Beispiel #1
0
def calc_2pt(data,
             randoms,
             config_fname,
             zvar,
             random_zvar,
             ra_var='RA',
             dec_var='DEC',
             random_ra_var='RA',
             random_dec_var='DEC'):
    config_2pt = load_config(config_fname)['2PCF']
    cat = treecorr.Catalog(
        ra=data[ra_var],
        dec=data[dec_var],
        dec_units='degrees',
        ra_units='degrees',
    )
    random_cat = treecorr.Catalog(
        ra=randoms[random_ra_var],
        dec=randoms[random_dec_var],
        dec_units='degrees',
        ra_units='degrees',
    )
    print config_2pt
    dd = treecorr.NNCorrelation(config=config_2pt)
    dr = treecorr.NNCorrelation(config=config_2pt)
    rr = treecorr.NNCorrelation(config=config_2pt)
    dd.process(cat, metric=config_2pt['metric'])
    dr.process(cat, random_cat, metric=config_2pt['metric'])
    rr.process(random_cat, metric=config_2pt['metric'])
    xi, varxi = dd.calculateXi(dr=dr, rr=rr)
    return xi
Beispiel #2
0
 def get_xi_gg(self):
     if self.xis['gg'] is None:
         fname = self.get_xifile_name('gg', 'xi', 'npz')
         if not os.path.isfile(fname):
             self.get_catalog()
             self.get_delta_mask()
             self.get_random()
             bn = self._get_binning()
             dd = tcr.NNCorrelation(config=bn, var_method='jackknife')
             dd.process(self.cat)
             dr = tcr.NNCorrelation(config=bn)
             dr.process(self.cat, self.ran)
             rr = tcr.NNCorrelation(config=bn)
             rr.process(self.ran)
             xi, varxi = dd.calculateXi(rr, dr)
             self.xis['gg'] = {
                 'th': dd.rnom,
                 'th_mean': dd.meanr,
                 'DD': dd.npairs,
                 'DR': dr.npairs,
                 'RR': rr.npairs,
                 'xi': xi,
                 'cov': dd.cov,
                 'var': varxi
             }
             np.savez(fname, **(self.xis['gg']))
         else:
             d = np.load(fname)
             self.xis['gg'] = {
                 k: d[k]
                 for k in
                 ['th', 'th_mean', 'DD', 'DR', 'RR', 'xi', 'cov', 'var']
             }
     return self.xis['gg']
Beispiel #3
0
def CorrelationFunction(source, source_random, corrconfig=None, source_ra='ra', source_dec='dec', source_random_ra=None, source_random_dec=None):

    if corrconfig is None:
        corrconfig = {'sep_units': 'degrees',
                      'min_sep': 0.1,
                      'max_sep': 6,
                      'nbins': 25,
                      'bin_slop': 0.25,
                      'num_threads': 1}

    if source_random_ra is None:
        source_random_ra = source_ra
    if source_random_dec is None:
        source_random_dec = source_dec

    SourceCat = treecorr.Catalog(ra=source[source_ra], dec=source[source_dec], ra_units='degrees', dec_units='degrees')
    SourceRand = treecorr.Catalog(ra=source_random[source_random_ra], dec=source_random[source_random_dec], ra_units='degrees', dec_units='degrees')
    dd = treecorr.NNCorrelation(**corrconfig)
    dr = treecorr.NNCorrelation(**corrconfig)
    rr = treecorr.NNCorrelation(**corrconfig)

    dd.process(SourceCat)
    dr.process(SourceCat, SourceRand)
    rr.process(SourceRand)

    xi, varxi = dd.calculateXi(rr, dr=dr)
    r = np.exp(dd.logr)
    
    return [xi, r]
Beispiel #4
0
def compute_gg_treecorr(cat1, cat2, options, nbins, ijk):

	print('Using treecorr', treecorr.version)

	slop = 0.1

	# arrays to store the output
	r    = np.zeros(nbins)
	DD   = np.zeros_like(r)
	DR   = np.zeros_like(r)
	RR   = np.zeros_like(r)
	RD   = np.zeros_like(r)


	# Set up the catalogues
	rcat1, rcat2, _, _ = randoms(cat1, cat2, ijk, period=options['box_size'])
	#import pdb ; pdb.set_trace()

	cat1  = treecorr.Catalog(g1=None, g2=None, x=cat1['x'], y=cat1['y'], z=cat1['z'])
	cat2  = treecorr.Catalog(g1=None, g2=None, x=cat2['x'], y=cat2['y'], z=cat2['z'])

	NR1 = rcat1.x.size * 1.0
	NR2 = rcat2.x.size * 1.0
	ND1 = cat1.x.size * 1.0
	ND2 = cat2.x.size * 1.0

	f0 = (NR1*NR2)/(ND1*ND2)
	f1 = (NR1*NR2)/(ND1*NR2)
	f2 = (NR1*NR2)/(ND2*NR1)

	print('Processing DD')
	nn = treecorr.NNCorrelation(nbins=nbins, min_sep=options['rlim'][0], max_sep=options['rlim'][1], bin_slop=slop, verbose=0, period=options['box_size'])
	#nn.process(rcat1, rcat2, period=options['box_size'], metric='Periodic')
	nn.process(cat1, cat2, metric='Periodic')
	nn.finalize()
	DD = np.copy(nn.weight)
	rp_bins = np.copy(nn.rnom)
	nn.clear()

	print('Processing RD')
	nn = treecorr.NNCorrelation(nbins=nbins, min_sep=options['rlim'][0], max_sep=options['rlim'][1], bin_slop=slop, verbose=0, period=options['box_size'])
	nn.process(rcat1, cat2, metric='Periodic')
	RD = np.copy(nn.weight)
	nn.clear()

	print('Processing DR')
	nn = treecorr.NNCorrelation(nbins=nbins, min_sep=options['rlim'][0], max_sep=options['rlim'][1], bin_slop=slop, verbose=0, period=options['box_size'])
	nn.process(cat1, rcat2, metric='Periodic')
	DR = np.copy(nn.weight)
	nn.clear()

	print('Processing RR')
	nn = treecorr.NNCorrelation(nbins=nbins, min_sep=options['rlim'][0], max_sep=options['rlim'][1], bin_slop=slop, verbose=0, period=options['box_size'])
	nn.process(rcat1, rcat2, metric='Periodic')
	RR = np.copy(nn.weight)
	nn.clear()

