def win_probability(a, b): deltaMu = sum([x.mu for x in a]) - sum([x.mu for x in b]) sumSigma = sum([x.sigma**2 for x in a]) + sum([x.sigma**2 for x in b]) playerCount = len(a) + len(b) denominator = math.sqrt(playerCount * (trueskill.BETA * trueskill.BETA) + sumSigma) return cdf(deltaMu / denominator)
def win_probability(self, rating_a, rating_b): from trueskill import BETA from math import sqrt from trueskill.backends import cdf delta_mu = rating_a.mu - rating_b.mu denom = sqrt(2 * (BETA * BETA) + pow(rating_a.sigma, 2) \ + pow(rating_b.sigma, 2)) return cdf(delta_mu / denom)
def predict_win_probability(team_1, team_2): a = [role.rating for role in team_1.ratings] b = [role.rating for role in team_2.ratings] deltaMu = sum([x.mu for x in a]) - sum([x.mu for x in b]) sumSigma = sum([x.sigma ** 2 for x in a]) + sum([x.sigma ** 2 for x in b]) playerCount = len(a) + len(b) denominator = math.sqrt(playerCount * (BETA * BETA) + sumSigma) return cdf(deltaMu / denominator)
def _calculate_win_probability_internal(a: Collection[Rating], b: Collection[Rating]) -> int: delta_mu = sum([x.mu for x in a]) - sum([x.mu for x in b]) sum_sigma = sum([x.sigma**2 for x in a]) + sum([x.sigma**2 for x in b]) player_count = len(a) + len(b) denominator = max( trueskill.DELTA, sqrt(player_count * (trueskill.BETA**2) + sum_sigma).real) return cdf(delta_mu / denominator)
def predict(self, red_alliance, blue_alliance): self.init_teams(red_alliance, blue_alliance) a = [self.trueskills[t] for t in red_alliance] b = [self.trueskills[t] for t in blue_alliance] delta_mu = sum([x.mu for x in a]) - sum([x.mu for x in b]) sum_sigma = sum([x.sigma ** 2 for x in a + b]) player_count = len(a) + len(b) denominator = (player_count * (self.env.beta**2) + sum_sigma) ** 0.5 return backends.cdf(delta_mu / denominator)
def win_probability(player_rating, opponent_rating): delta_mu = player_rating.mu - opponent_rating.mu denom = sqrt(2 * (BETA * BETA) + pow(player_rating.sigma, 2) + pow(opponent_rating.sigma, 2)) return cdf(delta_mu / denom)
def Pwin(rAlist=[Rating()], rBlist=[Rating()]): deltaMu = sum([x.mu for x in rAlist]) - sum([x.mu for x in rBlist]) rsss = sqrt(sum([x.sigma**2 for x in rAlist]) + sum([x.sigma**2 for x in rBlist])) return cdf(deltaMu / rsss)
def win_prob(r1, r2): delta = r1.mu - r2.mu #Perhaps we should weight the uncertainty higher... rsss = sqrt(r1.sigma**2 + r2.sigma**2) return cdf(delta / rsss)
def win_pct(self, player, opp=None): return cdf(self.win_stdev(player, opp))
def win_probability(self, player, opponent): delta_mu = player.rating.mu - opponent.rating.mu - calc_draw_margin(self.draw, 2, self.env) denom = sqrt(2 * (self.beta * self.beta) + pow(player.rating.sigma, 2) + pow(opponent.rating.sigma, 2)) return cdf(delta_mu / denom)
def Pwin(rA=Rating(), rB=Rating()): deltaMu = rA.mu - rB.mu rsss = sqrt(rA.sigma**2 + rB.sigma**2) return cdf(deltaMu/rsss)
def Pwin(rA=trueskill.Rating(), rB=trueskill.Rating()): deltaMu = rA.mu - rB.mu rsss = math.sqrt(rA.sigma**2 + rB.sigma**2) _prob = cdf(deltaMu / rsss) return _prob