Beispiel #1
0
def preprocess_data(infile):
    images = tsa.read_data(INPUT_FOLDER + infile)
    subject = infile.split('.')[0]

    # transpose so that the slice is the first dimension shape(16, 620, 512)
    images = images.transpose()
    threat_zone_examples = []
    # for each threat zone, loop through each image, mask off the zone and then crop it
    for tz_num, threat_zone_x_crop_dims in enumerate(
            zip(tsa.zone_slice_list, tsa.zone_crop_list)):

        threat_zone = threat_zone_x_crop_dims[0]
        crop_dims = threat_zone_x_crop_dims[1]

        # get label
        label = np.array(
            tsa.get_subject_zone_label(
                tz_num, tsa.get_subject_labels(STAGE1_LABELS, subject)))

        for img_num, img in enumerate(images):

            if threat_zone[img_num] is not None:

                base_img = np.flipud(img)
                rescaled_img = tsa.convert_to_grayscale(base_img)
                high_contrast_img = tsa.spread_spectrum(rescaled_img)
                masked_img = tsa.roi(high_contrast_img, threat_zone[img_num])
                cropped_img = tsa.crop(masked_img, crop_dims[img_num])
                normalized_img = tsa.normalize(cropped_img)
                zero_centered_img = tsa.zero_center(normalized_img)
                threat_zone_examples.append([[tz_num], zero_centered_img,
                                             label])
    for tz_num, tz in enumerate(tsa.zone_slice_list):

        tz_examples_to_save = []
        tz_examples = [
            example for example in threat_zone_examples
            if example[0] == [tz_num]
        ]
        tz_examples_to_save.append([[features_label[1], features_label[2]]
                                    for features_label in tz_examples])

        #save batch
        np.save(
            PROCESSED_FOLDER + 'input-tz{}-{}-{}.npy'.format(
                tz_num + 1, len(threat_zone_examples[0][1][0]),
                len(threat_zone_examples[0][1][1])), tz_examples_to_save)
Beispiel #2
0
def preprocess_tsa_data(infile):
    images = tsa.read_data(INPUT_FOLDER + infile)
    subject = infile.split('.')[0]  

    # transpose so that the slice is the first dimension shape(16, 620, 512)
    images = images.transpose()
    threat_zone_examples = []
    # for each threat zone, loop through each image, mask off the zone and then crop it
    for tz_num, threat_zone_x_crop_dims in enumerate(zip(tsa.zone_slice_list, tsa.zone_crop_list)):

        threat_zone = threat_zone_x_crop_dims[0]
        crop_dims = threat_zone_x_crop_dims[1]

        # get label
        label = np.array(tsa.get_subject_zone_label(tz_num, tsa.get_subject_labels(STAGE1_LABELS, subject)))

        for img_num, img in enumerate(images):
            # print('Threat Zone:Image -> {}:{}'.format(tz_num, img_num))
            # print('Threat Zone Label -> {}'.format(label))
            
            if threat_zone[img_num] is not None:

                # correct the orientation of the image
                # print('-> reorienting base image') 
                base_img = np.flipud(img)
                # print('-> shape {}|mean={}'.format(base_img.shape, base_img.mean()))

                # convert to grayscale
                # print('-> converting to grayscale')
                rescaled_img = tsa.convert_to_grayscale(base_img)
                # print('-> shape {}|mean={}'.format(rescaled_img.shape, rescaled_img.mean()))

                # spread the spectrum to improve contrast
                # print('-> spreading spectrum')
                high_contrast_img = tsa.spread_spectrum(rescaled_img)
                # print('-> shape {}|mean={}'.format(high_contrast_img.shape,high_contrast_img.mean()))

                # get the masked image
                # print('-> masking image')
                masked_img = tsa.roi(high_contrast_img, threat_zone[img_num])
                # print('-> shape {}|mean={}'.format(masked_img.shape, masked_img.mean()))

