Beispiel #1
0
def requestGenerator(input_name, output_name, c, h, w, format, dtype, FLAGS):
    # Preprocess image into input data according to model requirements
    image_data = None
    with Image.open(FLAGS.image_filename) as img:
        image_data = preprocess(img, format, dtype, c, h, w, FLAGS.scaling)

    repeated_image_data = [image_data for _ in range(FLAGS.batch_size)]
    batched_image_data = np.stack(repeated_image_data, axis=0)

    # Set the input data
    inputs = []
    if FLAGS.protocol.lower() == "grpc":
        inputs.append(grpcclient.InferInput(input_name, batched_image_data.shape, dtype))
        inputs[0].set_data_from_numpy(batched_image_data)
    else:
        inputs.append(httpclient.InferInput(input_name, batched_image_data.shape, dtype))
        inputs[0].set_data_from_numpy(batched_image_data, binary_data=False)

    outputs = []
    if FLAGS.protocol.lower() == "grpc":
        outputs.append(grpcclient.InferRequestedOutput(output_name, class_count=FLAGS.classes))
    else:
        outputs.append(httpclient.InferRequestedOutput(
            output_name, binary_data=False, class_count=FLAGS.classes))

    yield inputs, outputs, FLAGS.model_name, FLAGS.model_version
Beispiel #2
0
def sync_send(triton_client, result_list, values, batch_size, sequence_id,
              model_name, model_version):

    count = 1
    for value in values:
        # Create the tensor for INPUT
        value_data = np.full(shape=[batch_size, 1],
                             fill_value=value,
                             dtype=np.int32)
        inputs = []
        inputs.append(httpclient.InferInput('INPUT', value_data.shape,
                                            "INT32"))
        # Initialize the data
        # FIXME, negative value in binary form can't be handled properly,
        # which causes the library to raise decode exception.
        inputs[0].set_data_from_numpy(value_data, binary_data=False)
        outputs = []
        outputs.append(httpclient.InferRequestedOutput('OUTPUT'))
        # Issue the synchronous sequence inference.
        result = triton_client.infer(model_name=model_name,
                                     inputs=inputs,
                                     outputs=outputs,
                                     sequence_id=sequence_id,
                                     sequence_start=(count == 1),
                                     sequence_end=(count == len(values)))
        result_list.append(result.as_numpy('OUTPUT'))
        count = count + 1
Beispiel #3
0
def test_infer(model_name, input0_data, input1_data):
    inputs = []
    outputs = []
    inputs.append(httpclient.InferInput('INPUT0', [1, 16], "INT32"))
    inputs.append(httpclient.InferInput('INPUT1', [1, 16], "INT32"))

    # Initialize the data
    inputs[0].set_data_from_numpy(input0_data, binary_data=False)
    inputs[1].set_data_from_numpy(input1_data, binary_data=True)

    outputs.append(httpclient.InferRequestedOutput('OUTPUT0',
                                                   binary_data=True))
    outputs.append(
        httpclient.InferRequestedOutput('OUTPUT1', binary_data=False))
    query_params = {'test_1': 1, 'test_2': 2}
    results = triton_client.infer(model_name,
                                  inputs,
                                  outputs=outputs,
                                  query_params=query_params)

    return results
def TestIdentityInference(np_array, binary_data):
    model_name = "savedmodel_zero_1_object"
    inputs = []
    outputs = []

    inputs.append(httpclient.InferInput('INPUT0', np_array.shape, "BYTES"))
    inputs[0].set_data_from_numpy(np_array, binary_data=binary_data)

    outputs.append(
        httpclient.InferRequestedOutput('OUTPUT0', binary_data=binary_data))

    results = triton_client.infer(model_name=model_name,
                                  inputs=inputs,
                                  outputs=outputs)
    if np_array.dtype == np.object:
        if not np.array_equal(np_array,
                              np.char.decode(results.as_numpy('OUTPUT0'))):
            print(results.as_numpy('OUTPUT0'))
            sys.exit(1)
    else:
        if not np.array_equal(np_array, results.as_numpy('OUTPUT0')):
            print(results.as_numpy('OUTPUT0'))
            sys.exit(1)
    inputs.append(httpclient.InferInput('INPUT0', [1, 16], "INT32"))
    inputs.append(httpclient.InferInput('INPUT1', [1, 16], "INT32"))

    # Create the data for the two input tensors. Initialize the first
    # to unique integers and the second to all ones.
    input0_data = np.arange(start=0, stop=16, dtype=np.int32)
    input0_data = np.expand_dims(input0_data, axis=0)
    input1_data = np.ones(shape=(1, 16), dtype=np.int32)

    # Initialize the data
    # Enable binary_data after DLIS-1204 is fixed.
    inputs[0].set_data_from_numpy(input0_data, binary_data=False)
    inputs[1].set_data_from_numpy(input1_data, binary_data=False)

    outputs.append(
        httpclient.InferRequestedOutput('OUTPUT0', binary_data=False))
    outputs.append(
        httpclient.InferRequestedOutput('OUTPUT1', binary_data=False))

    # Define the callback function. Note the last two parameters should be
    # result and error. InferenceServerClient would povide the results of an
    # inference as tritongrpcclient.core.InferResult in result. For successful
    # inference, error will be None, otherwise it will be an object of
    # tritongrpcclient.utils.InferenceServerException holding the error details.
    def callback(user_data, result, error):
        if not error:
            user_data.append(result)
        else:
            user_data.append(error)

    # list to hold the results of inference.
    in0 = np.arange(start=0, stop=16, dtype=np.int32)
    in0 = np.expand_dims(in0, axis=0)
    in1 = np.ones(shape=(1, 16), dtype=np.int32)
    expected_sum = np.add(in0, in1)
    expected_diff = np.subtract(in0, in1)

    in0n = np.array([str(x) for x in in0.reshape(in0.size)], dtype=object)
    input0_data = in0n.reshape(in0.shape)
    in1n = np.array([str(x) for x in in1.reshape(in1.size)], dtype=object)
    input1_data = in1n.reshape(in1.shape)

    # Initialize the data
    inputs[0].set_data_from_numpy(input0_data, binary_data=True)
    inputs[1].set_data_from_numpy(input1_data, binary_data=False)

    outputs.append(httpclient.InferRequestedOutput('OUTPUT0',
                                                   binary_data=True))
    outputs.append(
        httpclient.InferRequestedOutput('OUTPUT1', binary_data=False))

    results = triton_client.infer(model_name=model_name,
                                  inputs=inputs,
                                  outputs=outputs)

    # Get the output arrays from the results
    output0_data = results.as_numpy('OUTPUT0')
    output1_data = results.as_numpy('OUTPUT1')

    for i in range(16):
        print(
            str(input0_data[0][i]) + " + " + str(input1_data[0][i]) + " = " +
            str(output0_data[0][i]))