Beispiel #1
0
def create_ding_tree():
    #global ding_tree, dept_result #debug only
    #连接数据库
    db, cursor = connect_db('localhost', 'root', 'yoyoball', 'dingtalk')

    ding_tree = Tree()
    
    sql = "SELECT `id`, `name`, `parentid` FROM dingding_department_list"
    cursor.execute(sql)
    dept_result = cursor.fetchall()
    #print dept_result #debug only
    if dept_result != None and len(dept_result) > 0:
        ding_tree.create_node('##ding_root##', '0') #先创建虚拟根
        for i in range(len(dept_result)): #向虚拟根填充所有组织
            #print dept_result[i] #debug only
            #ding_tree.create_node(dept_result[i][1].decode('utf-8'), dept_result[i][0], '0000')
            ding_tree.create_node(dept_result[i][1], dept_result[i][0], '0')
        for i in range(len(dept_result)): #修改隶属关系
            if dept_result[i][0] != '1' : #只要不是实根,就要修改隶属关系【钉钉中实根id为'1'且无上级部门,数据表dingding_department_list中存储id为'1'的部门上级为'0'】
                if ding_tree.contains(dept_result[i][2]): #判断上级是否存在
                    ding_tree.move_node(dept_result[i][0], dept_result[i][2])
                else: #没有上级的不修改
                    #print type(dept_result[i][2]), dept_result[i][2] #debug only
                    continue
    #断开数据库
    close_db(db)
    #return ding_tree
    return ding_tree.subtree('1')
Beispiel #2
0
def create_oa_tree():
    #global oa_tree #debug only
    #连接数据库
    db, cursor = connect_db('localhost', 'root', 'yoyoball', 'test') 
    
    oa_tree = Tree()
    
    sql = "SELECT `orgid`, `shortname`, `parentorgid` FROM groupinfo"
    cursor.execute(sql)
    dept_result = cursor.fetchall()
    #print dept_result debug only
    if dept_result != None and len(dept_result) > 0:
        oa_tree.create_node('##oa_root##', '0000') #先创建虚拟根
        for i in range(len(dept_result)): #向虚拟根填充所有组织
            #print dept_result[i][1].decode('utf-8'), dept_result[i][0], dept_result[i][2]
            oa_tree.create_node(dept_result[i][1], dept_result[i][0], '0000')
        for i in range(len(dept_result)): #修改隶属关系
            if dept_result[i][2] != '0000' : #OA中'001000'等的组织上级为'0000'即OA数据库中存在虚根,所以无需做此步骤
                if oa_tree.contains(dept_result[i][2]): #判断上级是否存在
                    oa_tree.move_node(dept_result[i][0], dept_result[i][2])
                else: #没有上级的不修改
                    continue
    #断开数据库
    close_db(db)
    return oa_tree
Beispiel #3
0
def visualizeCtree(c_tree):
    #bottom up build tree
    tree = Tree()
    tree.create_node("root", "root")
    levels = sorted(c_tree.keys())
    for level in levels:
        for node_id, cluster in c_tree[level].items():
            node_id = "{}.{}".format(level, node_id)
            tree.create_node("{}".format(cluster["pattern"]), node_id, parent="root")
            if level == 0:
                for data in cluster["data"]:
                    tree.create_node("log.{}".format(data), "log.{}".format(data), parent=node_id)
            else:
                for data in cluster["data"]:
                    tree.move_node("{}.{}".format(level-1, data), node_id)
    tree.show()
    tree.save2file("./tree")


## How to use
##1. for log in logs:updateCTree, updatePatterns
##2. get the c_tree
##3. train all the logs to get the max level and estimate the best level we keep.
##4. train the cluster on different level
##要考虑到unmerged list的同步问题, 到时production考虑将c_tree存在redis里,然后同时flush到库里
Beispiel #4
0
class AcquisitionChain(object):
    def __init__(self, parallel_prepare=False):
        self._tree = Tree()
        self._root_node = self._tree.create_node("acquisition chain", "root")
        self._device_to_node = dict()
        self._presets_list = list()
        self._parallel_prepare = parallel_prepare
        self._device2one_shot_flag = weakref.WeakKeyDictionary()

    @property
    def nodes_list(self):
        nodes_gen = self._tree.expand_tree()
        nodes_gen.next()  # first node is 'root'
        return list(nodes_gen)

    def add(self, master, slave):
        self._device2one_shot_flag.setdefault(slave, False)

        slave_node = self._tree.get_node(slave)
        master_node = self._tree.get_node(master)
        if slave_node is not None and isinstance(slave, AcquisitionDevice):
            if (slave_node.bpointer is not self._root_node
                    and master_node is not slave_node.bpointer):
                raise RuntimeError(
                    "Cannot add acquisition device %s to multiple masters, current master is %s"
                    % (slave, slave_node._bpointer))
            else:  # user error, multiple add, ignore for now
                return

        if master_node is None:
            master_node = self._tree.create_node(tag=master.name,
                                                 identifier=master,
                                                 parent="root")
        if slave_node is None:
            slave_node = self._tree.create_node(tag=slave.name,
                                                identifier=slave,
                                                parent=master)
        else:
            self._tree.move_node(slave, master)
        slave.parent = master

    def add_preset(self, preset):
        self._presets_list.append(preset)

    def set_stopper(self, device, stop_flag):
        """
        By default any top master device will stop the scan.
        In case of several top master, you can define which one won't
        stop the scan
        """
        self._device2one_shot_flag[device] = not stop_flag

    def __iter__(self):
        if len(self._tree) > 1:
            return AcquisitionChainIter(
                self, parallel_prepare=self._parallel_prepare)
        else:
            return iter(())
Beispiel #5
0
class AcquisitionChain(object):
    def __init__(self):
        self._tree = Tree()
        self._root_node = self._tree.create_node("acquisition chain", "root")
        self._device_to_node = dict()

    def add(self, master, slave):
        slave_node = self._tree.get_node(slave)
        master_node = self._tree.get_node(master)
        if slave_node is not None and isinstance(slave, AcquisitionDevice):
            if slave_node.bpointer is not self._root_node and master_node is not slave_node.bpointer:
                raise RuntimeError(
                    "Cannot add acquisition device %s to multiple masters, current master is %s"
                    % (slave, slave_node._bpointer)
                )
            else:  # user error, multiple add, ignore for now
                return

        if master_node is None:
            master_node = self._tree.create_node(tag=master.name, identifier=master, parent="root")
        if slave_node is None:
            slave_node = self._tree.create_node(tag=slave.name, identifier=slave, parent=master)
        else:
            self._tree.move_node(slave_node, master_node)

    def _execute(self, func_name):
        tasks = list()

        prev_level = None
        for dev in reversed(list(self._tree.expand_tree(mode=Tree.WIDTH))[1:]):
            node = self._tree.get_node(dev)
            level = self._tree.depth(node)
            if prev_level != level:
                gevent.joinall(tasks)
                tasks = list()
            func = getattr(dev, func_name)
            tasks.append(gevent.spawn(func))
        gevent.joinall(tasks)

    def prepare(self, dm, scan_info):
        # self._devices_tree = self._get_devices_tree()
        for master in (x for x in self._tree.expand_tree() if isinstance(x, AcquisitionMaster)):
            del master.slaves[:]
            for dev in self._tree.get_node(master).fpointer:
                master.slaves.append(dev)

        dm_prepare_task = gevent.spawn(dm.prepare, scan_info, self._tree)

        self._execute("_prepare")

        dm_prepare_task.join()

    def start(self):
        self._execute("_start")
        for acq_dev in (x for x in self._tree.expand_tree() if isinstance(x, AcquisitionDevice)):
            acq_dev.wait_reading()
            dispatcher.send("end", acq_dev)
Beispiel #6
0
 def test_loop(self):
     tree = Tree()
     tree.create_node('a', 'a')
     tree.create_node('b', 'b', parent='a')
     tree.create_node('c', 'c', parent='b')
     tree.create_node('d', 'd', parent='c')
     try:
         tree.move_node('b', 'd')
     except LoopError:
         pass
def merge(T, alpha, beta):
    """
    merge is a function that mergers two nodes of tree T, changing node beta to be a child of node alpha, where alpha and beta are sisters.
    param T: the given tree
    param alpha: the target node of T
    param beta: the merged node of T
    return: the new tree after merging operation.
    """
    TT = Tree(T.subtree(T.root), deep=True)
    TT.move_node(beta, alpha)
    return TT
Beispiel #8
0
class AcquisitionChain(object):
    def __init__(self, parallel_prepare=False):
        self._tree = Tree()
        self._root_node = self._tree.create_node("acquisition chain", "root")
        self._device_to_node = dict()
        self._presets_list = list()
        self._parallel_prepare = parallel_prepare
        self._device2one_shot_flag = weakref.WeakKeyDictionary()