                # crop the image
                # print('-> cropping image')
                cropped_img = tsa.crop(masked_img, crop_dims[img_num])
                # print('-> shape {}|mean={}'.format(cropped_img.shape, cropped_img.mean()))

                # normalize the image
                # print('-> normalizing image')
                normalized_img = tsa.normalize(cropped_img)
                # print('-> shape {}|mean={}'.format(normalized_img.shape, normalized_img.mean()))

                # zero center the image
                # print('-> zero centering')
                zero_centered_img = tsa.zero_center(normalized_img)
                # print('-> shape {}|mean={}'.format(zero_centered_img.shape,zero_centered_img.mean()))

                # append the features and labels to this threat zone's example array
                # print ('-> appending example to threat zone {}'.format(tz_num))
                threat_zone_examples.append([[tz_num], zero_centered_img, label])
                print ('-> shape {:d}:{:d}:{:d}:{:d}:{:d}:{:d}'.format(len(threat_zone_examples),len(threat_zone_examples[0]),len(threat_zone_examples[0][0]),len(threat_zone_examples[0][1][0]),len(threat_zone_examples[0][1][1]),len(threat_zone_examples[0][2])))
            else:
                print('-> No view of tz:{} in img:{}. Skipping to next...'.format(tz_num, img_num))
            print('------------------------------------------------')


    for tz_num, tz in enumerate(tsa.zone_slice_list):

        tz_examples_to_save = []

        # write out the batch and reset
        print(' -> writing: ' + PROCESSED_FOLDER + 'preprocessed_TSA_scans-tz{}-{}-{}.npy'.format(tz_num+1, len(threat_zone_examples[0][1][0]),len(threat_zone_examples[0][1][1])))

        # get this tz's examples
        tz_examples = [example for example in threat_zone_examples if example[0] == [tz_num]]

        # drop unused columns
        tz_examples_to_save.append([[features_label[1], features_label[2]] for features_label in tz_examples])

        #save batch
        np.save(PROCESSED_FOLDER + 'input-tz{}-{}-{}.npy'.format(tz_num+1, len(threat_zone_examples[0][1][0]),len(threat_zone_examples[0][1][1])), tz_examples_to_save)
def preprocess_tsa_data():

    # OPTION 1: get a list of all subjects for which there are labels
    #df = pd.read_csv(STAGE1_LABELS)
    #df['Subject'], df['Zone'] = df['Id'].str.split('_',1).str
    #SUBJECT_LIST = df['Subject'].unique()

    # OPTION 2: get a list of all subjects for whom there is data
    # SUBJECT_LIST = [os.path.splitext(subject)[0] for subject in os.listdir(INPUT_FOLDER)]
    #print(len(SUBJECT_LIST))
    #print(SUBJECT_LIST)

    # OPTION 3: get a list of subjects for small bore test purposes
    SUBJECT_LIST = [
        '00360f79fd6e02781457eda48f85da90', '0043db5e8c819bffc15261b1f1ac5e42',
        '0050492f92e22eed3474ae3a6fc907fa', '006ec59fa59dd80a64c85347eef810c7',
        '0097503ee9fa0606559c56458b281a08', '011516ab0eca7cad7f5257672ddde70e',
        '47e2a4a8e13ec7100f6af8cd839d1bb3', 'e087226320cc189142228b5fb93ed58f'
    ]

    # intialize tracking and saving items
    batch_num = 1
    count = 0
    threat_zone_examples = []
    start_time = timer()
    print(len(SUBJECT_LIST))
    for subject in SUBJECT_LIST:
        count += 1
        # read in the images
        print('--------------------------------------------------------------')
        print('t+> {:5.3f} |Reading images for subject #: {}'.format(
            timer() - start_time, subject))
        print('--------------------------------------------------------------')
        images = tsa.read_data(INPUT_FOLDER + '/' + subject + '.aps')

        # transpose so that the slice is the first dimension shape(16, 620, 512)
        images = images.transpose()

        # for each threat zone, loop through each image, mask off the zone and then crop it
        for tz_num, threat_zone_x_crop_dims in enumerate(
                zip(tsa.zone_slice_list, tsa.zone_crop_list)):

            threat_zone = threat_zone_x_crop_dims[0]
            crop_dims = threat_zone_x_crop_dims[1]

