Beispiel #1
0
 def create_and_check_mpnet_model(
     self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
 ):
     model = TFMPNetModel(config=config)
     inputs = {"input_ids": input_ids, "attention_mask": input_mask}
     result = model(inputs)
     inputs = [input_ids, input_mask]
     result = model(inputs)
     self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
Beispiel #2
0
    def test_inference_masked_lm(self):
        model = TFMPNetModel.from_pretrained("microsoft/mpnet-base")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        expected_shape = [1, 6, 768]
        self.assertEqual(output.shape, expected_shape)

        expected_slice = tf.constant([[
            [-0.1067172, 0.08216473, 0.0024543],
            [-0.03465879, 0.8354118, -0.03252288],
            [-0.06569476, -0.12424111, -0.0494436],
        ]])
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
Beispiel #3
0
 def test_model_from_pretrained(self):
     for model_name in ["microsoft/mpnet-base"]:
         model = TFMPNetModel.from_pretrained(model_name)
         self.assertIsNotNone(model)