    @property
    def nodes_list(self):
        nodes_gen = self._tree.expand_tree()
        nodes_gen.next()  # first node is 'root'
        return list(nodes_gen)

    def add(self, master, slave):
        self._device2one_shot_flag.setdefault(slave, False)

        slave_node = self._tree.get_node(slave)
        master_node = self._tree.get_node(master)
        if slave_node is not None and isinstance(slave, AcquisitionDevice):
            if(slave_node.bpointer is not self._root_node and
               master_node is not slave_node.bpointer):
                raise RuntimeError("Cannot add acquisition device %s to multiple masters, current master is %s" % (
                    slave, slave_node._bpointer))
            else:                 # user error, multiple add, ignore for now
                return

        if master_node is None:
            master_node = self._tree.create_node(
                tag=master.name, identifier=master, parent="root")
        if slave_node is None:
            slave_node = self._tree.create_node(
                tag=slave.name, identifier=slave, parent=master)
        else:
            self._tree.move_node(slave, master)
        slave.parent = master

    def add_preset(self, preset):
        self._presets_list.append(preset)

    def set_stopper(self, device, stop_flag):
        """
        By default any top master device will stop the scan.
        In case of several top master, you can define which one won't
        stop the scan
        """
        self._device2one_shot_flag[device] = not stop_flag

    def __iter__(self):
        if len(self._tree) > 1:
            return AcquisitionChainIter(self, parallel_prepare=self._parallel_prepare)
        else:
            return iter(())
Beispiel #9
0
def get_intersection_tree(T1, T2):
    T = Tree(tree=T1, deep=True)
    T1_bfs = [n for n in T1.expand_tree(mode=1)]
    T2_bfs = [n for n in T2.expand_tree(mode=1)]
    for nid in T1_bfs:
        X = set(get_leaf_node_ids_for_node(T, nid))
        diff = min([len(X.symmetric_difference(set( \
                    get_leaf_node_ids_for_node(T2,i)))) \
                    for i in T2_bfs])
        if diff != 0:
            par = T.parent(nid).identifier
            for c in T.children(nid):
                T.move_node(c.identifier, par)
            T.remove_subtree(nid)
    return T
def combine(T, alpha, beta):
    """
    combine is a function that combines two nodes of tree T, changing nodes alpha and beta to be children of a new node gama, where alpha and beta are sisters.
    param T: the given tree
    param alpha: the target node of T
    param beta: the target node of T
    return: the new tree after combining operation.
    """
    TT = Tree(T.subtree(T.root), deep=True)
    new_id = max(ids_of_all_nodes(T)) + 1
    parent_id = TT.get_node(alpha).bpointer
    TT.create_node(tag=new_id, identifier=new_id, parent=parent_id, data=None)
    TT.move_node(alpha, new_id)
    TT.move_node(beta, new_id)
    return TT
Beispiel #11
0
    def build_hierarchy_tree(self, nodes):
        """
        Build hierarchy tree from list of nodes.
        """

        tree = Tree()

        # root node
        tree.create_node('root', 0)

        # create all nodes
        for i in nodes:
            name, id, parent = self.parse_hierarchy_node(i)
            tree.create_node(name, id, parent=0)

        # assign parents
        for i in nodes:
            name, id, parent = self.parse_hierarchy_node(i)
            if parent is not None:
                tree.move_node(id, parent)

        return tree
Beispiel #12
0
    for z in d:
        path = walkTree(tree, z, path + z)

    return path


input = list(map(lambda x: x.strip(), open("test_input.txt").readlines()))
tree = Tree()
tree.create_node("root", "root")

# first figure out how many steps there are and then sort them
# by their name
for lines in input:
    (l1, l2) = (lines[5], lines[36])
    print(lines)
    if tree.contains(l1) and tree.contains(l2):
        tree.move_node(l2, l1)
    elif tree.contains(l1) and not tree.contains(l2):
        tree.create_node(l2, l2, parent=l1)
    elif not tree.contains(l1) and tree.contains(l2):
        # get the root for l2 and make that the root for l1
        # then move l2 under l1
        tree.create_node(l1, l1, parent=tree.parent(l2))
        tree.move_node(l2, l1)

    else:
        tree.create_node(l1, l1, parent="root")
        tree.create_node(l2, l2, parent=l1)

tree.show()
print(walkTree(tree, 'root', ''))
class RMQueue(object):
    __metaclass__ = Singleton

    def __init__(self):
        self.tree = Tree()
        self.MAX_METRIC_COUNT = 12
        self.CAL_INTERVAL_IN_SECOND = 2 * 60 * 60
        self.conf = conf.Config("./conf/config.json")

    def set_stat_interval(self, interval):
        self.CAL_INTERVAL_IN_SECOND = interval

    def set_system_memory(self, size):
        root = self.get_root()
        root.data.set_abs_memory(float(size))

    def create_queue(self, name=None, parent=None):
        data = QueueData()
        self.tree.create_node(name, name, parent, data)

    def display(self):
        self.tree.show()

    def display_score(self, queue=None, depth=0, table=None, printer=None):
        flag = False
        if queue is None:
            queue = self.get_root()
            flag = True
            table = PrettyTable([
                "QUEUE", "PENDING AVG", "PENDING DIV", "MEMORY USAGE AVG(Q)",
                "MEMORY USAGE AVG(C)", "MEMORY USAGE DIV", "ABS CAPACITY"
            ])
        if table is not None:
            table.add_row([
                queue.tag, 0 if queue.data.get_pending() == 0 else "%.3f" %
                queue.data.get_pending(),
                0 if queue.data.get_pending_div() == 0 else "%.3f" %
                queue.data.get_pending_div(),
                0 if queue.data.get_mem_usage() == 0 else "%.3f" %
                queue.data.get_mem_usage(),
                0 if queue.data.cal_queue_memory_usage() == 0 else "%.3f" %
                queue.data.cal_queue_memory_usage(),
                0 if queue.data.get_mem_usage_div() == 0 else "%.3f" %
                queue.data.get_mem_usage_div(),
                str(0 if queue.data.get_abs_capacity() == 0 else "%.3f" %
                    queue.data.get_abs_capacity()) + " %"
            ])
        if not self.is_leaf(queue.tag):
            children = self.tree.children(queue.tag)
            for child in children:
                self.display_score(child, depth + 1, table)
        if flag:
            if printer is None:
                print('------------' + utils.get_str_time() +
                      ' SCORE ----------')
                print table
            else:
                printer.write('\n------------' + utils.get_str_time() +
                              ' SCORE ----------\n')
                printer.write(str(table))

    def display_prediction(self,
                           queue=None,
                           depth=0,
                           table=None,
                           printer=None):
        flag = False
        if queue is None:
            queue = self.get_root()
            flag = True
            table = PrettyTable([
                "QUEUE", "DESIRED CAPACITY(Q)", "DESIRED CAPACITY(C)",
                "ABS CAPACITY"
            ])
        if table is not None:
            table.add_row([
                queue.tag,
                str(0 if queue.data.wish.capacity == 0 else "%.3f" %
                    (100 * queue.data.wish.capacity)) + " %",
                0 if queue.data.wish.abs_capacity == 0 else "%.3f" %
                queue.data.wish.abs_capacity,
                str(0 if queue.data.config.abs_capacity == 0 else "%.3f" %
                    queue.data.config.abs_capacity) + " %"
            ])
        if not self.is_leaf(queue.tag):
            children = self.tree.children(queue.tag)
            for child in children:
                self.display_prediction(child, depth + 1, table)
        if flag:
            if printer is None:
                print('------------' + utils.get_str_time() +
                      ' PREDICTION ----------')
                print table
            else:
                printer.write('\n------------' + utils.get_str_time() +
                              ' PREDICTION ----------\n')
                printer.write(str(table))

    def write_score(self, path):
        FileOperator.touch(path)
        with open(path, 'a') as f:
            self.display_score(printer=f)

    def request_score(self, queue=None):
        if queue is None:
            queue = self.get_root()
        postData = {
            'queue': queue.tag,
            'pending': queue.data.get_pending(),
            'pending_div': queue.data.get_pending_div(),
            'memory_usage': queue.data.get_mem_usage(),
            'memory_usage_div': queue.data.get_mem_usage_div(),
            'abs_capacity': queue.data.get_abs_capacity()
        }
        requests.post(str(self.conf.es_rest_address) +
                      str(self.conf.es_index) + "score",
                      data=json.dumps(postData))
        if not self.is_leaf(queue.tag):
            children = self.tree.children(queue.tag)
            for child in children:
                self.request_score(child)