	gg = (f0 * DD/RR) - (f1 * DR/RR) - (f2 * RD/RR) + 1.0	

	return gg
def cross_correlate(cat1, cat2, ran1, ran2):
    D1_D2 = treecorr.NNCorrelation(min_sep=1,
                                   max_sep=200,
                                   nbins=10,
                                   sep_units='arcmin',
                                   var_method='jackknife')
    D1_D2.process(cat1, cat2)
    D1_R2 = treecorr.NNCorrelation(min_sep=1,
                                   max_sep=200,
                                   nbins=10,
                                   sep_units='arcmin',
                                   var_method='jackknife')
    D1_R2.process(cat1, ran2)
    R1_D2 = treecorr.NNCorrelation(min_sep=1,
                                   max_sep=200,
                                   nbins=10,
                                   sep_units='arcmin',
                                   var_method='jackknife')
    R1_D2.process(ran1, cat2)
    R1_R2 = treecorr.NNCorrelation(min_sep=1,
                                   max_sep=200,
                                   nbins=10,
                                   sep_units='arcmin',
                                   var_method='jackknife')
    R1_R2.process(ran1, ran2)
    xi_d, var_d = D1_D2.calculateXi(R1_R2, D1_R2, R1_D2)
    cov_jk = D1_D2.estimate_cov(method='jackknife')
    logr = D1_D2.meanlogr
    theta = np.exp(logr)
    return theta, xi_d, np.sqrt(np.diag(cov_jk))
Beispiel #6
0
    def correlate(self,group1=0,group2=0):
        print 'Will correlate galaxies in groups %d and %d'%(group1,group2)

        data1 =  self.get(table='subfind_halos' , fields='groupId, x, y, z', cond='subfind_halos.snapnum = %d AND subfind_halos.groupId = %d'%(self.snapshot, group1))
        data2 =  self.get(table='subfind_halos' , fields='groupId, x, y, z', cond='subfind_halos.snapnum = %d AND subfind_halos.groupId = %d'%(self.snapshot, group2))

        #Setup the correlation
        print 'Setting up correlation'
        corr = treecorr.NNCorrelation(nbins=15, min_sep=30, max_sep=4e3)
        cat1 = treecorr.Catalog(x=data1['x'],y=data1['y'],z=data1['z'])
        cat2 = treecorr.Catalog(x=data2['x'],y=data2['y'],z=data2['z'])
        print 'Calculating...'
        corr.process(cat1,cat2)

        print 'Random-Random'
        rr = treecorr.NNCorrelation(nbins=15, min_sep=30, max_sep=4e3)
        rx,ry,rz = np.random.choice(data1['x'], size=5000),np.random.choice(data1['y'], size=5000),np.random.choice(data1['z'], size=5000)
        rcat = treecorr.Catalog(x=rx, y=ry, z=rz)
        rr.process(rcat)

        print 'Data-Random'
        dr = treecorr.NNCorrelation(nbins=15, min_sep=30, max_sep=4e3)
        dr.process(rcat, cat2)

        print 'Random-Data'
        rd = treecorr.NNCorrelation(nbins=15, min_sep=30, max_sep=4e3)
        rd.process(cat1, rcat)

        xi,varxi = corr.calculateXi(rr,dr,rd)

        return np.exp(corr.logr), xi, varxi
Beispiel #7
0
def get_xi_window_norm(window=None, nside=None):
    window_norm = {corr: {} for corr in corrs}
    mask = {}
    for tracer in window.keys():
        # window[tracer]=kappa_class.z_bins[tracer][0]['window']
        mask[tracer] = window[tracer] == hp.UNSEEN
        # window[tracer]=window[tracer][~mask[tracer]]
    fsky = mask[tracer].mean()
    cat0 = {'fullsky': np.ones_like(mask)}
    tree_cat_args0 = get_treecorr_cat_args(cat0, masks=None, nside=nside)

    tree_cat0 = treecorr.Catalog(**tree_cat_args0['fullsky'])
    tree_corrs0 = treecorr.NNCorrelation(**corr_config)
    _ = tree_corrs0.process(tree_cat0, tree_cat0)
    npairs0 = tree_corrs0.npairs * fsky
    del cat0, tree_cat0, tree_corrs0

    tree_cat_args = get_treecorr_cat_args(window, masks=mask, nside=nside)
    tree_cat = {
        tracer: treecorr.Catalog(w=window[tracer][~mask[tracer]],
                                 **tree_cat_args[tracer])
        for tracer in window.keys()
    }
    del mask
    for corr in corrs:
        tree_corrs = treecorr.NNCorrelation(**corr_config)
        _ = tree_corrs.process(tree_cat[corr[0]], tree_cat[corr[1]])
        window_norm[corr]['weight'] = tree_corrs.weight
        window_norm[corr]['npairs'] = tree_corrs.npairs
        window_norm[corr]['npairs0'] = npairs0
    del tree_cat, tree_corrs
    return window_norm
Beispiel #8
0
def calculate_total(RRa, DDa_all, DRa_all, RDa_all, DDc_all, DRc_all, RDc_all,
                    RRc_all, Njk, config):
    """
    Resum the auto and cross correlations
    to get total quantities.
    """
    DDt = treecorr.NNCorrelation(config)
    DRt = treecorr.NNCorrelation(config)
    RDt = treecorr.NNCorrelation(config)
    RRt = treecorr.NNCorrelation(config)
    for i in range(Njk):
        DDt += DDa_all[i]
        DRt += DRa_all[i]
        DRt += DRc_all[i]
        RDt += RDa_all[i]
        RDt += RDc_all[i]
        RRt += RRa
        DDt.weight[:] += 0.5 * DDc_all[i].weight[:]
        DDt.npairs[:] += 0.5 * DDc_all[i].npairs[:]
        DDt.tot += 0.5 * DDc_all[i].tot
        RRt.weight[:] += 0.5 * RRc_all[i].weight[:]
        RRt.npairs[:] += 0.5 * RRc_all[i].npairs[:]
        RRt.tot += 0.5 * RRc_all[i].tot
    print "\t\tResumming HMCF JK total complete."
    return DDt, DRt, RDt, RRt
Beispiel #9
0
    def calc_xi_perp(self, data1, data2,  min_rpar, max_rpar, nbins=20, slop=0.1, randoms=True):
        # Build a catalogue of random points drawn from the same volume
        rx = np.random.random(size=data1['x'].size) * (data1['x'].max()-data1['x'].min()) + data1['x'].mean()
        ry = np.random.random(size=data1['x'].size) * (data1['y'].max()-data1['y'].min()) + data1['y'].mean()
        rz = np.random.random(size=data1['x'].size) * (data1['z'].max()-data1['z'].min()) + data1['z'].mean()

        # Create the catalogues
        cat_i = treecorr.Catalog(x=data1['x'], y=data1['y'], z=data1['z'])
        cat_j = treecorr.Catalog(x=data2['x'], y=data2['y'], z=data2['z'])
        rancat_i  = treecorr.Catalog(x=rx, y=ry, z=rz)
        rancat_j  = treecorr.Catalog(x=rx, y=ry, z=rz)

        nn = treecorr.NNCorrelation(nbins=nbins, min_rpar=min_rpar, max_rpar=max_rpar, min_sep=15, max_sep=10e3, bin_slop=slop)
        rn = treecorr.NNCorrelation(nbins=nbins, min_rpar=min_rpar, max_rpar=max_rpar, min_sep=15, max_sep=10e3, bin_slop=slop)
        nr = treecorr.NNCorrelation(nbins=nbins, min_rpar=min_rpar, max_rpar=max_rpar, min_sep=15, max_sep=10e3, bin_slop=slop)
        rr = treecorr.NNCorrelation(nbins=nbins, min_rpar=min_rpar, max_rpar=max_rpar, min_sep=15, max_sep=10e3, bin_slop=slop)
        nn.process(cat_i,cat_j, metric='Rperp') #, metric='Periodic')
        rn.process(rancat_i,cat_j, metric='Rperp') #, metric='Periodic')
        nr.process(cat_i,rancat_j, metric='Rperp') #, metric='Periodic')
        rr.process(rancat_i,rancat_j, metric='Rperp') #, metric='Periodic')

