Beispiel #1
0
 def create_and_check_roberta_for_multiple_choice(
         self, config, input_ids, token_type_ids, input_mask,
         sequence_labels, token_labels, choice_labels):
     config.num_choices = self.num_choices
     model = RobertaForMultipleChoice(config=config)
     model.to(torch_device)
     model.eval()
     multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(
         -1, self.num_choices, -1).contiguous()
     multiple_choice_token_type_ids = token_type_ids.unsqueeze(
         1).expand(-1, self.num_choices, -1).contiguous()
     multiple_choice_input_mask = input_mask.unsqueeze(1).expand(
         -1, self.num_choices, -1).contiguous()
     loss, logits = model(
         multiple_choice_inputs_ids,
         attention_mask=multiple_choice_input_mask,
         token_type_ids=multiple_choice_token_type_ids,
         labels=choice_labels,
     )
     result = {
         "loss": loss,
         "logits": logits,
     }
     self.parent.assertListEqual(list(result["logits"].size()),
                                 [self.batch_size, self.num_choices])
     self.check_loss_output(result)
Beispiel #2
0
 def create_and_check_for_multiple_choice(
     self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
 ):
     config.num_choices = self.num_choices
     model = RobertaForMultipleChoice(config=config)
     model.to(torch_device)
     model.eval()
     multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
     multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
     multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
     result = model(
         multiple_choice_inputs_ids,
         attention_mask=multiple_choice_input_mask,
         token_type_ids=multiple_choice_token_type_ids,
         labels=choice_labels,
     )
     self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))