    def request_prediction(self, queue=None):
        if queue is None:
            queue = self.get_root()
        postData = {
            'queue': queue.tag,
            'wish_capacity': queue.data.wish.capacity,
            'wish_abs_capacity': queue.data.wish.abs_capacity,
            'abs_capacity': queue.data.config.abs_capacity
        }
        requests.post(str(self.conf.es_rest_address) +
                      str(self.conf.es_index) + "prediction",
                      data=json.dumps(postData))
        if not self.is_leaf(queue.tag):
            children = self.tree.children(queue.tag)
            for child in children:
                self.request_prediction(child)

    def write_prediction(self, path):
        FileOperator.touch(path)
        with open(path, 'a') as f:
            self.display_prediction(printer=f)

    def add_job(self, job, qname):
        queue = self.tree.get_node(qname)
        if queue.is_leaf():
            queue.data.add_job(job)
        else:
            print("Cannot add jobs to parent queue", queue.tag,
                  queue.identifier)

    def add_metric(self, qname):
        queue = self.tree.get_node(qname)
        queue.data.add_metric(queue.cur_metric)
        if len(queue.data.metrics) > RMQueue.MAX_METRIC_COUNT:
            del queue.data.metrics[0]

    def remove_queue(self, qname):
        self.tree.remove_node(qname)

    def move_queue(self, src, dest):
        self.tree.move_node(src, dest)

    def get_queue(self, qname):
        return self.tree.get_node(qname)

    def get_root(self):
        return self.get_queue('root')

    def is_leaf(self, qname):
        queue = self.tree.get_node(qname)
        return queue.is_leaf()

    def cal_slowdown(self, queue=None):
        if queue is None:
            queue = self.get_root()

        avg_slowdown = 0.0
        if queue.is_leaf():
            job_count = len(queue.data.jobs)
            for i in list(range(job_count)):
                job = queue.data.jobs[i]
                slowdown = (job.wait_time + job.run_time) / job.run_time
                avg_slowdown += slowdown / job_count
            queue.data.set_job_count(job_count)
            queue.data.cur_metric.slowdown = avg_slowdown
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_slowdown(child)

            job_count = 0
            for child in children:
                job_count += child.data.get_job_count()
            queue.data.set_job_count(job_count)

            if job_count == 0:
                queue.data.cur_metric.slowdown = avg_slowdown
                return avg_slowdown

            for child in children:
                avg_slowdown += child.data.get_job_count(
                ) * child.data.get_slowdown() / job_count
            queue.data.cur_metric.slowdown = avg_slowdown
        return queue.data.get_slowdown()

    def cal_pending(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if queue.is_leaf():
            if len(queue.data.pendings) > 0:
                queue.data.cur_metric.pending = np.mean(queue.data.pendings)
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_pending(child)
                queue.data.cur_metric.pending += child.data.get_pending()

        return queue.data.get_pending()

    def cal_pending_division(self, queue=None):
        if queue is None:
            queue = self.get_root()

        division = 0.0
        if self.is_leaf(queue.tag):
            return division
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_pending_division(child)

            count = len(children)
            avg_pending = queue.data.get_pending() * 1.0 / count
            square_sum = 0.0
            for child in children:
                square_sum += np.square(child.data.get_pending() - avg_pending)

            division = np.sqrt(square_sum / count)
            queue.data.cur_metric.pending_div = division
            return division

    def cal_slowdown_division(self, queue=None):
        if queue is None:
            queue = self.get_root()

        division = 0.0
        if self.is_leaf(queue.tag):
            return division
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_slowdown_division(child)

            square_sum = 0.0
            count = len(children)
            for child in children:
                square_sum += np.square(child.data.get_slowdown() -
                                        queue.data.get_slowdown())

            division = np.sqrt(square_sum / count)
            queue.data.cur_metric.slowdown_div = division
            return division

    def cal_memory_usage(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if queue.is_leaf():
            capacity = queue.data.get_abs_capacity()
            memory_usage = 0.0
            if capacity != 0:
                memory_usage = 100.0 * queue.data.cal_queue_memory_usage(
                ) / capacity
            queue.data.set_mem_usage(memory_usage)
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_memory_usage(child)

            abs_memory_usage = 0
            for child in children:
                abs_memory_usage += child.data.get_abs_memory_usage()

            queue.data.set_mem_usage(100.0 * abs_memory_usage /
                                     queue.data.get_abs_capacity())
        return queue.data.get_mem_usage()

    def cal_mem_usage_division(self, queue=None):
        if queue is None:
            queue = self.get_root()

        std_division = 0.0
        if self.is_leaf(queue.tag):
            queue.data.cur_metric.mem_usage_div = std_division
            return std_division
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_mem_usage_division(child)

            count = len(children)
            total_mem_usage = 0
            for child in children:
                total_mem_usage += child.data.get_mem_usage()
            avg_mem_usage = total_mem_usage / count

            square_sum = 0
            for child in children:
                square_sum += np.square(child.data.get_mem_usage() -
                                        avg_mem_usage)
            std_division = np.sqrt(square_sum / count)
            queue.data.cur_metric.mem_usage_div = std_division
            return std_division

    def cal_abs_capacity_bottom_up(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = 0.0
            for child in children:
                self.cal_abs_capacity_bottom_up(child)
                abs_capacity += child.data.get_abs_capacity()
            queue.data.set_abs_capacity(abs_capacity)

    def cal_desired_abs_capacity_bottom_up(self, queue=None, delim=None):
        if queue is None:
            queue = self.get_root()
            delim = 1
        if self.is_leaf(queue.tag):
            queue.data.wish.capacity = queue.data.wish.abs_capacity / delim
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = 0.0
            for child in children:
                self.cal_desired_abs_capacity_bottom_up(
                    child, queue.data.config.abs_capacity * delim / 100)
                abs_capacity += child.data.wish.abs_capacity

            queue.data.wish.capacity = abs_capacity / delim

    def cal_abs_capacity_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()
            queue.data.set_abs_capacity(100.0)

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                child.data.set_abs_capacity(queue.data.get_abs_capacity() *
                                            child.data.get_capacity() / 100.0)
                self.cal_abs_capacity_top_down(child)

    def cal_desired_capacity_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()
            queue.data.wish.capacity = 100.0

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = queue.data.wish.abs_capacity
            for child in children:
                child.data.wish.capacity = child.data.config.capacity
                if abs_capacity == 0:
                    child.data.wish.capacity = 0
                else:
                    child.data.wish.capacity = child.data.wish.abs_capacity / abs_capacity * 100.0
                self.cal_desired_capacity_top_down(child)

    def cal_capacity_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = queue.data.get_abs_capacity()
            for child in children:
                if abs_capacity == 0:
                    child.data.set_capacity(0)
                else:
                    child.data.set_capacity(child.data.get_abs_capacity() /
                                            abs_capacity * 100)
                self.cal_capacity_top_down(child)

    def cal_abs_memory_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()
            queue.data.cal_totalMb_mean()

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                child.data.set_abs_memory(queue.data.get_abs_memory() *
                                          child.data.get_capacity() / 100)
                self.cal_abs_memory_top_down(child)

    def clear_mus_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            queue.data.clear_queue_memory_usage()
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.clear_mus_top_down(child)

    def clear_jobs_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            queue.data.clear_jobs()
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.clear_jobs_top_down(child)

    def clear_pendings_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            queue.data.clear_pendings()
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.clear_pendings_top_down(child)

    def score(self):
        # self.cal_abs_capacity_bottom_up()
        # self.cal_capacity_top_down()
        # self.cal_abs_memory_top_down()
        # self.cal_slowdown()
        # self.cal_slowdown_division()
        self.cal_pending()
        self.cal_pending_division()
        self.cal_memory_usage()
        self.cal_mem_usage_division()
        # self.clear_jobs_top_down()
        # self.clear_pendings_top_down()
        # self.clear_mus_top_down()

    def predict(self):
        self.cal_desired_abs_capacity_bottom_up()
Beispiel #14
0
    print(tree[child].tag)

print(sep + "OOhh~ new members join Jill's family:")
new_tree = Tree()
new_tree.create_node("n1", 1)  # root node
new_tree.create_node("n2", 2, parent=1)
new_tree.create_node("n3", 3, parent=1)
tree.paste("jill", new_tree)
tree.show()

print(sep + "They leave after a while:")
tree.remove_node(1)
tree.show()

print(sep + "Now Jill moves to live with Grand-x-father Harry:")
tree.move_node("jill", "harry")
tree.show()

print(sep + "A big family for George to send message to the oldest Harry:")
for node in tree.rsearch("george"):
    print(tree[node].tag)
########NEW FILE########
__FILENAME__ = folder_tree
#!/usr/bin/env python
# A file folder scanner contributed by @holger
#
# You can spicify the scanned folder and file pattern by changing rootPath
# and pattern variables
#