            # get label
            label = np.array(
                tsa.get_subject_zone_label(
                    tz_num, tsa.get_subject_labels(STAGE1_LABELS, subject)))
            # print(STAGE1_LABELS, subject)
            for img_num, img in enumerate(images):

                print('Threat Zone:Image -> {}:{}'.format(tz_num, img_num))
                print('Threat Zone Label -> {}'.format(label))
                if label[0] == 0:
                    print('threat is present')
                    if threat_zone[img_num] is not None:

                        # correct the orientation of the image
                        print('-> reorienting base image')
                        base_img = np.flipud(img)
                        print('-> shape {}|mean={}'.format(
                            base_img.shape, base_img.mean()))

                        # convert to grayscale
                        print('-> converting to grayscale')
                        rescaled_img = tsa.convert_to_grayscale(base_img)
                        print('-> shape {}|mean={}'.format(
                            rescaled_img.shape, rescaled_img.mean()))

                        # spread the spectrum to improve contrast
                        print('-> spreading spectrum')
                        high_contrast_img = tsa.spread_spectrum(rescaled_img)
                        print('-> shape {}|mean={}'.format(
                            high_contrast_img.shape, high_contrast_img.mean()))

                        # get the masked image
                        print('-> masking image')
                        masked_img = tsa.roi(high_contrast_img,
                                             threat_zone[img_num])
                        print('-> shape {}|mean={}'.format(
                            masked_img.shape, masked_img.mean()))

                        # crop the image
                        print('-> cropping image')
                        cropped_img = tsa.crop(masked_img, crop_dims[img_num])
                        print('-> shape {}|mean={}'.format(
                            cropped_img.shape, cropped_img.mean()))

                        # normalize the image
                        print('-> normalizing image')
                        normalized_img = tsa.normalize(cropped_img)
                        print('-> shape {}|mean={}'.format(
                            normalized_img.shape, normalized_img.mean()))

                        # zero center the image
                        print('-> zero centering')
                        zero_centered_img = tsa.zero_center(normalized_img)
                        print('-> shape {}|mean={}'.format(
                            zero_centered_img.shape, zero_centered_img.mean()))

                        # append the features and labels to this threat zone's example array
                        print('-> appending example to threat zone {}'.format(
                            tz_num))
                        threat_zone_examples.append([[tz_num],
                                                     zero_centered_img, label])
                        center = (125, 125)
                        M = cv2.getRotationMatrix2D(center, 5, 1.0)
                        rotated = cv2.warpAffine(zero_centered_img, M,
                                                 (250, 250))
                        # print('rotated image shape {} | mean= {}'.format(zero_centered_img.shape,
                        #  zero_centered_img.mean()))
                        # cv2.imwrite("thumbnail.png", cropped)
                        # cv2.imwrite("rotated.jpg", rotated)
                        # cv2.imshow("original.jpg", zero_centered_img)
                        # cv2.waitKey(0)
                        # cv2.imshow("rotated.jpg", rotated)
                        # cv2.waitKey(0)
                        threat_zone_examples.append([[tz_num], rotated, label])
                        M = cv2.getRotationMatrix2D(center, 10, 1.0)
                        rotated1 = cv2.warpAffine(zero_centered_img, M,
                                                  (250, 250))
                        threat_zone_examples.append([[tz_num], rotated1,
                                                     label])
                        # cv2.imshow("rotated1.jpg", rotated1)
                        # cv2.waitKey(0)
                        M = cv2.getRotationMatrix2D(center, 15, 1.0)
                        rotated2 = cv2.warpAffine(zero_centered_img, M,
                                                  (250, 250))
                        threat_zone_examples.append([[tz_num], rotated2,
                                                     label])
                        # cv2.imshow("rotated2.jpg", rotated2)
                        # cv2.waitKey(0)
                        # M = cv2.getRotationMatrix2D(center, 20, 1.0)
                        rotated3 = cv2.warpAffine(zero_centered_img, M,
                                                  (250, 250))
                        threat_zone_examples.append([[tz_num], rotated3,
                                                     label])
                        # cv2.imshow("rotated3.jpg", rotated3)
                        # cv2.waitKey(0)
                        print('-> shape {:d}:{:d}:{:d}:{:d}:{:d}:{:d}'.format(
                            len(threat_zone_examples),
                            len(threat_zone_examples[0]),
                            len(threat_zone_examples[0][0]),
                            len(threat_zone_examples[0][1][0]),
                            len(threat_zone_examples[0][1][1]),
                            len(threat_zone_examples[0][2])))
                    else:
                        print(
                            '-> No view of tz:{} in img:{}. Skipping to next...'
                            .format(tz_num, img_num))
                    print('------------------------------------------------')
                else:
                    print('threat not present and label is', label[0])
                    if count >= 0:
                        # count = 0
                        print('IN LOOP')
                        if threat_zone[img_num] is not None:
                            # correct the orientation of the image
                            print('-> reorienting base image')
                            base_img = np.flipud(img)
                            print('-> shape {}|mean={}'.format(
                                base_img.shape, base_img.mean()))