        R = np.exp(nn.meanlogr)
        if randoms:
            w, werr = nn.calculateXi(rr,dr=nr,rd=rn)
        else:
            w, werr = nn.calculateXi(rr,dr=None,rd=None)
        werr = np.sqrt(werr)

        return R, w, werr
    def run_treecorr(self):

        R = self.gen_Catalog_random(N=self.Nptl_random)
        D1 = self.gen_Catalog_Dhalo()
        D2 = self.gen_Catalog_Dptl()

        rmin = self.rmin
        rmax = self.rmax
        nbins = 10
        metric = 'Euclidean'

        # match the units of r with units of position
        self.DD = treecorr.NNCorrelation(min_sep=rmin,
                                         max_sep=rmax,
                                         nbins=nbins)
        self.DR = treecorr.NNCorrelation(min_sep=rmin,
                                         max_sep=rmax,
                                         nbins=nbins)
        self.RR = treecorr.NNCorrelation(min_sep=rmin,
                                         max_sep=rmax,
                                         nbins=nbins)
        self.RD = treecorr.NNCorrelation(min_sep=rmin,
                                         max_sep=rmax,
                                         nbins=nbins)

        self.DD.process(D1, D2, metric=metric)
        self.DR.process(D1, R, metric=metric)
        self.RR.process(R, R, metric=metric)
        self.RD.process(R, D2, metric=metric)

        xi, varxi = self.DD.calculateXi(self.RR, self.DR, self.RD)

        return self.DD.meanr, xi, varxi
Beispiel #11
0
    def NN3DCorrelation(self, min_sep=1, max_sep=200, bin_size=0.5):
        """
        Caclulates 3D correlation function of objects using Catalog's ra, dec, r
        Requires randcatalog to exist. Distance units are Mpc/h.

        Returns tuple (logr, meanlogr, xi, xivar)
        
        """
        catS = treecorr.Catalog(ra=self.catalog["ra"], dec=self.catalog["dec"], 
                                r=self.catalog["r"],
                                ra_units="radians", dec_units="radians")
        if (self.randcatalog):
            catR = treecorr.Catalog(ra=self.randcatalog["ra"], 
                                    dec=self.randcatalog["dec"], 
                                    r=self.randcatalog["r"], ra_units="radians", 
                                    dec_units="radians")
        else:
            print ("Need random catalog for NN")
            stop()
        dd=treecorr.NNCorrelation(min_sep=min_sep, bin_size=bin_size, 
                                  max_sep=max_sep)
        dr=treecorr.NNCorrelation(min_sep=min_sep, bin_size=bin_size, 
                                  max_sep=max_sep)
        rr=treecorr.NNCorrelation(min_sep=min_sep, bin_size=bin_size, 
                                  max_sep=max_sep)
            
        dd.process(catS)
        dr.process(catS, catR)
        rr.process(catR)
        xi, xivar=dd.calculateXi(rr,dr)
        logr = dd.logr 
        meanlogr= dd.meanlogr
        return (logr, meanlogr, xi, xivar)
Beispiel #12
0
def calcalate_hhcf_full(outpath,halopath,nbins,limits,Nh,randoms):
    """
    Calculate the halo-halo correlation function
    for the full volume.
    """
    redpath = halopath+"/reduced_halo_cats/reduced_halo_cat.txt"
    infile = open(redpath,"r")
    halos = np.zeros((int(Nh),3))
    i = 0
    for line in infile:
        if line[0] is "#": continue
        parts = line.split()
        halos[i,:] = float(parts[x_index]),float(parts[y_index]),float(parts[z_index])
        i+=1
    infile.close()
    #Interface with treecorr
    config = {'nbins':nbins,'min_sep':limits[0],'max_sep':limits[1]}
    halo_cat = treecorr.Catalog(x=halos[:,0],y=halos[:,1],z=halos[:,2],config=config)
    random_cat = treecorr.Catalog(x=randoms[:,0],y=randoms[:,1],z=randoms[:,2],config=config)
    DD = treecorr.NNCorrelation(config)
    DR = treecorr.NNCorrelation(config)
    RR = treecorr.NNCorrelation(config)
    DD.process(halo_cat)
    DR.process(halo_cat,random_cat)
    RR.process(random_cat)
    DD.write(outpath+"/halohalo_correlation_function/full_hhcf/full_hhcf.txt",RR,DR)

    print "\tFull halo-halo correlation function complete."
    return
    def calc_pos_pos(self,i,j,verbose,num_threads):

        mask = self.lens_binning==i
        lenscat_i = treecorr.Catalog(w=self.lensweight[mask], ra=self.lens['ra'][mask], dec=self.lens['dec'][mask], ra_units='deg', dec_units='deg')

        mask = self.ran_binning==i
        rancat_i  = treecorr.Catalog(w=np.ones(np.sum(mask)), ra=self.randoms['ra'][mask], dec=self.randoms['dec'][mask], ra_units='deg', dec_units='deg')

        mask = self.lens_binning==j
        lenscat_j = treecorr.Catalog(w=self.lensweight[mask], ra=self.lens['ra'][mask], dec=self.lens['dec'][mask], ra_units='deg', dec_units='deg')

        mask = self.ran_binning==j
        rancat_j  = treecorr.Catalog(w=np.ones(np.sum(mask)), ra=self.randoms['ra'][mask], dec=self.randoms['dec'][mask], ra_units='deg', dec_units='deg')

        nn = treecorr.NNCorrelation(nbins=self.params['tbins'], min_sep=self.params['tbounds'][0], max_sep=self.params['tbounds'][1], sep_units='arcmin', bin_slop=self.params['slop'], verbose=verbose,num_threads=num_threads)
        rn = treecorr.NNCorrelation(nbins=self.params['tbins'], min_sep=self.params['tbounds'][0], max_sep=self.params['tbounds'][1], sep_units='arcmin', bin_slop=self.params['slop'], verbose=verbose,num_threads=num_threads)
        nr = treecorr.NNCorrelation(nbins=self.params['tbins'], min_sep=self.params['tbounds'][0], max_sep=self.params['tbounds'][1], sep_units='arcmin', bin_slop=self.params['slop'], verbose=verbose,num_threads=num_threads)
        rr = treecorr.NNCorrelation(nbins=self.params['tbins'], min_sep=self.params['tbounds'][0], max_sep=self.params['tbounds'][1], sep_units='arcmin', bin_slop=self.params['slop'], verbose=verbose,num_threads=num_threads)
        nn.process(lenscat_i,lenscat_j)
        rn.process(rancat_i,lenscat_j)
        nr.process(lenscat_i,rancat_j)
        rr.process(rancat_i,rancat_j)

        theta=np.exp(nn.meanlogr)
        wtheta,wthetaerr=nn.calculateXi(rr,dr=nr,rd=rn)
        wthetaerr=np.sqrt(wthetaerr)