__author__ = "holger"
Beispiel #15
0
sub_t = tree.subtree('diane')
sub_t.show()
print('\n') 

print("#"*4 + "Children of Diane")
print tree.is_branch('diane')
print('\n')

print("#"*4 + "OOhh~ new members enter Jill's family")
new_tree = Tree()
new_tree.create_node("n1", 1)  # root node
new_tree.create_node("n2", 2, parent=1)
new_tree.create_node("n3", 3, parent=1)
tree.paste('jill', new_tree)
tree.show()
print('\n')

print("#"*4 + "We are sorry they are gone accidently :(")
tree.remove_node(1)
tree.show()
print('\n')

print("#"*4 + "Now Jill moves to live with Grand-x-father Harry")
tree.move_node('jill', 'harry')
tree.show()
print('\n')

print("#"*4 + "A big family for George to talk to Grand-x-father Harry")
for node in tree.rsearch('george', filter=lambda x: x != 'harry'):
    print node
print('\n')
Beispiel #16
0
class Parser():

    """
    Parser class for parsing a NAL xml file
    """
    # All of the roots are coming from the TM queries
    # Other items in NAL may be considered phenotypes or chemicals
    # But are not being labelled for our purposes
    __root2label = {
        322:"Phenotype", 156:"Phenotype", 319:"Phenotype",
        7812:"Chemical", 8:"Chemical", 264:"Chemical", 
        858:"Plant"
    }

    def __init__(self, namespace="usda_nal_thesaurus"):
        self.namespace = namespace
        self.tree = Tree()
        self.tree.create_node("Root","root")
        self.name2id = {}

    def parse(self, xmlFile):
        """
        parsing function that parses an xml file
        """
        nodes = {}
        tree = ET.parse(xmlFile)
        root = tree.getroot() # THESAURUS node
        for concept in root: # Parse xml with nodes as concepts
            iden = "NAL:"+concept.find("TNR").text # node source ID
            nodes[iden], name = self.parseNode(concept) # Parse the node from xml file
            self.tree.create_node(tag=name, identifier=iden, parent='root') # create the node in the tree
            self.name2id[name] = iden # For mapping edges
        # Iterate through twice because parent/child relationships are connected via name not id
        # in xml file and file is sorted alphabetically
        for nodeID, props in nodes.items(): # Add edges to node as a list of tuples
            nodes[nodeID]["edges"] = self.parseEdges(nodeID,props)
        for node,label in self.__root2label.items(): # Add specific labels to nodes
            sub = self.tree.subtree("NAL:{}".format(node))
            for i in sub.all_nodes():
                iden = i.identifier.split(".")[0]
                nodes[iden]["labels"].add(label)
        return nodes
        
    def parseNode(self,node):
        """
        Parse each node from the xml file
        """
        labels = set()
        name = node.find("DESCRIPTOR").text
        synonyms = extractElem(node, "UF") # Used for
        parents = extractElem(node, "BT") # Broader term
        children = extractElem(node, "NT") # Narrow term
        # associated = extractElem(node,"RT") # Related term
        # categories = extractElem(node, "SC") # Subject category
        # for cat in categories:
        #     item = cat.split(" ")[0]
        #     if item in self.labels.keys():
        #         labels.add(self.labels[item])
        labels.add(self.namespace)
        return {"name": name, "synonyms": list(synonyms), "parents": parents,
                "children": children, "labels": labels}, name
    
    def parseEdges(self, nodeID, props):
        """
        Add edges to nodes.
        Some nodes have multiple parents
        """
        edges = []
        multiParent = 0
        for name in props["children"]:
            edges.append(("has_child",self.name2id[name]))
        for name in props["parents"]:
            parentID = self.name2id[name]
            if multiParent == 0:
                self.tree.move_node(nodeID,parentID)
            else:
                self.tree.create_node(tag=props["name"],identifier=nodeID+".{}".format(multiParent),parent=parentID)
            edges.append(("is_a",parentID))
            multiParent += 1
        return edges
    def toDEP(self):

        ###############################
        # Etape 1 : construction du head_tree

        # parcours en largeur de tree afin de récupérer chaque id_node
        # pour chaque profondeur (init à 0) _! sans compter !_ les feuilles (EDUs)

        nodes_depth = [-1] * self.tree.size()
        for i in xrange(self.tree.size()):
            id_nodes = [0]
            depth = [999] * self.tree.size()
            while id_nodes:  # False if empty
                id_node = id_nodes.pop(0)
                node = self.tree.get_node(id_node)
                if node.bpointer != None:
                    node_parent = self.tree.get_node(node.bpointer)
                    depth[node.identifier] = depth[node_parent.identifier] + 1
                else:
                    depth[node.identifier] = 0
                if id_node == i:
                    # print 'noeud ',i,' en profondeur', depth[node.identifier]
                    if node.fpointer:
                        nodes_depth[i] = depth[i]
                    break
                if node.fpointer:
                    id_nodes.append(node.fpointer[0])
                    id_nodes.append(node.fpointer[1])
        # print nodes_depth

        id_nodes_depth = []
        for d in xrange(self.tree.depth()):
            id_nodes_depth.append([])
            for i in xrange(self.tree.size()):
                if nodes_depth[i] == d:
                    id_nodes_depth[d].append(i)
        # print id_nodes_depth

        #
        # construction du head_tree

        head_tree = [-1] * self.treeNS.size()
        # pour chaque noeud (non EDU/feuille) en partant de la plus grande profondeur dans l'arbre
        for d in range(len(id_nodes_depth) - 1, -1, -1):
            for id_node in id_nodes_depth[d]:
                node = self.treeNS.get_node(id_node)
                node_left = self.treeNS.get_node(node.fpointer[0])
                node_right = self.treeNS.get_node(node.fpointer[1])
                if node_left.tag == "N":
                    if head_tree[node_left.identifier] == -1:
                        identifier = node_left.identifier
                    else:
                        identifier = head_tree[node_left.identifier]
                else:
                    if head_tree[node_right.identifier] == -1:
                        identifier = node_right.identifier
                    else:
                        identifier = head_tree[node_right.identifier]
                head_tree[id_node] = identifier
        # print head_tree

        ###############################
        # Etape 2 : construction du DEP

        #
        # construction du DEP

        # init
        # root est le premier noeud de head
        # pour chaque EDU son père est le root dans DEP
        dep_tree = Tree()
        id_root = head_tree[0]
        root = self.tree.get_node(id_root)
        # dep_tree.create_node(root.tag, root.identifier)
        dep_tree.create_node(root.tag, root.identifier)
        for id_EDU in xrange(len(head_tree)):
            if head_tree[id_EDU] == -1 and id_EDU != id_root:
                node = self.tree.get_node(id_EDU)
                # dep_tree.create_node(node.tag, node.identifier, parent=id_root)
                # dep_tree.create_node(str(id_EDU), node.identifier, parent=id_root)
                dep_tree.create_node(node.tag, node.identifier, parent=id_root)

        # print '//////////////////////'
        # print 'EDU', id_root
        # pour chaque EDU
        for id_EDU in xrange(len(head_tree)):
            if head_tree[id_EDU] == -1 and id_EDU != id_root:

                EDU_NS = self.treeNS.get_node(id_EDU)
                # print '.......................'
                # print 'EDU', id_EDU
                # print 'TAG', EDU_NS.tag

                if EDU_NS.tag == "N":
                    # parcours en largeur jusqu'à trouver un S avec un head donc qui soit pas EDU
                    id_nodes = [EDU_NS.identifier]
                    visited = [False] * self.treeNS.size()
                    while id_nodes:
                        id_node = id_nodes.pop(0)
                        EDU = self.tree.get_node(id_node)
                        # print 'visited EDU', EDU.identifier
                        visited[EDU.identifier] = True
                        # cas d'arret
                        head_EDU = head_tree[EDU.identifier] == -1
                        head_EDU = False
                        node_tag = self.treeNS.get_node(EDU.identifier).tag
                        # print '  head_EDU', head_EDU
                        # print '  node_tag', node_tag
                        if not head_EDU and node_tag == "S":
                            break
                        if EDU.bpointer:
                            if not visited[EDU.bpointer]:
                                id_nodes.append(EDU.bpointer)
                        if EDU.fpointer:  # sécurité
                            if not visited[EDU.fpointer[0]]:
                                id_nodes.append(EDU.fpointer[0])
                            if not visited[EDU.fpointer[1]]:
                                id_nodes.append(EDU.fpointer[1])