                            # convert to grayscale
                            print('-> converting to grayscale')
                            rescaled_img = tsa.convert_to_grayscale(base_img)
                            print('-> shape {}|mean={}'.format(
                                rescaled_img.shape, rescaled_img.mean()))

                            # spread the spectrum to improve contrast
                            print('-> spreading spectrum')
                            high_contrast_img = tsa.spread_spectrum(
                                rescaled_img)
                            print('-> shape {}|mean={}'.format(
                                high_contrast_img.shape,
                                high_contrast_img.mean()))

                            # get the masked image
                            print('-> masking image')
                            masked_img = tsa.roi(high_contrast_img,
                                                 threat_zone[img_num])
                            print('-> shape {}|mean={}'.format(
                                masked_img.shape, masked_img.mean()))

                            # crop the image
                            print('-> cropping image')
                            cropped_img = tsa.crop(masked_img,
                                                   crop_dims[img_num])
                            print('-> shape {}|mean={}'.format(
                                cropped_img.shape, cropped_img.mean()))

                            # normalize the image
                            print('-> normalizing image')
                            normalized_img = tsa.normalize(cropped_img)
                            print('-> shape {}|mean={}'.format(
                                normalized_img.shape, normalized_img.mean()))

                            # zero center the image
                            print('-> zero centering')
                            zero_centered_img = tsa.zero_center(normalized_img)
                            print('-> shape {}|mean={}'.format(
                                zero_centered_img.shape,
                                zero_centered_img.mean()))

                            # append the features and labels to this threat zone's example array
                            print('-> appending example to threat zone {}'.
                                  format(tz_num))
                            threat_zone_examples.append([[tz_num],
                                                         zero_centered_img,
                                                         label])
                            print('-> shape {:d}:{:d}:{:d}:{:d}:{:d}:{:d}'.
                                  format(len(threat_zone_examples),
                                         len(threat_zone_examples[0]),
                                         len(threat_zone_examples[0][0]),
                                         len(threat_zone_examples[0][1][0]),
                                         len(threat_zone_examples[0][1][1]),
                                         len(threat_zone_examples[0][2])))
                        # count = 0

        # each subject gets EXAMPLES_PER_SUBJECT number of examples (182 to be exact,
        # so this section just writes out the the data once there is a full minibatch
        # complete.
        if ((len(threat_zone_examples) %
             (BATCH_SIZE * EXAMPLES_PER_SUBJECT)) == 0):
            for tz_num, tz in enumerate(tsa.zone_slice_list):

                tz_examples_to_save = []

                # write out the batch and reset
                print(' -> writing: ' + PREPROCESSED_DATA_FOLDER +
                      'preprocessed_TSA_scans-tz{}-{}-{}-b{}.npy'.format(
                          tz_num + 1, len(threat_zone_examples[0][1][0]),
                          len(threat_zone_examples[0][1][1]), batch_num))