        return theta, wtheta, wthetaerr
def calccorr(dataset, minsep=1 / 60, maxsep=6):

    nn = treecorr.NNCorrelation(nbins=16,
                                min_sep=minsep,
                                max_sep=maxsep,
                                sep_units='deg',
                                var_method='jackknife')
    cat = treecorr.Catalog(ra=dataset['ra'],
                           dec=dataset['dec'],
                           ra_units='deg',
                           dec_units='deg',
                           npatch=100)
    nn.process(cat)

    catrand = randomcorr(dataset, cat, minsep, maxsep)
    rr = treecorr.NNCorrelation(nbins=16,
                                min_sep=minsep,
                                max_sep=maxsep,
                                sep_units='deg',
                                var_method='jackknife')
    rr.process(catrand)

    dr = treecorr.NNCorrelation(nbins=16,
                                min_sep=minsep,
                                max_sep=maxsep,
                                sep_units='deg',
                                var_method='jackknife')
    dr.process(cat, catrand)

    corr = nn.calculateXi(rr, dr)
    bin_centers = nn.meanlogr
    cov = nn.estimate_cov('jackknife')

    return [corr, bin_centers, cov]
Beispiel #15
0
    def NNCorrelation(self):
        """
        Caclulates 2D correlation function using Catalog's ra, dec.
        Requires randcatalog to exist.

        Returns tuple (logr, meanlogr, xi, xivar)
        
        """
        catS = treecorr.Catalog(ra=self.catalog["ra"], dec=self.catalog["dec"], 
                                ra_units="radians", dec_units="radians")
        if (self.randcatalog):
            catR = treecorr.Catalog(ra=self.randcatalog["ra"], 
                                    dec=self.randcatalog["dec"], ra_units="radians", 
                                    dec_units="radians")
        else:
            print ("Need random catalog for NN")
            stop()
        dd=treecorr.NNCorrelation(min_sep=self.min_sep, bin_size=self.bin_size, 
                                  max_sep=self.max_sep, sep_units='arcmin')
        dr=treecorr.NNCorrelation(min_sep=self.min_sep, bin_size=self.bin_size,
                                  max_sep=self.max_sep, sep_units='arcmin' )
        rr=treecorr.NNCorrelation(min_sep=self.min_sep, bin_size=self.bin_size,
                                  max_sep=self.max_sep, sep_units='arcmin')
        dd.process(catS)
        dr.process(catS, catR)
        rr.process(catR)
        xi, xivar=dd.calculateXi(rr,dr)
        logr = dd.logr 
        meanlogr= dd.meanlogr
        return (logr, meanlogr, xi, xivar)
Beispiel #16
0
def finish_nn(corr, cat1, cat2, rcat1, rcat2, options, nbins):

    if cat2 is None:
        cat2 = cat1

    rr = treecorr.NNCorrelation(min_sep=options['2pt']['rmin'],
                                max_sep=options['2pt']['rmax'],
                                nbins=nbins)
    rn = treecorr.NNCorrelation(min_sep=options['2pt']['rmin'],
                                max_sep=options['2pt']['rmax'],
                                nbins=nbins)
    nr = treecorr.NNCorrelation(min_sep=options['2pt']['rmin'],
                                max_sep=options['2pt']['rmax'],
                                nbins=nbins)

    # Do the pair counting
    print('Processing randoms', )
    print('RR', )
    rr.process(rcat1, rcat2)
    print('DR', )
    nr.process(cat1, rcat2)
    print('RD', )
    rn.process(rcat1, cat2)

    # Finish off
    xi, var = corr.calculateXi(rr, dr=nr, rd=rn)
    setattr(corr, 'xi', xi)

    return corr
Beispiel #17
0
    def get_rr_dr(self, cat, rmin, rmax, nbins, niterations=1, binning="Log"):
        import treecorr
        from numpy.random import random_sample, choice
        rrcats = []
        for i in range(0, niterations):
            nhalos = cat.ntot
            boxsize = self.boxsize.value
            x2 = (random_sample(nhalos * 2)) * boxsize
            y2 = (random_sample(nhalos * 2)) * boxsize
            z2 = (random_sample(nhalos * 2)) * boxsize
            cat2 = treecorr.Catalog(x=x2, y=y2, z=z2)
            rrcats.append(cat2)

        dr = treecorr.NNCorrelation(min_sep=rmin,
                                    max_sep=rmax,
                                    nbins=nbins,
                                    bin_slop=0,
                                    xperiod=boxsize,
                                    yperiod=boxsize,
                                    zperiod=boxsize,
                                    bin_type=binning,
                                    metric="Periodic")
        rr = treecorr.NNCorrelation(min_sep=rmin,
                                    max_sep=rmax,
                                    nbins=nbins,
                                    bin_slop=0,
                                    xperiod=boxsize,
                                    yperiod=boxsize,
                                    zperiod=boxsize,
                                    bin_type=binning,
                                    metric="Periodic")
        dr.process(rrcats, cat, metric='Periodic')
        rr.process(rrcats, metric='Periodic')

        return rr, dr
Beispiel #18
0
    def _get_corrs_nosep(self, data, min_sep=44, max_sep=1e6, binning='log', nbins=20, ctype=('s','s'), estimator='Landy-Szalay', verbosity=1, randoms=None, method='halotools'):

    	if verbosity>0:
    		print 'Will construct %s - %s correlation functions'%ctype
    		print 'Using %s estimator'%estimator

    	# Decide on an appropriate binning scheme
    	if (binning.lower()=='log'):
    		rbins = np.logspace(np.log10(min_sep), np.log10(max_sep), nbins )
    	elif (binning.lower()=='linear'):
    		rbins = np.linspace(min_sep, max_sep, nbins )

    	if verbosity>1:
    		print 'Will use %s binning:'%binning, rbins

    	# Parse the mask
    	mask1 = util.choose_cs_mask(data,ctype[0])
    	mask2 = util.choose_cs_mask(data,ctype[1])

    	pos1 = pretending.return_xyz_formatted_array(data['x'], data['y'], data['z'], mask = mask1)
    	pos2 = pretending.return_xyz_formatted_array(data['x'], data['y'], data['z'], mask = mask2)

    	# And do the randoms
    	if randoms is None:
            r1 = util.construct_random_cat(data, mask=mask1)
            r2 = util.construct_random_cat(data, mask=mask2)
        else:
            if verbosity>0:
                print 'Using random points provided for normalisation.'
            r1 = randoms

    	R = np.sqrt(np.array(rbins)[1:]*np.array(rbins)[:-1]) 

        print 'Using %s to calculate two-point correlations'%method
    	if method=='halotools':
            return R, pretending.tpcf(pos1, rbins, sample2=pos2, randoms=r1, period=info.Lbox, estimator=estimator )

        elif method=='treecorr':
            print 'Constructing catalogues...'
            cat_i = treecorr.Catalog(x=data['x'][mask1], y=data['y'][mask1], z=data['z'][mask1])
            cat_j = treecorr.Catalog(x=data['x'][mask2], y=data['y'][mask2], z=data['z'][mask2])
            rx_1 = (np.random.random(size=data['x'][mask1].size) - 0.5) * (data['x'][mask1].max()-data['x'][mask1].min()) + data['x'][mask1].mean()
            ry_1 = (np.random.random(size=data['x'][mask1].size) - 0.5) * (data['y'][mask1].max()-data['y'][mask1].min()) + data['y'][mask1].mean()
            rz_1 = (np.random.random(size=data['x'][mask1].size) - 0.5) * (data['z'][mask1].max()-data['z'][mask1].min()) + data['z'][mask1].mean()
            rancat_1  = treecorr.Catalog(x=rx_1, y=ry_1, z=rz_1)

            print 'Correlating...'
            nn = treecorr.NNCorrelation(nbins=nbins, min_sep=min_sep, max_sep=max_sep, bin_slop=0.1)
            nr = treecorr.NNCorrelation(nbins=nbins, min_sep=min_sep, max_sep=max_sep, bin_slop=0.1)
            rn = treecorr.NNCorrelation(nbins=nbins, min_sep=min_sep, max_sep=max_sep, bin_slop=0.1)
            rr = treecorr.NNCorrelation(nbins=nbins, min_sep=min_sep, max_sep=max_sep, bin_slop=0.1)

            nn.process(cat_i,cat_j) 
            nr.process(rancat_1,cat_i)
            rn.process(cat_j,rancat_1)
            rr.process(rancat_1,rancat_1) 
            R = np.exp(nn.meanlogr)
            w = (nn.weight - nr.weight -  rn.weight + rr.weight) / rr.weight
            return R, w
def correlation_TreeCorr(data_ra, data_dec, data_r, rand_ra, rand_dec, rand_r, config) :
	import time
	import numpy as np
	import treecorr
	import sys

	# Begin timing
	start = time.time()

	# Make sure arrays match
	assert data_ra.size == data_dec.size, "Data must have both RA and DEC"
	assert rand_ra.size == rand_dec.size, "Randoms must have both RA and DEC"

	# Create TreeCorr catalog objects
	dcat = treecorr.Catalog(ra=data_ra, dec=data_dec, r=data_r, ra_units='deg', dec_units='deg')
	rcat = treecorr.Catalog(ra=rand_ra, dec=rand_dec, r=rand_r, ra_units='deg', dec_units='deg')
	print ('TreeCorr catalogs created')
	sys.stdout.flush()

	# Run TreeCorr processes for DD, DR, RD, and RR
	dd = treecorr.NNCorrelation(config)
	dr = treecorr.NNCorrelation(config)
	# rd = treecorr.NNCorrelation(config)
	rr = treecorr.NNCorrelation(config)
	dd.process(dcat)
	print ('DD done')
	sys.stdout.flush()
	# I also need to get the bin locations for plotting
	logr = dd.logr
	dr.process(dcat, rcat)
	print ('DR done')
	sys.stdout.flush()
	# rd.process(rcat, dcat)
	# print ('RD done')
	# sys.stdout.flush()
	rr.process(rcat)
	print ('RR done')
	sys.stdout.flush()

	# Find the correlation function and errors
	# xi, varxi = dd.calculateXi(rr, dr, rd)
	xi, varxi = dd.calculateXi(rr, dr)
	print ('Correlation function and errors calculated')
	sys.stdout.flush()

	# Find elapsed time
	runtime = time.time() - start
	del start
	## Print the time it took
	h = int(np.floor(runtime/(60.0*60.0)))
	m = int(np.floor((runtime - (60.0*60.0*h))/60.0))
	s = runtime - 60.0*60.0*h - 60.0*m
	print ('Elapsed time: {:>02d}:{:>02d}:{:>05.2f}'.format(h, m, s))
	sys.stdout.flush()
	del runtime, h, m, s

	# Return xi, varxi, and bin locations
	return (xi, varxi, logr)
Beispiel #20
0
def pos_pos_corr(pos1,pos2,posr1,posr2,w1=None,w2=None,same_zshell=False,same_cell=False,unique_encounter=False,num_threads=0):

	nbins    = 6
	min_sep  = 0.05 # 3 arcmin
	max_sep  = 3.0 # 180 arcmin 
	bin_size = (max_sep-min_sep)/nbins # roughly
	bin_slop = 0.05/bin_size # 0.1 -> 0.05 # 2pt_pipeline for des used bin_slop: 0.01 here: https://github.com/des-science/2pt_pipeline/blob/master/pipeline/twopt_pipeline.yaml
	# num_threads = 5 #None #0 # should query the number of cpus your computer has
	logger = None

	if same_zshell and same_cell: # auto
		ra, dec = pos1 # either 1 or 2 works, they're the same
		ra_R, dec_R = posr1
		w = w1
		cat   = treecorr.Catalog(ra=ra, dec=dec, ra_units='degrees', dec_units='degrees', w=w) 
		cat_R = treecorr.Catalog(ra=ra_R, dec=dec_R, ra_units='degrees', dec_units='degrees')
	else: # cross
		ra1, dec1 = pos1
		ra2, dec2 = pos2
		ra_R1, dec_R1 = posr1
		ra_R2, dec_R2 = posr2
		cat1   = treecorr.Catalog(ra=ra1, dec=dec1, ra_units='degrees', dec_units='degrees', w=w1) 
		cat2   = treecorr.Catalog(ra=ra2, dec=dec2, ra_units='degrees', dec_units='degrees', w=w2)
		cat1_R = treecorr.Catalog(ra=ra_R1, dec=dec_R1, ra_units='degrees', dec_units='degrees')
		cat2_R = treecorr.Catalog(ra=ra_R2, dec=dec_R2, ra_units='degrees', dec_units='degrees')
	
	DD = treecorr.NNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, bin_slop=bin_slop, sep_units='degrees', logger=logger)
	RR = treecorr.NNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, bin_slop=bin_slop, sep_units='degrees', logger=logger)
	DR = treecorr.NNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, bin_slop=bin_slop, sep_units='degrees', logger=logger)
	RD = treecorr.NNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, bin_slop=bin_slop, sep_units='degrees', logger=logger)

	# *** two hp cells when corr is within the same zshell. c1xc2 enough, no c2xc1 later 

	if same_zshell and same_cell: # auto
		# same z, same pix
		DD.process_auto(cat,num_threads=num_threads)
		RR.process_auto(cat_R,num_threads=num_threads)
		DR.process_cross(cat, cat_R,num_threads=num_threads)
		RD = DR.copy() 
	elif same_zshell: # distribute the workload fairly b/w two ranks
		# same z, 2 pix:
		if unique_encounter: # the following two counts shouldn't be doubled up cuz they're the same in both directions
			DD.process_cross(cat1, cat2,num_threads=num_threads)
			RR.process_cross(cat1_R, cat2_R,num_threads=num_threads)
		else:
			DR.process_cross(cat1, cat2_R,num_threads=num_threads)
			DR.process_cross(cat2, cat1_R,num_threads=num_threads)
			RD = DR.copy()
	else: # different z  (can have different/same pix) when 2 cats have diff zshells it is enough to make them different even within the same hp pix
		DD.process_cross(cat1, cat2,num_threads=num_threads) # metric='Rperp')
		RR.process_cross(cat1_R, cat2_R,num_threads=num_threads)
		DR.process_cross(cat1, cat2_R,num_threads=num_threads)
		RD.process_cross(cat1_R, cat2,num_threads=num_threads) 
		# RD != DR here

	return DD, RR, DR, RD
Beispiel #21
0
def test_direct_partial():
    # There are two ways to specify using only parts of a catalog:
    # 1. The parameters first_row and last_row would usually be used for files, but they are a 
    #    general way to use only a (contiguous) subset of the rows
    # 2. You can also set weights to 0 for the rows you don't want to use.