                    # puis ajouter au DEP comme enfant du head du parent du noeud S
                    id_head = head_tree[EDU.bpointer]

                # si parent S
                else:
                    # parcours en largeur des ancêtre jusqu'à trouver un ancêtre avec un head
                    parent = self.treeNS.get_node(EDU_NS.bpointer)
                    id_head = head_tree[parent.identifier]

                # puis ajouter au DEP comme enfant de ce head
                if id_EDU != id_head:
                    dep_tree.move_node(id_EDU, id_head)
                EDU = self.tree.get_node(id_EDU)
                # print '---- ajout de',EDU.identifier,' à',id_head
                # if id_EDU == id_head:
                # dep_tree.show()

        return dep_tree
class RMQueue(metaclass=Singleton):
    MAX_METRIC_COUNT = 12
    CAL_INTERVAL_IN_SECOND = 2 * 60 * 60  # 2hours

    def __init__(self):
        self.tree = Tree()

    def set_stat_interval(self, interval):
        RMQueue.CAL_INTERVAL_IN_SECOND = interval

    def set_system_memory(self, size):
        root = self.get_root()
        root.data.set_abs_memory(float(size))

    def create_queue(self, name=None, parent=None):
        data = QueueData()
        self.tree.create_node(name, name, parent, data)

    def display(self):
        self.tree.show()

    def display_score_old(self, queue=None, depth=0):
        if queue is None:
            queue = self.get_root()
            print('------------' + utils.get_str_time() + ' SCORE ----------')
            print(24 * ' ' + '     SLOWDOWN                MEMORY USAGE ')
            print('QUEUE NAME' + 16 * ' ' +
                  ' AVG        DIV            AVG        DIV')

        if depth >= 0:
            print(queue.tag + (22 - len(queue.tag))*' ' + \
                               '%8.3f' % queue.data.get_slowdown(),  \
                               '  %8.3f    ' % queue.data.get_slowdown_div(), \
                               '  %8.3f' % queue.data.get_mem_usage(), \
                               '  %8.3f' % queue.data.get_mem_usage_div())
            """                                              
             print(queue.tag, '(slowdown: %.3f' % queue.data.get_slowdown(), \
                              'div: %.3f)' % queue.data.get_slowdown_div(), \
                              '(mem usage: %.3f' % queue.data.get_mem_usage(), \
                              'div: %.3f)' % queue.data.get_mem_usage_div())
             """
        else:
            print('-'*depth + queue.tag, '(slowdown: %.3f' % queue.data.get_slowdown(), \
                             'div: %.3f)' % queue.data.get_slowdown_div(), \
                             '(mem usage: %.3f' % queue.data.get_mem_usage(), \
                             'div: %.3f)' % queue.data.get_mem_usage_div())

        if self.is_leaf(queue.tag) == False:
            children = self.tree.children(queue.tag)
            for child in children:
                self.display_score(child, depth + 2)

    def display_score(self, queue=None, depth=0):
        if queue is None:
            queue = self.get_root()
            print('------------' + utils.get_str_time() + ' SCORE ----------')
            print(24 * ' ' + '     PENDING                 MEMORY USAGE ')
            print('QUEUE NAME' + 16 * ' ' +
                  ' AVG        DIV            AVG        DIV')

        if depth >= 0:
            print(queue.tag + (22 - len(queue.tag))*' ' + \
                               '%8.3f' % queue.data.get_pending(),  \
                               '  %8.3f    ' % queue.data.get_pending_div(), \
                               '  %8.3f' % queue.data.get_mem_usage(), \
                               '  %8.3f' % queue.data.get_mem_usage_div())
        else:
            print('-'*depth + queue.tag, '(slowdown: %.3f' % queue.data.get_slowdown(), \
                             'div: %.3f)' % queue.data.get_slowdown_div(), \
                             '(mem usage: %.3f' % queue.data.get_mem_usage(), \
                             'div: %.3f)' % queue.data.get_mem_usage_div())

        if self.is_leaf(queue.tag) == False:
            children = self.tree.children(queue.tag)
            for child in children:
                self.display_score(child, depth + 2)

    def display_prediction(self, queue=None, depth=0):
        if queue is None:
            queue = self.get_root()
            print('------------' + utils.get_str_time() +
                  ' PREDICTION ----------')
            print('QUEUE NAME            DESIRED CAPACITY')

        if depth >= 0:
            print(queue.tag + (22 - len(queue.tag)) * ' ',
                  ' %8.3f' % queue.data.wish.capacity)
            # print(queue.tag, 'desired capacity: %.3f' % queue.data.wish.capacity)
        else:
            print('-' * depth + queue.tag,
                  'desired capacity: %.3f' % queue.data.wish.capacity)

        if self.is_leaf(queue.tag) == False:
            children = self.tree.children(queue.tag)
            for child in children:
                self.display_prediction(child, depth + 2)

    def write_score(self, path):
        with open(path, 'a') as f:
            self.write_score_top_down(output=f)

    def write_score_top_down_old(self, queue=None, depth=0, output=None):
        if queue is None:
            queue = self.get_root()
            output.writelines(
                ('\n---------', utils.get_str_time(), '  SCORE ---------\n'))
            output.writelines(24 * ' ' +
                              '     SLOWDOWN                MEMORY USAGE\n')
            output.writelines('QUEUE NAME' + 16 * ' ' +
                              ' AVG        DIV            AVG        DIV\n')

        if depth >= 0:
            output.writelines(queue.tag + (22 - len(queue.tag))*' ' + \
                                '%8.3f' % queue.data.get_slowdown() +   \
                                '  %8.3f    ' % queue.data.get_slowdown_div() + \
                                '  %8.3f' % queue.data.get_mem_usage() + \
                                '  %8.3f' % queue.data.get_mem_usage_div() + '\n')
            """
            output.writelines( (queue.tag, ' (slowdown: %.3f' % queue.data.get_slowdown(), \
                              ' div: %.3f)' % queue.data.get_slowdown_div(), \
                              ' (mem usage: %.3f' % queue.data.get_mem_usage(), \
                              ' div: %.3f)' % queue.data.get_mem_usage_div(), '\n'))
            """
        else:
            output.writelines(('-'*depth + queue.tag, ' (slowdown: %.3f' % queue.data.get_slowdown(), \
                              ' div: %.3f)' % queue.data.get_slowdown_div(), \
                              ' (mem usage: %.3f' % queue.data.get_mem_usage(), \
                              ' div: %.3f)' % queue.data.get_mem_usage_div(), '\n'))

        if self.is_leaf(queue.tag) == False:
            children = self.tree.children(queue.tag)
            for child in children:
                self.write_score_top_down(child, depth + 2, output)

    def write_score_top_down(self, queue=None, depth=0, output=None):
        if queue is None:
            queue = self.get_root()
            output.writelines(
                ('\n---------', utils.get_str_time(), '  SCORE ---------\n'))
            output.writelines(24 * ' ' +
                              '     PENDING                 MEMORY USAGE\n')
            output.writelines('QUEUE NAME' + 16 * ' ' +
                              ' AVG        DIV            AVG        DIV\n')

        output.writelines(queue.tag + (22 - len(queue.tag))*' ' + \
                            '%8.3f' % queue.data.get_pending() +   \
                            '  %8.3f    ' % queue.data.get_pending_div() + \
                            '  %8.3f' % queue.data.get_mem_usage() + \
                            '  %8.3f' % queue.data.get_mem_usage_div() + '\n')

        if self.is_leaf(queue.tag) == False:
            children = self.tree.children(queue.tag)
            for child in children:
                self.write_score_top_down(child, depth + 2, output)

    def write_prediction(self, path):
        with open(path, 'a') as f:
            self.write_prediction_top_down(output=f)

    def write_prediction_top_down(self, queue=None, depth=0, output=None):
        if queue is None:
            queue = self.get_root()
            output.writelines(('\n---------', utils.get_str_time(),
                               '  PREDICTION---------\n'))
            output.writelines('QUEUE NAME            DESIRED CAPACITY\n')

        if depth >= 0:
            output.writelines(queue.tag + (22 - len(queue.tag)) * ' ' +
                              ' %8.3f' % queue.data.wish.capacity + '\n')
            # output.writelines( (queue.tag, ' desired capacity: %.3f' % queue.data.wish.capacity, '\n'))
        else:
            output.writelines(('-'*depth + queue.tag, \
                                ' desired capacity: %.3f' % queue.data.wish.capacity, '\n'))

