def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        use_lm=False,
        **kwargs,
    ):
        if "past" in kwargs:
            warnings.warn(
                "The `past` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
                FutureWarning,
            )
            past_key_values = kwargs.pop("past")
        assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."

        output_attentions = (output_attentions if output_attentions is not None
                             else self.config.output_attentions)
        output_hidden_states = (output_hidden_states
                                if output_hidden_states is not None else
                                self.config.output_hidden_states)
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time"
            )
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError(
                "You have to specify either input_ids or inputs_embeds")

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])
        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_length = 0
            past_key_values = [None] * len(self.h)
        else:
            past_length = past_key_values[0][0].size(-2)
        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(past_length,
                                        input_shape[-1] + past_length,
                                        dtype=torch.long,
                                        device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

        # Attention mask.
        if attention_mask is not None:
            assert batch_size > 0, "batch_size has to be defined and > 0"
            attention_mask = attention_mask.view(batch_size, -1)
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask[:, None, None, :]

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=next(
                self.parameters()).dtype)  # fp16 compatibility
            attention_mask = (1.0 - attention_mask) * -10000.0

        # If a 2D ou 3D attention mask is provided for the cross-attention
        # we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
        if self.config.add_cross_attention and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size(
            )
            encoder_hidden_shape = (encoder_batch_size,
                                    encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape,
                                                    device=device)
            encoder_attention_mask = self.invert_attention_mask(
                encoder_attention_mask)
        elif use_lm:
            encoder_attention_mask = self.invert_attention_mask(
                encoder_attention_mask)
        else:
            encoder_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # head_mask has shape n_layer x batch x n_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0

        hidden_states = inputs_embeds + position_embeds + token_type_embeds
        hidden_states = self.drop(hidden_states)
        output_shape = input_shape + (hidden_states.size(-1), )
        presents = () if use_cache else None
        all_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        if use_lm:
            hidden_states = torch.cat((encoder_hidden_states, inputs_embeds),
                                      1)
            attention_mask = torch.cat(
                (encoder_attention_mask, attention_mask), 3)
            y_len = inputs_embeds.shape[-2]
            encoder_hidden_states = None
            encoder_attention_mask = None
        else:
            y_len = None

        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):

            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states.view(
                    *output_shape), )

            outputs = block(
                hidden_states,
                layer_past=layer_past,
                attention_mask=attention_mask,
                head_mask=head_mask[i],
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                use_cache=use_cache,
                output_attentions=output_attentions,
                decoder_input_length=y_len,
            )
            hidden_states, present = outputs[:2]
            if use_cache is True:
                presents = presents + (present, )

            if output_attentions:
                all_attentions = all_attentions + (outputs[2], )

        hidden_states = self.ln_f(hidden_states)
        if use_lm:
            hidden_states = hidden_states[:, -output_shape[-2]:, :]
        else:
            hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states, )

        if not return_dict:
            return tuple(
                v for v in
                [hidden_states, presents, all_hidden_states, all_attentions]
                if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
        )
Beispiel #2
0
    def forward(
        self,
        input_ids=None,
        past=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        use_cache=True,
        return_dict=None,
    ):
        r"""
    Return:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.GPT2Config`) and inputs:
        last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the last layer of the model.
            If `past` is used only the last hidden-state of the sequences of shape :obj:`(batch_size, 1, hidden_size)` is output.
        past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`):
            Contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

        from transformers import GPT2Tokenizer, GPT2Model
        import torch

        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2Model.from_pretrained('gpt2')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])
        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

        if past is None:
            past_length = 0
            past = [None] * len(self.h)
        else:
            past_length = past[0][0].size(-2)
        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

        # Attention mask.
        if attention_mask is not None:
            assert batch_size > 0, "batch_size has to be defined and > 0"
            attention_mask = attention_mask.view(batch_size, -1)
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
            attention_mask = (1.0 - attention_mask) * -10000.0

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # head_mask has shape n_layer x batch x n_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
        hidden_states = self.drop(hidden_states)
        if _USE_GROVER:
            hidden_states = self.emb_norm(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1),)

        presents = ()
        all_attentions = []
        all_hidden_states = ()
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)

            outputs = block(
                hidden_states,
                layer_past=layer_past,
                attention_mask=attention_mask,
                head_mask=head_mask[i],
                use_cache=use_cache,
            )

            hidden_states, present = outputs[:2]
            if use_cache is True:
                presents = presents + (present,)

            if self.output_attentions:
                all_attentions.append(outputs[2])

        if not _USE_GROVER:
            hidden_states = self.ln_f(hidden_states)

        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        # outputs = (hidden_states,)
        # if use_cache is True:
        #    outputs = outputs + (presents,)
        # if self.output_hidden_states:
        #    outputs = outputs + (all_hidden_states,)
       #if self.output_attentions:
       #    # let the number of heads free (-1) so we can extract attention even after head pruning
       #    attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
       #    all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
       #    outputs = outputs + (all_attentions,)
        # return outputs  # last hidden state, (presents), (all hidden_states), (attentions)

        if not return_dict:
            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
        )
    def forward(
        self,
        input_ids,
        encoder_hidden_states,
        encoder_padding_mask,
        decoder_padding_mask,
        decoder_causal_mask,
        past_key_values=None,
        use_cache=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=False,
        **unused,
    ):
        """
        Includes several features from "Jointly Learning to Align and
        Translate with Transformer Models" (Garg et al., EMNLP 2019).
        Args:
            input_ids (LongTensor): previous decoder outputs of shape
                `(batch, tgt_len)`, for teacher forcing
            encoder_hidden_states: output from the encoder, used for
                encoder-side attention
            encoder_padding_mask: for ignoring pad tokens
            past_key_values (dict or None): dictionary used for storing state during generation
        Returns:
            BaseModelOutputWithPast or tuple:
                - the decoder's features of shape `(batch, tgt_len, embed_dim)`
                - the cache
                - hidden states
                - attentions
        """
        if "decoder_cached_states" in unused:
            warnings.warn(
                "The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
                FutureWarning,
            )
            past_key_values = unused.pop("decoder_cached_states")
        if "decoder_past_key_values" in unused:
            warnings.warn(
                "The `decoder_past_key_values` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
                FutureWarning,
            )
            past_key_values = unused.pop("decoder_past_key_values")

