Beispiel #1
0
 def create_and_check_xxx_for_masked_lm(self, config, input_ids,
                                        token_type_ids, input_mask,
                                        sequence_labels, token_labels,
                                        choice_labels):
     model = XxxForMaskedLM(config=config)
     model.eval()
     loss, prediction_scores = model(input_ids,
                                     attention_mask=input_mask,
                                     token_type_ids=token_type_ids,
                                     masked_lm_labels=token_labels)
     result = {
         "loss": loss,
         "prediction_scores": prediction_scores,
     }
     self.parent.assertListEqual(
         list(result["prediction_scores"].size()),
         [self.batch_size, self.seq_length, self.vocab_size])
     self.check_loss_output(result)
Beispiel #2
0
 def create_and_check_for_masked_lm(
     self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
 ):
     model = XxxForMaskedLM(config=config)
     model.to(torch_device)
     model.eval()
     result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
     self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))