        if self.is_leaf(queue.tag) == False:
            children = self.tree.children(queue.tag)
            for child in children:
                self.write_prediction_top_down(child, depth + 2, output)

    def add_job(self, job, qname):
        queue = self.tree.get_node(qname)
        if queue.is_leaf():
            queue.data.add_job(job)
        else:
            print("Canot add jobs to parent queue", queue.tag,
                  queue.identifier)

    def add_metric(self, qname):
        queue = self.tree.get_node(qname)
        queue.data.add_metric(queue.cur_metric)
        if len(queue.data.metrics) > RMQueue.MAX_METRIC_COUNT:
            del queue.data.metrics[0]

    def remove_queue(self, qname):
        """
        Remove a queue indicated by 'qname'; all the successors are
        removed as well.
        Return the number of removed nodes.
        """
        self.tree.remove_node(qname)

    def move_queue(self, src, dest):
        """
        Move a queue indicated by @src parameter to be a child of
        @dest.
        """
        self.tree.move_node(src, dest)

    def get_queue(self, qname):
        return self.tree.get_node(qname)

    def get_root(self):
        return self.get_queue('root')

    def is_leaf(self, qname):
        queue = self.tree.get_node(qname)
        return queue.is_leaf()

    def cal_slowdown(self, queue=None):
        """
        if current queue is a leaf queue:
            calculate the average slowdown in is jobs.
        else:
            calculate the average slowdown of its chilren;
            calculate the average slowdown of current queue through its chilren's average slowdown.
        """
        if queue is None:
            queue = self.get_root()

        avg_slowdown = 0.0
        if queue.is_leaf():
            job_count = len(queue.data.jobs)
            for i in list(range(job_count)):
                job = queue.data.jobs[i]
                slowdown = (job.wait_time + job.run_time) / job.run_time
                avg_slowdown += slowdown / job_count
            queue.data.set_job_count(job_count)
            queue.data.cur_metric.slowdown = avg_slowdown
        else:  # parent queue
            # First, get its all chilren queue, and call each child's cal_slowdown function
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_slowdown(child)

            # Second, get the job count
            job_count = 0
            for child in children:
                job_count += child.data.get_job_count()
            queue.data.set_job_count(job_count)

            # Finally, calculate the average slowdown of the queue
            if job_count == 0:
                queue.data.cur_metric.slowdown = avg_slowdown
                return avg_slowdown

            for child in children:
                avg_slowdown += child.data.get_job_count(
                ) * child.data.get_slowdown() / job_count
            queue.data.cur_metric.slowdown = avg_slowdown
        return queue.data.get_slowdown()

    def cal_pending(self, queue=None):
        """
        if current queue is a leaf queue:
            calculate the average pending count in is pendings.
        else:
            calculate the average pending of its chilren;
            calculate the pending of current queue through the sum all of its chilren's pending.
        """
        if queue is None:
            queue = self.get_root()

        if queue.is_leaf():
            queue.data.cal_leaf_pending()
        else:  # parent queue
            # First, get its all chilren queue, and call each child's cal_pending function
            # Second, get the sum of all its children pending
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_pending(child)
                queue.data.cur_metric.pending += child.data.get_pending()

        return queue.data.get_pending()

    def cal_pending_division(self, queue=None):
        """
        if current queue is a leaf queue:
            stdDivision is zero.
        else:
            calculate the standard division of its chilren;
            calculate the standard division of current queue through its chilren's average pending.
        """
        if queue is None:
            queue = self.get_root()

        division = 0.0
        if self.is_leaf(queue.tag):
            return division
        else:  # parent queue
            children = self.tree.children(queue.tag)
            # First, get its all chilren queue, and call each child's calSlowDown function
            for child in children:
                self.cal_pending_division(child)

            # Second, calculate the square sum of division
            count = len(children)
            avg_pending = queue.data.get_pending() * 1.0 / count
            squareSum = 0.0
            for child in children:
                squareSum += np.square(child.data.get_pending() - avg_pending)

            # Finally, calculate the standard division of the queue
            # if count == 0:
            #    queue.data.cur_metric.slowdown_div = division
            #    return division
            division = np.sqrt(squareSum / count)
            queue.data.cur_metric.pending_div = division
            return division

    def cal_slowdown_division(self, queue=None):
        """
        if current queue is a leaf queue:
            stdDivision is zero.
        else:
            calculate the standard division of its chilren;
            calculate the standard division of current queue through its chilren's average slowdown.
        """
        if queue is None:
            queue = self.get_root()

        division = 0.0
        if self.is_leaf(queue.tag):
            return division
        else:  # parent queue
            children = self.tree.children(queue.tag)
            # First, get its all chilren queue, and call each child's calSlowDown function
            for child in children:
                self.cal_slowdown_division(child)

            # Second, calculate the square sum of division
            squareSum = 0.0
            count = len(children)
            for child in children:
                squareSum += np.square(child.data.get_slowdown() -
                                       queue.data.get_slowdown())

            # Finally, calculate the standard division of the queue
            # if count == 0:
            #    queue.data.cur_metric.slowdown_div = division
            #    return division
            division = np.sqrt(squareSum / count)
            queue.data.cur_metric.slowdown_div = division
            return division

    def cal_memory_usage_old(self, queue=None):
        """
        if current queue is a leaf queue:
            MemoryUsage is the (sum of job memorySeconds )/(self.absMemory * CAL_INTERVAL_IN_SECOND)
            Get absUsedMemory by self.memoryUsage * self.absMemory
        else:
            calculate the memory usage of its chilren;
            calculate the absolute used memory of the queue.
            MemoryUsage = absUsedMemory / absMemory
        """
        if queue is None:
            queue = self.get_root()

        memory_usage = 0.0
        if queue.is_leaf():
            total_memory_seconds = queue.data.cal_leaf_mem_second()
            total_memory_capacity = queue.data.get_abs_memory(
            ) * RMQueue.CAL_INTERVAL_IN_SECOND
            memory_usage = 1.0 * total_memory_seconds / total_memory_capacity
            queue.data.set_mem_usage(memory_usage)
            queue.data.cal_abs_used_memory()
        else:  # parent queue
            # First, get its all chilren queue, and call each child's calMemoryUsage function
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_memory_usage_old(child)

            # Second, calculate the absUsedMemory of current queue
            abs_used_memory = 0
            for child in children:
                abs_used_memory += child.data.get_abs_used_memory()
            queue.data.set_abs_used_memory(abs_used_memory)

            # Finally, calculate the memory usage of the queue
            queue.data.set_mem_usage(1.0 * queue.data.get_abs_used_memory() /
                                     queue.data.get_abs_memory())
        return queue.data.get_mem_usage()

    def cal_memory_usage(self, queue=None):
        """
        if current queue is a leaf queue:
            MemoryUsage is the abs_memoryusage/self.absMemoryCapacity
        else:
            calculate the memory usage of its chilren;
            calculate the absolute memory of the queue.
            MemoryUsage = absUsedMemory / absMemory
        """
        if queue is None:
            queue = self.get_root()

        memory_usage = 0.0
        if queue.is_leaf():
            abs_memory_usage = queue.data.cal_queue_memory_usage()
            abs_memory_capacity = queue.data.get_abs_capacity()
            memory_usage = 100.0 * abs_memory_usage / abs_memory_capacity
            queue.data.set_mem_usage(memory_usage)
            queue.data.set_abs_memory_usage(abs_memory_usage)
        else:  # parent queue
            # First, get its all chilren queue, and call each child's calMemoryUsage function
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_memory_usage(child)

            # Second, calculate the absUsedMemoryUsage of current queue
            abs_memory_usage = 0
            for child in children:
                abs_memory_usage += child.data.get_abs_memory_usage()
            queue.data.set_abs_memory_usage(abs_memory_usage)

            # Finally, calculate the memory usage of the queue
            queue.data.set_mem_usage(100.0 *
                                     queue.data.get_abs_memory_usage() /
                                     queue.data.get_abs_capacity())
        return queue.data.get_mem_usage()

    def cal_mem_usage_division(self, queue=None):
        """
        if current queue is a leaf queue:
            memUsageDivision is zero.
        else:
            calculate the standard division of its chilren;
            calculate the standard division of current queue through its chilren's average memoryUsage 
        """
        if queue is None:
            queue = self.get_root()

        std_division = 0.0
        if self.is_leaf(queue.tag):
            queue.data.cur_metric.mem_usage_div = std_division
            return std_division
        else:  # parent queue
            # First, get its all chilren queue, and call each child's calSlowDown function
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_mem_usage_division(child)