        # check attention mask and invert
        if encoder_padding_mask is not None:
            encoder_padding_mask = invert_mask(encoder_padding_mask)

        _, seq_len = input_ids.shape[:2]

        # decoder position starts with max_encoder_length (default:128)
        positions = (
            self.position_start_idx + torch.arange(seq_len, dtype=torch.long, device=input_ids.device)
        ).unsqueeze(0)
        if use_cache:
            input_ids = input_ids[:, -1:]
            positions = positions[:, -1:]  # happens after we embed them
            # assert input_ids.ne(self.padding_idx).any()

        x = self.embed_tokens(input_ids)
        x = x * (self.embed_dim ** 0.5)
        embed_pos = self.embed_positions(positions)
        x += embed_pos

        x = F.dropout(x, p=self.dropout, training=self.training)

        # Convert to output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim)
        x = x.transpose(0, 1)
        encoder_hidden_states = encoder_hidden_states.transpose(0, 1)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = []

        for idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (x,)

            layer_state = past_key_values[idx] if past_key_values is not None else None

            x, layer_self_attn, layer_past = decoder_layer(
                x,
                encoder_hidden_states,
                encoder_attn_mask=encoder_padding_mask,
                decoder_padding_mask=decoder_padding_mask,
                layer_state=layer_state,
                causal_mask=decoder_causal_mask,
                output_attentions=output_attentions,
            )

            if use_cache:
                next_decoder_cache.append(layer_past.copy())

            if output_attentions:
                all_self_attns += (layer_self_attn,)

        # Convert to standard output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim)
        if output_hidden_states:
            all_hidden_states = tuple(hidden_state.transpose(0, 1) for hidden_state in all_hidden_states)
        x = x.transpose(0, 1)
        encoder_hidden_states = encoder_hidden_states.transpose(0, 1)

        next_cache = next_decoder_cache if use_cache else None

        if not return_dict:
            return tuple(v for v in [x, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=x,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )
    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (output_hidden_states
                                if output_hidden_states is not None else
                                self.config.output_hidden_states)
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time"
            )
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError(
                "You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])
        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            # print("!!!past_key_values is None!!!")
            past_length = 0
            past_key_values = tuple([None] * len(self.h))
        else:
            past_length = past_key_values[0][0].size(-2)

        device = input_ids.device if input_ids is not None else inputs_embeds.device
        if position_ids is None:
            position_ids = torch.arange(past_length,
                                        input_shape[-1] + past_length,
                                        dtype=torch.long,
                                        device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

        # Attention mask.
        if attention_mask is not None:
            assert batch_size > 0, "batch_size has to be defined and > 0"
            global_attention_mask = attention_mask.view(batch_size, -1)
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            global_attention_mask = global_attention_mask[:, None, None, :]

            # Since global_attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            global_attention_mask = global_attention_mask.to(
                dtype=self.dtype)  # fp16 compatibility
            global_attention_mask = (1.0 - global_attention_mask) * -10000.0
        else:
            global_attention_mask = None

        # Local causal attention mask
        batch_size, seq_length = input_shape
        full_seq_length = seq_length + past_length

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x num_heads x N x N
        # head_mask has shape n_layer x batch x num_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.num_layers)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        hidden_states = inputs_embeds + position_embeds

        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
            hidden_states = hidden_states + token_type_embeds

        hidden_states = self.drop(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1), )

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
            attn_type = self.config.attention_layers[i]
            attn_mask = global_attention_mask

            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states, )

            if getattr(self.config, "gradient_checkpointing",
                       False) and self.training:

                if use_cache:
                    logger.warning(
                        "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
                        "`use_cache=False`...")
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache, output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    None,
                    attn_mask,
                    head_mask[i],
                )
            else:
                try:
                    outputs = block(
                        hidden_states,
                        layer_past=layer_past,
                        attention_mask=attn_mask,
                        head_mask=head_mask[i],
                        use_cache=use_cache,
                        output_attentions=output_attentions,
                    )
                except AfterStoppingPointException as e:
                    raise e
                except Exception as e:
                    print("failed with:")
                    print(f"\t block {i}")
                    print(f"\t input_ids.shape {input_ids.shape}")
                    print(f"\t hidden_states.shape {hidden_states.shape}")
                    print(
                        f"\t past shapes {layer_past[0].shape if layer_past else layer_past}"
                    )
                    raise e

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1], )

            if output_attentions:
                all_self_attentions = all_self_attentions + (
                    outputs[2 if use_cache else 1], )

        hidden_states = self.ln_f(hidden_states)

        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states, )

        if not return_dict:
            return tuple(v for v in [
                hidden_states, presents, all_hidden_states, all_self_attentions
            ] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )