def create_and_check_model(self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels): model = FNetModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def test_inference_model(self): model = FNetModel.from_pretrained("google/fnet-base") model.to(torch_device) input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]], device=torch_device) output = model(input_ids)[0] expected_shape = torch.Size((1, 6, model.config.hidden_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[4.1541, -0.1051, -0.1667], [-0.9144, 0.2939, -0.0086], [-0.8472, -0.7281, 0.0256]]], device=torch_device) self.assertTrue( torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
def test_model_from_pretrained(self): for model_name in FNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = FNetModel.from_pretrained(model_name) self.assertIsNotNone(model)