def forward(self, inputs, weights): del weights x1, x2 = inputs x1_split = np.split(x1, self._n_sections, self._axis) x2_split = np.split(x2, self._n_sections, self._axis) res = [np.concatenate(ys, -1) for ys in zip(x1_split, x2_split)] return tuple(res)
def forward(self, inputs, weights): x, lstm_state = inputs # LSTM state consists of c and h. c, h = jnp.split(lstm_state, 2, axis=-1) # Dense layer on the concatenation of x and h. w, b = weights y = jnp.dot(jnp.concatenate([x, h], axis=-1), w) + b # i = input_gate, j = new_input, f = forget_gate, o = output_gate i, j, f, o = jnp.split(y, 4, axis=-1) new_c = c * math.sigmoid(f) + math.sigmoid(i) * jnp.tanh(j) new_h = jnp.tanh(new_c) * math.sigmoid(o) return new_h, jnp.concatenate([new_c, new_h], axis=-1)
def reverse(self, output, weights=(), state=(), new_state=(), **kwargs): del weights, kwargs x1_split = [] x2_split = [] for y in output: y1, y2 = np.split(y, 2, -1) x1_split.append(y1) x2_split.append(y2) x1 = np.concatenate(x1_split, self._axis) x2 = np.concatenate(x2_split, self._axis) return (x1, x2)
def forward(self, inputs, weights): x, gru_state = inputs # Dense layer on the concatenation of x and h. w1, b1, w2, b2 = weights y = jnp.dot(jnp.concatenate([x, gru_state], axis=-1), w1) + b1 # Update and reset gates. u, r = jnp.split(math.sigmoid(y), 2, axis=-1) # Candidate. c = jnp.dot(jnp.concatenate([x, r * gru_state], axis=-1), w2) + b2 new_gru_state = u * gru_state + (1 - u) * jnp.tanh(c) return new_gru_state, new_gru_state
def reverse(self, output, weights=(), state=(), new_state=(), **kwargs): del weights, kwargs if not isinstance(output, (list, tuple)): output = [output] x1_split = [] x2_split = [] for y in output: y1, y2 = np.split(y, 2, -1) x1_split.append(y1) x2_split.append(y2) x1 = np.concatenate(x1_split, self._axis) x2 = np.concatenate(x2_split, self._axis) return (x1, x2)
def forward(self, inputs, weights): del weights return tuple(np.split(inputs, self._n_items, self._axis))
def forward(self, inputs): return tuple(jnp.split(inputs, self._n_items, self._axis))