            # Second, calculate the average memory usage of all its children
            count = len(children)
            total_mem_usage = 0
            for child in children:
                total_mem_usage += child.data.get_mem_usage()
                # print(child.data.get_mem_usage())
            avg_mem_usage = total_mem_usage / count

            # Finally, calculate the standard division of the queue
            squareSum = 0
            for child in children:
                squareSum += np.square(child.data.get_mem_usage() -
                                       avg_mem_usage)
            std_division = np.sqrt(squareSum / count)
            queue.data.cur_metric.mem_usage_div = std_division
            return std_division

    def cal_abs_capacity_bottom_up(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = 0
            for child in children:
                # print("Queue name: %s, abs_capacity: %.2f" %(child.tag, child.data.get_abs_capacity()))
                self.cal_abs_capacity_bottom_up(child)
                abs_capacity += child.data.get_abs_capacity()
            queue.data.set_abs_capacity(abs_capacity)

    def cal_desired_abs_capacity_bottom_up(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = 0.0
            fixed_capacity = 0.0
            for child in children:
                self.cal_desired_abs_capacity_bottom_up(child)
                if child.data.config.fixed:
                    # print("FIXED")
                    # print(child.data.config.capacity)
                    # print(child.data.config.abs_capacity)
                    fixed_capacity += child.data.config.capacity
                else:
                    abs_capacity += child.data.wish.abs_capacity

            for child in children:
                if child.data.config.fixed:
                    child.data.wish.abs_capacity = abs_capacity / (
                        100.0 - fixed_capacity) * child.data.config.capacity
            queue.data.wish.abs_capacity = abs_capacity * 100.0 / (
                100.0 - fixed_capacity)

    def clear_desired_abs_capacity(self, queue=None):
        if queue is None:
            queue = self.get_root()

        queue.data.wish.abs_capacity = 0
        if self.is_leaf(queue.tag):
            return
        else:
            queue.data.cur_metric.pending = 0.0
            children = self.tree.children(queue.tag)
            for child in children:
                self.clear_desired_abs_capacity(child)

    def cal_abs_capacity_top_down(self, queue=None):
        """
        This function calculate the abs capacity of each queue by its capacity.
        This function should only be called once at the start time.
        """
        if queue is None:
            queue = self.get_root()
            queue.data.set_abs_capacity(100.0)

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                child.data.set_abs_capacity(queue.data.get_abs_capacity() *
                                            child.data.get_capacity() / 100.0)
                # print(child.data.get_abs_capacity())
                self.cal_capacity_top_down(child)

    def cal_desired_capacity_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()
            queue.data.wish.capacity = 100.0

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = queue.data.wish.abs_capacity
            remain_capaciy = 100.0
            for child in children:
                if child.data.config.fixed:
                    child.data.wish.capacity = child.data.config.capacity
                elif abs_capacity == 0:
                    child.data.wish.capacity = 0
                else:
                    child.data.wish.capacity = child.data.wish.abs_capacity / abs_capacity * 100.0
                self.cal_desired_capacity_top_down(child)

    def cal_capacity_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = queue.data.get_abs_capacity()
            for child in children:
                if abs_capacity == 0:
                    child.data.set_capacity(0)
                else:
                    child.data.set_capacity(child.data.get_abs_capacity() /
                                            abs_capacity * 100)
                self.cal_capacity_top_down(child)

    def cal_abs_memory_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()
            queue.data.cal_totalMb_mean()
            queue.data.clear_totalMb()

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                child.data.set_abs_memory(queue.data.get_abs_memory() *
                                          child.data.get_capacity() / 100)
                self.cal_abs_memory_top_down(child)

    def clear_mus_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            queue.data.clear_queue_memory_usage()
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.clear_mus_top_down(child)

    def clear_jobs_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            queue.data.clear_jobs()
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.clear_jobs_top_down(child)

    def clear_pendings_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            queue.data.clear_pendings()
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.clear_pendings_top_down(child)

    def before_scoring(self):
        self.cal_abs_capacity_bottom_up()
        self.cal_capacity_top_down()
        self.cal_abs_memory_top_down()

    def after_scoreing(self):
        self.clear_jobs_top_down()
        self.clear_pendings_top_down()
        self.clear_mus_top_down()

    def score(self):
        self.before_scoring()
        # self.cal_slowdown()
        # self.cal_slowdown_division()
        self.cal_pending()
        self.cal_pending_division()
        self.cal_memory_usage()
        self.cal_mem_usage_division()
        self.after_scoreing()

    def before_predict(self):
        self.cal_desired_abs_capacity_bottom_up()

    def after_predict(self):
        self.clear_desired_abs_capacity()

    def predict(self):
        self.before_predict()
        self.cal_desired_capacity_top_down()
        self.after_predict()
Beispiel #19
0
        inner_bags = get_inner_bags(split_line[1])

        existing_bags = find_existing_bag(baggage_claim, outer_bag)
        if (len(existing_bags) > 0):
            for bag in existing_bags:
                for i in inner_bags:
                    baggage_claim.create_node(i, parent=bag.identifier)

        else:
            outer_bag_node = baggage_claim.create_node(outer_bag,
                                                       parent='baggage claim')
            for i in inner_bags:
                inner_existing = find_existing_top_level_bag(baggage_claim, i)
                print(f'inner_existing {inner_existing}')
                if (len(inner_existing) > 0):
                    #tree.move(node, new_parent)
                    baggage_claim.move_node(inner_existing[0].identifier,
                                            outer_bag_node.identifier)
                # if inner already exists
                # move existing
                else:
                    baggage_claim.create_node(i,
                                              parent=outer_bag_node.identifier)

    baggage_claim.show()
    shiny = list(
        baggage_claim.filter_nodes(lambda n: n.tag == 'shiny gold bag'))
    print(f'shiny gold bags: {len(shiny)}')
    for child in baggage_claim.children('baggage claim'):
        pass
        # print(f'{child.tag} {baggage_claim.children(child.identifier)[0]}')
    if words[0] == 'extmodule':
        words = line.split()
        extmodule = words[1]
        # print(extmodule)
        tree.create_node(extmodule + '(ext)', extmodule, parent=circuit)
        cur_module = extmodule

    if words[
            0] == 'inst':  # @inst, re-assign the parent of inst_module from top to cur_module
        words = line.split()
        inst_name = words[1]
        inst_module = words[3]
        # print(inst_module)
        # print(cur_module)
        tree.move_node(inst_module, cur_module)

tree.show()

total_parent_cnt = 0
total_children_cnt = 0
total_modules = 0

for node in tree.expand_tree(mode=Tree.DEPTH):
    total_modules += 1
    if (tree[node].is_leaf()):
        continue
    total_parent_cnt += 1
    total_children_cnt += len(tree.children(node))

tmp_list = []
Beispiel #21
0
class Mwrp:
    def __init__(self, world, number_of_agent, start_node):
        self.number_of_agent = number_of_agent
        self.open_list = np.array([start_node])
        self.tree = Tree()
        self.tree.create_node(start_node.pos.__str__(),
                              start_node.pos.__str__(),
                              data=start_node)
        self.world = world
        self.node_expend_index = 1
        self.need_to_see = np.sum(self.world.grid_map == 0)

    def insert_to_open_list(self, new_node):
        for index, data in enumerate(self.open_list):
            if data.f > new_node.f:
                self.open_list = np.insert(self.open_list, index, new_node)
                return
        self.open_list = np.append(self.open_list, new_node)

    def pop_open_list(self):
        return self.open_list[0].pos

    def move_from_open_to_close(self, index=0):
        self.open_list = np.delete(self.open_list, index)

    def heuristic(self, state):
        return 1

    # #old
    # def fix_g_subtree(self,neighbor,state):
    #     tmp_new_open = []
    #     #self.tree.move_node(neighbor.__str__(), state.__str__())
    #
    #     for node in mwrp.tree.subtree(state.data.pos.__str__()).expand_tree(mode=Tree.DEPTH):
    #         parent = mwrp.tree.parent(node)
    #
    #         new_g = parent.data.g + Utils.n_dim_distance(
    #             self.tree.get_node(node).data.pos, parent.data.pos)
    #         self.tree.get_node(node).data.f = self.tree.get_node(node).data.f - self.tree.get_node(node).data.g + new_g
    #
    #         self.tree.get_node(node).data.g = new_g
    #         tmp_new_open.append(self.tree.get_node(node))
    #
    #     for need_new_open in tmp_new_open:
    #         for index, data in enumerate(self.open_list):
    #             if (np.all(data.pos == need_new_open.data.pos)):
    #                 self.open_list = np.delete(self.open_list, index)
    #                 self.insert_to_open_list(self.tree.get_node(need_new_open.data.pos.__str__()).data)
    #                 break

    def get_all_seen(self, state):

        tmp_node = self.tree.get_node(state.identifier)
        tmp_seen = self.world.get_seen(tmp_node)

        while not self.tree.get_node(tmp_node.identifier).is_root():
            tmp_node = self.tree.get_node(
                tmp_node.predecessor(self.tree.identifier))
            tmp_seen = np.vstack((tmp_seen, self.world.get_seen(tmp_node)))

        all_seen = np.unique(tmp_seen, axis=0)

        return all_seen

    # def get_all_seen1(self, state):
    #
    #     tmp_node = self.tree.get_node(state.identifier)
    #     dictOfWords = {i.__str__(): 0 for i in self.world.get_seen(tmp_node)}
    #
    #     while not self.tree.get_node(tmp_node.identifier).is_root():
    #         tmp_node = self.tree.get_node(tmp_node.predecessor(self.tree.identifier))
    #         for seen in self.world.get_seen(tmp_node):
    #             if not seen.__str__() in dictOfWords:
    #                 dictOfWords[seen.__str__()]=0
    #
    #     return dictOfWords

