )
                            checkpoint_folder += f"-run-{run_id}"
                        output_dir = os.path.join(self.args.output_dir, checkpoint_folder)

                        self.save_model(output_dir)

                        if self.is_world_process_zero():
                            self._rotate_checkpoints(use_mtime=True)

                        if is_torch_tpu_available():
                            xm.rendezvous("saving_optimizer_states")
                            xm.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                        elif self.is_world_process_zero():
                            torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))

                epoch_pbar.update(1)
                if self.args.max_steps > 0 and self.global_step >= self.args.max_steps:
                    break

            epoch_pbar.close()
            train_pbar.update(1)
            if self.args.tpu_metrics_debug or self.args.debug:
                if is_torch_tpu_available():
                    # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                    xm.master_print(met.metrics_report())
                else:
                    logger.warning(
                        "You enabled PyTorch/XLA debug metrics but you don't have a TPU "
                        "configured. Check your training configuration if this is unexpected."
                    )
            if self.args.max_steps > 0 and self.global_step >= self.args.max_steps:
                break

        train_pbar.close()
        if self.tb_writer:
            self.tb_writer.close()
        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of training
            delattr(self, "_past")

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
        return TrainOutput(self.global_step, tr_loss.item() / self.global_step)
Beispiel #11
0
def _setup(model_args, training_args):
    """ Prepare environment and models for training and evaluation """

    if model_args.model_type not in list(MODEL_CLASSES.keys()):
        raise NotImplementedError("Model type should be 'bert', 'albert'")
    if not is_apex_available():
        training_args.fp16 = False

    # Setup the environment
    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
        )
    # TODO: check if tmp dirs exist and mkdirs if necessary

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO
        if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)

    # Load model and tokenizer
    config, model_cls, tokenizer_cls = MODEL_CLASSES[model_args.model_type]
    tokenizer = tokenizer_cls.from_pretrained(
        model_args.tokenizer_name_or_path if model_args.tokenizer_name_or_path
        else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )

    model = model_cls.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )

    # Load training dataset
    if training_args.do_train:
        train_dataset = load_and_cache_examples(model_args, tokenizer)
    else:
        train_dataset = None

    # Load aug dataset
    if training_args.do_train and model_args.do_aug:
        aug_dataset = load_and_cache_examples(model_args,
                                              tokenizer,
                                              use_aug_path=True)
        logger.info(
            'Concatenate augmented examples to original examples. Train length = {}, Aug length = {}'
            .format(len(train_dataset), len(aug_dataset)))
        train_dataset += aug_dataset

    return model, tokenizer, train_dataset