    # First test first_row, last_row
    ngal = 200
    s = 10.
    numpy.random.seed(8675309)
    x1 = numpy.random.normal(0,s, (ngal,) )
    y1 = numpy.random.normal(0,s, (ngal,) )
    cat1a = treecorr.Catalog(x=x1, y=y1, first_row=28, last_row=144)
    x2 = numpy.random.normal(0,s, (ngal,) )
    y2 = numpy.random.normal(0,s, (ngal,) )
    cat2a = treecorr.Catalog(x=x2, y=y2, first_row=48, last_row=129)

    min_sep = 1.
    max_sep = 50.
    nbins = 50
    dda = treecorr.NNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, bin_slop=0.)
    dda.process(cat1a, cat2a)
    print('dda.npairs = ',dda.npairs)

    log_min_sep = numpy.log(min_sep)
    log_max_sep = numpy.log(max_sep)
    true_npairs = numpy.zeros(nbins)
    bin_size = (log_max_sep - log_min_sep) / nbins
    for i in range(27,144):
        for j in range(47,129):
            rsq = (x1[i]-x2[j])**2 + (y1[i]-y2[j])**2
            logr = 0.5 * numpy.log(rsq)
            k = int(numpy.floor( (logr-log_min_sep) / bin_size ))
            if k < 0: continue
            if k >= nbins: continue
            true_npairs[k] += 1

    print('true_npairs = ',true_npairs)
    print('diff = ',dda.npairs - true_npairs)
    numpy.testing.assert_array_equal(dda.npairs, true_npairs)

    # Now check that we get the same thing with all the points, but with w=0 for the ones 
    # we don't want.
    w1 = numpy.zeros(ngal)
    w1[27:144] = 1.
    w2 = numpy.zeros(ngal)
    w2[47:129] = 1.
    cat1b = treecorr.Catalog(x=x1, y=y1, w=w1)
    cat2b = treecorr.Catalog(x=x2, y=y2, w=w2)
    ddb = treecorr.NNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, bin_slop=0.)
    ddb.process(cat1b, cat2b)
    print('ddb.npairs = ',ddb.npairs)
    print('diff = ',ddb.npairs - true_npairs)
    numpy.testing.assert_array_equal(ddb.npairs, true_npairs)
Beispiel #22
0
    def wtheta(self, table, bin_number, table2=None, bin_number_2=None):
        '''calculate position position correlation'''
        #setup correlation objects, random catalog
        corr_kwargs = {
            'min_sep': 3.0,
            'max_sep': 90,
            'nbins': 12,
            'sep_units': 'arcmin'
        }
        dd = treecorr.NNCorrelation(**corr_kwargs)
        rr = treecorr.NNCorrelation(**corr_kwargs)
        dr = treecorr.NNCorrelation(**corr_kwargs)

        rand = self.io.read_randoms(self.io.path_dict['random_prefix'] +
                                    '_{}.hdf'.format(bin_number))

        #        assert len(table)*6 == rand.ntot, "randoms are not scaled correctly for auto"

        #deal with second catalog if need be
        if table2 is not None:
            cat = self.io.df_to_corr(table)
            cat2 = self.io.df_to_corr(table2)
            rand2 = self.io.read_randoms(self.io.path_dict['random_prefix'] +
                                         '_{}.hdf'.format(bin_number_2))

            #            assert len(table2)*6 == rand2.ntot, "randoms are not scaled correctly for cross"

            rd = treecorr.NNCorrelation(**corr_kwargs)

            rr.process(rand, rand2)
            dd.process(cat, cat2)
            dr.process(cat, rand2)
            rd.process(rand, cat2)

            xi, varxi = dd.calculateXi(rr, dr, rd)
            sig = np.sqrt(varxi)
            r = np.exp(dd.meanlogr)
            #            Coffset = calcC(rr)
            return {"xi": xi, "sig": sig, "r": r}

        #otherwise just deal with the auto correlation
        else:
            cat = self.io.df_to_corr(table)
            #calculate w of theta given our sanitized randoms and catalog data
            rr.process(rand)
            dd.process(cat)
            dr.process(cat, rand)

            xi, varxi = dd.calculateXi(rr, dr)
            sig = np.sqrt(varxi)
            r = np.exp(dd.meanlogr)
            #            Coffset = calcC(rr)
            return {"xi": xi, "sig": sig, "r": r}
Beispiel #23
0
def getCrossWTheta(cat, cat2, rand_ra, rand_dec):
    """
    calculate the angular two point correlation function using the landay-sazlay estimator

    note: rand_ra and rand_dec should sample the same space on the sky as the data
        to accurately calculate w of theta
    
    parameters
    cat: treecorr catalog of galaxies we will calculate w of theta for.
    rand_ra: numpy array. uniformly random sampled coordinates in RA space. 
    rand_dec: numpy array. uniformly random sampled coordinates in DEC space

    returns:
    xi: numpy array. the angular two point correlation function
    sig: numpy array. xi's std dev noise estimated from treecor. underestimated error 
    r: numpy array of angular bins xi is calculated for
    """

    dd = treecorr.NNCorrelation(min_sep=0.1,
                                max_sep=80,
                                nbins=15,
                                sep_units='arcmin')
    dd.process(cat, cat2)
    rand = treecorr.Catalog(ra=rand_ra,
                            dec=rand_dec,
                            ra_units='radians',
                            dec_units='radians')
    rr = treecorr.NNCorrelation(min_sep=0.1,
                                max_sep=80,
                                nbins=15,
                                sep_units='arcmin')
    rr.process(rand)

    r = np.exp(dd.meanlogr)

    dr = treecorr.NNCorrelation(min_sep=0.1,
                                max_sep=80,
                                nbins=15,
                                sep_units='arcmin')
    dr.process(cat, rand)

    rd = treecorr.NNCorrelation(min_sep=0.1,
                                max_sep=80,
                                nbins=15,
                                sep_units='arcmin')
    rd.process(rand, cat2)

    xi, varxi = dd.calculateXi(rr, dr, rd)
    sig = np.sqrt(varxi)

    Coffset = calcC(rr)
    return xi, sig, r, Coffset
Beispiel #24
0
 def compute_2pt_raw(self):
     dd = treecorr.NNCorrelation(config=self.config_2pt)
     dr = treecorr.NNCorrelation(config=self.config_2pt)
     rr = treecorr.NNCorrelation(config=self.config_2pt)
     toc = time.time()
     dd.process(self.cat, metric=self.config_2pt['metric'])
     dr.process(self.cat, self.random_cat,
                metric=self.config_2pt['metric'])
     rr.process(self.random_cat, metric=self.config_2pt['metric'])
     self.xi, varxi = dd.calculateXi(dr=dr, rr=rr)
     tic = time.time()
     print '2PCF took', tic - toc
     stdout.flush()
    def autoCorrelation(self,
                        dataRADEC,
                        randRADEC,
                        ra_units='degrees',
                        dec_units='degrees',
                        min_sep=0.01,
                        max_sep=10,
                        bin_size=0.2,
                        sep_units='degrees'):
        """ Use TreeCorr to make the autoCorrelation of two dataFrames passed in. 
        
        dataFrame1 - obj: pandas dataFrame object made with makeDataCatalogs()
        dataFrame1 - obj: pandas dataFrame object made with makeDataCatalogs()
        
        Return - r, xi, varxi, sig
        """
        self.dataRA = dataRADEC[0]
        self.dataDEC = dataRADEC[1]
        self.randRA = randRADEC[0]
        self.randDEC = randRADEC[1]

        dataCatalog = treecorr.Catalog(ra=self.dataRA,
                                       dec=self.dataDEC,
                                       ra_units=ra_units,
                                       dec_units=dec_units)
        randCatalog = treecorr.Catalog(ra=self.randRA,
                                       dec=self.randDEC,
                                       ra_units=ra_units,
                                       dec_units=dec_units)

        nn = treecorr.NNCorrelation(min_sep=min_sep,
                                    max_sep=max_sep,
                                    bin_size=bin_size,
                                    sep_units=sep_units)
        nn.process(dataCatalog)
        rr = treecorr.NNCorrelation(min_sep=min_sep,
                                    max_sep=max_sep,
                                    bin_size=bin_size,
                                    sep_units=sep_units)
        rr.process(randCatalog)
        dr = treecorr.NNCorrelation(min_sep=min_sep,
                                    max_sep=max_sep,
                                    bin_size=bin_size,
                                    sep_units=sep_units)
        dr.process(dataCatalog, randCatalog)

        r = numpy.exp(nn.meanlogr)
        xi, varxi = nn.calculateXi(rr, dr)
        sig = numpy.sqrt(varxi)

        return r, xi, varxi, sig
Beispiel #26
0
def auto_corr(gal, random, config, weight="False"):
    '''
    measure the auto-correlation with LS estimator using a 
    gal catalog and a random catalog
    '''
    min_sep = config['min_sep']
    max_sep = config['max_sep']
    units = config['units']
    nbins = config['nbins']
    bin_slop = config['bin_slop']

    if weight == "True":
        gal_cat = treecorr.Catalog(ra=gal["RA"],
                                   dec=gal["DEC"],
                                   w=gal["W"],
                                   ra_units='deg',
                                   dec_units='deg')
    if weight == "False":
        gal_cat = treecorr.Catalog(ra=gal["RA"],
                                   dec=gal["DEC"],
                                   ra_units='deg',
                                   dec_units='deg')

    ran_cat = treecorr.Catalog(ra=random["RA"],
                               dec=random["DEC"],
                               ra_units='deg',
                               dec_units='deg')

    nn = treecorr.NNCorrelation(min_sep=min_sep,
                                max_sep=max_sep,
                                nbins=nbins,
                                sep_units=units,
                                bin_slop=bin_slop)
    rr = treecorr.NNCorrelation(min_sep=min_sep,
                                max_sep=max_sep,
                                nbins=nbins,
                                sep_units=units,
                                bin_slop=bin_slop)
    dr = treecorr.NNCorrelation(min_sep=min_sep,
                                max_sep=max_sep,
                                nbins=nbins,
                                sep_units=units,
                                bin_slop=bin_slop)
    nn.process(gal_cat, gal_cat, num_threads=60)
    rr.process(ran_cat, ran_cat, num_threads=60)
    dr.process(gal_cat, ran_cat, num_threads=60)
    xi, varxi = nn.calculateXi(rr, dr)
    theta = nn.meanr

    return theta, xi, varxi
Beispiel #27
0
def NNCorr(galaxy,rand_galaxy):
	#galaxy
	ra=galaxy[:,0]
	dec=galaxy[:,1]
	z=galaxy[:,2]

	l,b=ecliptic2galactic(ra,dec)
	raa,decc,k=galactic_pixel(l,b)

	galaxy_catalogue=tc.Catalog(ra=raa,dec=decc,k=k,ra_units="deg",dec_units="deg")
	gg=tc.NNCorrelation(nbins=NBINS,min_sep=MIN_SEP,max_sep=MAX_SEP,bin_slop=0.01,verbose=0,sep_units='degrees')
	gg.process(galaxy_catalogue)

	#rand_galaxy
	rra=rand_gal[:,0]
	rdec=rand_gal[:,1]
	rz=rand_gal[:,2]

	rl,rb=ecliptic2galactic(rra,rdec)

	rraa,rdecc,rk=galactic_pixel(rl,rb)

	rand_gal_catalogue=tc.Catalog(ra=rraa,dec=rdecc,k=rk,ra_units="deg",dec_units="deg")
	rr=tc.NNCorrelation(nbins=NBINS,min_sep=MIN_SEP,max_sep=MAX_SEP,bin_slop=0.01,verbose=0,sep_units='degrees')
	rr.process(rand_gal_catalogue)

	#xi-rr
	xi,varxi=gg.calculateXi(rr)
	r=np.exp(gg.meanlogr)
	sig=np.sqrt(varxi)

	plt.plot(r,xi,color='blue')
	plt.plot(r,-xi,color='blue',ls=':')
	plt.loglog()
	plt.savefig("/home/yhwu/pic/xi_rr.png",png=1000)
	plt.clf()

	#xi-dr
	dr=tc.NNCorrelation(nbins=NBINS,min_sep=MIN_SEP,max_sep=MAX_SEP,bin_slop=0.01,verbose=0,sep_units='degrees')
	dr.process(galaxy_catalogue,rand_gal_catalogue)

	xi,varxi=gg.calculateXi(rr,dr)
	r=np.exp(gg.meanlogr)
	sig=np.sqrt(varxi)

	plt.plot(r,xi,color='blue')
	plt.plot(r,-xi,color='blue',ls=':')
	plt.loglog()
	plt.savefig("/home/yhwu/pic/xi_dr.png",png=1000)
Beispiel #28
0
def AutoCorrelationFunction(DataCatalog, RandCatalog):
    nn = treecorr.NNCorrelation(min_sep=0.01, max_sep=10, bin_size=0.2, sep_units='degrees')
    nn.process(DataCatalog)
    
    rr = treecorr.NNCorrelation(min_sep=0.01, max_sep=10, bin_size=0.2, sep_units='degrees')
    rr.process(RandCatalog)
    
    dr = treecorr.NNCorrelation(min_sep=0.01, max_sep=10, bin_size=0.2, sep_units='degrees')
    dr.process(DataCatalog, RandCatalog)
    
    r = numpy.exp(nn.meanlogr)
    xi, varxi = nn.calculateXi(rr, dr)
    sig = numpy.sqrt(varxi)
    
    return r, xi, varxi, sig
Beispiel #29
0
    def _calc_2h_cc(self, data1, data2, mask1, mask2, save=False, verbose=False, weights=None, nbins=20, min_sep=44, max_sep=6e3, slop=0.1):

        w2h_cc=[]
        group_ids = np.unique(data1['groupId'])
        N = len(group_ids)

        for ig1 in group_ids:
            if verbose: 
                print '%d/%d'%(ig1+1, N)
            maski = mask1 & (data1['groupId']==ig1)
            cat_i = treecorr.Catalog(w=weights, x=data1['x'][maski], y=data1['y'][maski], z=data1['z'][maski])