    # def expend_all(self,state):
    #     for neighbor in self.world.get_neighbors(state):
    #         if self.world.in_bund(neighbor) and self.world.is_obstical(neighbor):
    #             new_g = mwrp.tree.get_node(state.__str__()).data.g + Utils.n_dim_distance(state, neighbor)
    #             if not self.tree.get_node(neighbor.__str__()):
    #                 h = self.heuristic(state)
    #                 new_node=Node(neighbor,new_g,new_g+h)
    #                 self.tree.create_node(neighbor.__str__(),neighbor.__str__(),parent=(state.__str__()),data=new_node)
    #                 self.insert_to_open_list(new_node)
    #             else:
    #                 self.fix_g(neighbor, state)
    #
    #     #self.tree.show()
    #     self.move_from_open_to_close()

    def expend(self, state):
        move_index = np.zeros(self.number_of_agent).astype(int)
        for i in range(LOS**number_of_agent):
            for j in range(number_of_agent):
                i, index = divmod(i, LOS)
                move_index[j] = index
            neighbor = self.world.get_one_neighbor(state, move_index)

            if self.world.in_bund(neighbor) and self.world.is_obstical(
                    neighbor):
                new_g = mwrp.tree.get_node(
                    state.__str__()).data.g + Utils.n_dim_distance(
                        state, neighbor)
                if not self.tree.contains(neighbor.__str__()):
                    h = self.heuristic(state)
                    new_node = Node(neighbor, new_g, new_g + h)
                    self.tree.create_node(neighbor.__str__(),
                                          neighbor.__str__(),
                                          parent=(state.__str__()),
                                          data=new_node)
                    self.insert_to_open_list(new_node)
                else:
                    if new_g < self.tree.get_node(neighbor.__str__()).data.g:
                        self.fix_g(neighbor, state)

        self.move_from_open_to_close()

    def fix_g(self, old_state, new_parent):
        state = self.tree.get_node(old_state.__str__())

        old_parent = self.tree.get_node(state.predecessor(
            self.tree.identifier))

        new_parent = self.tree.get_node(new_parent.__str__())

        if self.seen_comparison(new_parent, old_parent):

            self.tree.move_node(state.identifier, new_parent.identifier)

            new_g = new_parent.data.g + \
                    Utils.n_dim_distance(self.tree.get_node(state.identifier).data.pos, new_parent.data.pos)

            self.tree.get_node(state.identifier).data.f = self.tree.get_node(state.identifier).data.f - \
                                                          self.tree.get_node(state.identifier).data.g + new_g

            self.tree.get_node(state.identifier).data.g = new_g

            for index, data in enumerate(self.open_list):
                if np.all(data.pos == state.data.pos):
                    self.open_list = np.delete(self.open_list, index)
                    self.insert_to_open_list(
                        self.tree.get_node(state.identifier).data)
                    break

    def goal_test(self, state):
        seen_number = self.world.get_seen(state).shape[0]
        if (seen_number == self.need_to_see):
            return True
        return False

    def seen_comparison(self, state_new, state_old):

        seen_new = self.get_all_seen(state_new).tolist()

        seen_old = self.get_all_seen(state_old).tolist()

        if seen_new.shape[0] < seen_old.shape[0]:
            return False
        for one_seen in seen_old:
            if one_seen not in seen_new:
                return False
        return True
Beispiel #22
0
from treelib import Tree, Node
if __name__ == '__main__':
    # 树的创建,每个节点都有唯一的identifier作为标记,可以手动指定
    tree = Tree()
    # 增加树的节点,tag是树输出时的显示,identifier是唯一标志,根节点可以不指定父
    tree.create_node(tag='root', identifier='root', data=0)
    tree.create_node(tag='1_child',
                     identifier='1_child',
                     data=1,
                     parent='root')
    tree.create_node(tag='2_child',
                     identifier='2_child',
                     data=2,
                     parent='root')
    tree.create_node(tag='3_child',
                     identifier='3_child',
                     data=3,
                     parent='1_child')

    # 树的粘贴,需要注意的是这个nid是tree的identifier,不是tree2的
    tree2 = Tree()
    tree2.create_node(tag='tutu', identifier='tutu', data=0)
    tree.paste(nid='root', new_tree=tree2)

    # 删除树的节点
    tree.remove_node('tutu')
    # 移动树的节点
    tree.move_node('3_child', 'root')
    # 打印树的结构
    tree.show()
def TreeSequenceToTreeClass(simulation,
                            tree_event_sequence,
                            is_AA_mutation_in_root_node=False):

    t1 = time.time()

    tree_size = len(tree_event_sequence.tree_sequence)

    tree_class_tree = Tree()
    root_id = 'Unknown'
    array_tree = simulation.GetTree()
    for i in range(tree_size):
        if array_tree[i] == -1:
            root_id = i
            tree_class_tree.create_node(root_id, root_id,
                                        data=None)  # placeholder on root
            break  # there can be only one root

    if root_id == 'Unknown':
        raise ValueError("There is no root in this tree")

    for i in range(tree_size):
        if i != root_id:
            tree_class_tree.create_node(
                i, i, parent=root_id, data=None)  # placeholder on other places

    for i in range(tree_size):
        if i != root_id:
            tree_class_tree.move_node(i, array_tree[i])

    for i in range(tree_size):
        noc = len(tree_class_tree.get_node(i).fpointer)  # number of children
        ni = tree_event_sequence.tree_sequence[i].node_id
        iam = tree_event_sequence.tree_sequence[i].is_a_mutation
        on = tree_event_sequence.tree_sequence[i].old_nucleotyde
        nn = tree_event_sequence.tree_sequence[i].new_nucleotyde
        mc = tree_event_sequence.tree_sequence[i].mutation_cite
        tti = tree_event_sequence.tree_sequence[i].tree_time
        tty = tree_event_sequence.tree_sequence[i].tree_type

        if (i == root_id) and (is_AA_mutation_in_root_node == True):
            tree_class_tree.update_node(i,
                                        data=TreeEvent(is_a_mutation=True,
                                                       number_of_children=noc,
                                                       old_nucleotyde=0,
                                                       new_nucleotyde=0,
                                                       mutation_cite=0,
                                                       tree_time=0,
                                                       tree_type='coalescence',
                                                       node_id=ni))
        else:
            tree_event = TreeEvent(is_a_mutation=iam,
                                   number_of_children=noc,
                                   old_nucleotyde=on,
                                   new_nucleotyde=nn,
                                   mutation_cite=mc,
                                   tree_time=tti,
                                   tree_type=tty,
                                   node_id=ni)
            tree_class_tree.update_node(i, data=tree_event)

    t2 = time.time()

    print('Time spent on conversion to tree class = ', t2 - t1)

    return tree_class_tree
print tree.is_branch('diane')
print('\n')


print("#"*4 + "OOhh~ new members enter Jill's family")
new_tree = Tree()
new_tree.create_node("n1", 1)  # root node
new_tree.create_node("n2", 2, parent=1)
new_tree.create_node("n3", 3, parent=1)
tree.paste('jill', new_tree)
tree.show()
print('\n')


print("#"*4 + "We are sorry they are gone accidently :(")
tree.remove_node(1)
tree.show()
print('\n')


print("#"*4 + "Now Jill moves to live with Grand-x-father Harry")
tree.move_node('jill', 'harry')
tree.show()
print('\n')


print("#"*4 + "A big family for George to talk to Grand-x-father Harry")
for node in tree.rsearch('george', filter=lambda x: x.identifier != 'harry'):
    print node
print('harry')
print('\n')