def testing_gain_increments(increments=[]): classresults = {} for increment in increments: tree = treepredict.buildtree(train_data, gain_increment=increment, gain_threshold=0, instance_minimum=1) trainConfMat, crTrain = treepredict.testTree(train_data, tree) print 'Training set confusion matrix (Classification rate:', crTrain, '):' for row in trainConfMat: print '\t'.join(map(lambda x: str(x), row)) print '' testConfMat, crTest = treepredict.testTree(test_data, tree) print 'Test set confusion matrix (Classification rate:', crTest, '):' for row in testConfMat: print '\t'.join(map(lambda x: str(x), row)) print '' classresults[increment] = [crTest] return classresults
def testing_gain_increments(increments=[]): classresults={} for increment in increments: tree=treepredict.buildtree(train_data,gain_increment=increment,gain_threshold=0,instance_minimum=1) trainConfMat, crTrain = treepredict.testTree(train_data, tree) print 'Training set confusion matrix (Classification rate:', crTrain,'):' for row in trainConfMat: print '\t'.join(map(lambda x:str(x), row)) print '' testConfMat, crTest = treepredict.testTree(test_data, tree) print 'Test set confusion matrix (Classification rate:', crTest,'):' for row in testConfMat: print '\t'.join(map(lambda x:str(x), row)) print '' classresults[increment]=[crTest] return classresults
import fileinput import Image import ImageDraw # If the last parameter is set to 0, then all attributes other than 'age' and 'war' would be used. train_data, test_data = fileinput.loadDataset(5, ['age','gender','occupation','fantasy','film-noir', 'drama', 'western'], 1) tree=treepredict.buildtree(train_data,gain_increment=0,gain_threshold=0,instance_minimum=100) # Let's see what it looks like... print "\nFinal tree...\n" treepredict.printtree(tree) trainConfMat, crTrain = treepredict.testTree(train_data, tree) print 'Training set confusion matrix (Classification rate:', crTrain,'):' for row in trainConfMat: print '\t'.join(map(lambda x:str(x), row)) print '' testConfMat, crTest = treepredict.testTree(test_data, tree) print 'Test set confusion matrix (Classification rate:', crTest,'):' for row in testConfMat: print '\t'.join(map(lambda x:str(x), row)) print ''
import fileinput import Image import ImageDraw # If the last parameter is set to 0, then all attributes other than 'age' and 'war' would be used. train_data, test_data = fileinput.loadDataset(2, ['age', 'gender','occupation','unknown genre','film-noir', 'horror', 'western'], 1) tree=treepredict.buildtree(train_data,gain_increment=0,gain_threshold=0,instance_minimum=0) # Let's see what it looks like... print "\nFinal tree...\n" treepredict.printtree(tree) trainConfMat, crTrain = treepredict.testTree(train_data, tree) print 'Training set confusion matrix (Classification rate:', crTrain,'):' for row in trainConfMat: print '\t'.join(map(lambda x:str(x), row)) print '' testConfMat, crTest = treepredict.testTree(test_data, tree) print 'Test set confusion matrix (Classification rate:', crTest,'):' for row in testConfMat: print '\t'.join(map(lambda x:str(x), row)) print ''