            # Select all of the centrals that are not part of the same halo
            maskj = mask1 & (data1['groupId']!=ig1)
            cat_j = treecorr.Catalog(w=weights, x=data2['x'][maskj], y=data2['y'][maskj], z=data2['z'][maskj])

            rx_j = (np.random.random(size=data2['x'][maskj].size) - 0.5) * (data2['x'][maskj].max()-data2['x'][maskj].min()) + data2['x'][maskj].mean()
            ry_j = (np.random.random(size=data2['x'][maskj].size) - 0.5) * (data2['y'][maskj].max()-data2['y'][maskj].min()) + data2['y'][maskj].mean()
            rz_j = (np.random.random(size=data2['x'][maskj].size) - 0.5) * (data2['z'][maskj].max()-data2['z'][maskj].min()) + data2['z'][maskj].mean()
            rancat_j  = treecorr.Catalog(x=rx_j, y=ry_j, z=rz_j)
                
            f=10000
            rx_i = (np.random.random(size=data1['x'][maski].size * f) -0.5) * (data2['x'][maskj].max()-data2['x'][maskj].min()) + data2['x'][maskj].mean()
            ry_i = (np.random.random(size=data1['x'][maski].size * f) -0.5) * (data2['y'][maskj].max()-data2['y'][maskj].min()) + data2['y'][maskj].mean()
            rz_i = (np.random.random(size=data1['x'][maski].size * f) -0.5) * (data2['z'][maskj].max()-data2['z'][maskj].min()) + data2['z'][maskj].mean()
            rancat_i  = treecorr.Catalog(x=rx_i, y=ry_i, z=rz_i)

            nn = treecorr.NNCorrelation(nbins=nbins, min_sep=min_sep, max_sep=max_sep, bin_slop=slop)
            nr = treecorr.NNCorrelation(nbins=nbins, min_sep=min_sep, max_sep=max_sep, bin_slop=slop)
            rn = treecorr.NNCorrelation(nbins=nbins, min_sep=min_sep, max_sep=max_sep, bin_slop=slop)
            rr = treecorr.NNCorrelation(nbins=nbins, min_sep=min_sep, max_sep=max_sep, bin_slop=slop)

            nn.process(cat_i,cat_j) #, metric='Periodic')
            nr.process(rancat_j,cat_i) #, metric='Periodic')
            rn.process(cat_j,rancat_i) #, metric='Periodic')
            rr.process(rancat_i,rancat_j) #, metric='Periodic')

            R_2h_cc = np.exp(nn.meanlogr)
            coeff = 1./f
            w = (nn.weight - nr.weight - coeff * rn.weight + coeff*rr.weight)/(coeff * rr.weight)
            w2h_cc.append(w)

        if save:
            print 'Storing...'
            np.savetxt('R_2h_cc.txt',R_2h_cc)
            np.savetxt('w2h_cc.txt',w2h_cc)

        return R_2h_cc, w2h_cc
Beispiel #30
0
    def _calc_2h_cs(self, data1, data2, mask1, mask2, save=False, verbose=False, weights=None, nbins=20, min_sep=44, max_sep=6e3, slop=0.1):
        """Given two numpy arrays of positions, compute the two halo central-satellite realspace correlation."""

        w2h_cs = []
        group_ids = np.unique(data1['groupId'])
        N = len(group_ids)

        for ig1 in group_ids:
            if verbose: 
                print '%d/%d'%(ig1+1, N)
            maski = mask1 & (data1['groupId']==ig1)
            cat_i = treecorr.Catalog(w=weights, x=data1['x'][maski], y=data1['y'][maski], z=data1['z'][maski])

            maskj = mask2 & (data2['groupId']!=ig1)
            cat_j = treecorr.Catalog(w=weights, x=data2['x'][maskj], y=data2['y'][maskj], z=data2['z'][maskj])

            rx_j = (np.random.random(size=data2['x'][maskj].size) - 0.5) * (data2['x'][maskj].max()-data2['x'][maskj].min()) + data2['x'][maskj].mean()
            ry_j = (np.random.random(size=data2['x'][maskj].size) - 0.5) * (data2['y'][maskj].max()-data2['y'][maskj].min()) + data2['y'][maskj].mean()
            rz_j = (np.random.random(size=data2['x'][maskj].size) - 0.5) * (data2['z'][maskj].max()-data2['z'][maskj].min()) + data2['z'][maskj].mean()
            rancat_j  = treecorr.Catalog(x=rx_j, y=ry_j, z=rz_j)
                
            f=10000
            rx_i = (np.random.random(size=data1['x'][maski].size * f) - 0.5) * (data2['x'][maskj].max()-data2['x'][maskj].min()) + data2['x'][maskj].mean()
            ry_i = (np.random.random(size=data1['x'][maski].size * f) - 0.5) * (data2['y'][maskj].max()-data2['y'][maskj].min()) + data2['y'][maskj].mean()
            rz_i = (np.random.random(size=data1['x'][maski].size * f) - 0.5) * (data2['z'][maskj].max()-data2['z'][maskj].min()) + data2['z'][maskj].mean()
            rancat_i  = treecorr.Catalog(x=rx_i, y=ry_i, z=rz_i)

            nn = treecorr.NNCorrelation(nbins=nbins, min_sep=min_sep, max_sep=max_sep, bin_slop=slop)
            nr = treecorr.NNCorrelation(nbins=nbins, min_sep=min_sep, max_sep=max_sep, bin_slop=slop)
            rn = treecorr.NNCorrelation(nbins=nbins, min_sep=min_sep, max_sep=max_sep, bin_slop=slop)
            rr = treecorr.NNCorrelation(nbins=nbins, min_sep=min_sep, max_sep=max_sep, bin_slop=slop)

            nn.process(cat_i,cat_j) #, metric='Periodic')
            nr.process(rancat_j,cat_i) #, metric='Periodic')
            rn.process(cat_j,rancat_i) #, metric='Periodic')
            rr.process(rancat_i,rancat_j) #, metric='Periodic')

            R_2h_cs = np.exp(nn.meanlogr)
            coeff = 1./f
            w = (nn.weight - nr.weight - coeff * rn.weight + coeff*rr.weight)/(coeff * rr.weight)
            w2h_cs.append(w)

        if save:
            print 'Storing...'
            np.savetxt('R_2h_cs.txt', R_2h_cs)
            np.savetxt('w2h_cs.txt', w2h_cs)

        return R_2h_cs, w2h_cs