                # get this tz's examples
                tz_examples = [
                    example for example in threat_zone_examples
                    if example[0] == [tz_num]
                ]

                # drop unused columns
                tz_examples_to_save.append(
                    [[features_label[1], features_label[2]]
                     for features_label in tz_examples])

                # save batch.  Note that the trainer looks for tz{} where {} is a
                # tz_num 1 based in the minibatch file to select which batches to
                # use for training a given threat zone
                np.save(
                    PREPROCESSED_DATA_FOLDER +
                    'preprocessed_TSA_scans-tz{}-{}-{}-b{}.npy'.format(
                        tz_num + 1, len(threat_zone_examples[0][1][0]),
                        len(threat_zone_examples[0][1][1]), batch_num),
                    tz_examples_to_save)
                del tz_examples_to_save

            #reset for next batch
            del threat_zone_examples
            threat_zone_examples = []
            batch_num += 1

    # we may run out of subjects before we finish a batch, so we write out
    # the last batch stub

    if (len(threat_zone_examples) > 0):
        for tz_num, tz in enumerate(tsa.zone_slice_list):

            tz_examples_to_save = []

            # write out the batch and reset
            print(' -> writing: ' + PREPROCESSED_DATA_FOLDER +
                  'preprocessed_TSA_scans-tz{}-{}-{}-b{}.npy'.format(
                      tz_num + 1, len(threat_zone_examples[0][1][0]),
                      len(threat_zone_examples[0][1][1]), batch_num))

            # get this tz's examples
            tz_examples = [
                example for example in threat_zone_examples
                if example[0] == [tz_num]
            ]

            # drop unused columns
            tz_examples_to_save.append([[features_label[1], features_label[2]]
                                        for features_label in tz_examples])

            #save batch
            np.save(
                PREPROCESSED_DATA_FOLDER +
                'preprocessed_TSA_scans-tz{}-{}-{}-b{}.npy'.format(
                    tz_num + 1, len(threat_zone_examples[0][1][0]),
                    len(threat_zone_examples[0][1][1]), batch_num),
                tz_examples_to_save)
def preprocess_tsa_data():
    
    # OPTION 1: get a list of all subjects for which there are labels
    # df = pd.read_csv(STAGE1_LABELS)
    # df['Subject'], df['Zone'] = df['Id'].str.split('_',1).str
    # SUBJECT_LIST = df['Subject'].unique()

    # OPTION 2: get a list of all subjects for whom there is data
    SUBJECT_LIST = [os.path.splitext(subject)[0] for subject in os.listdir(INPUT_FOLDER)]
    
    # OPTION 3: get a list of subjects for small bore test purposes
    # SUBJECT_LIST = ['0043db5e8c819bffc15261b1f1ac5e42',
    # 	'00360f79fd6e02781457eda48f85da90',
    #     '01c08047f617de893bef104fb309203a',
    #     '011516ab0eca7cad7f5257672ddde70e',
    #     '01941f33fd090ae5df8c95992c027862',
    #     '0050492f92e22eed3474ae3a6fc907fa',
    #     '0097503ee9fa0606559c56458b281a08']
    
    # intialize tracking and saving items
    batch_num = 1
    threat_zone_examples = []
    start_time = timer()
    
    for subject in SUBJECT_LIST:

        # read in the images
        print('--------------------------------------------------------------')
        print('t+> {:5.3f} |Reading images for subject #: {}'.format(timer()-start_time, 
                                                                     subject))
        print('--------------------------------------------------------------')
        images = tsa.read_data(INPUT_FOLDER + '/' + subject + '.aps')

        # transpose so that the slice is the first dimension shape(16, 620, 512)
        images = images.transpose()

        # for each threat zone, loop through each image, mask off the zone and then crop it
        for tz_num, threat_zone_x_crop_dims in enumerate(zip(tsa.zone_slice_list, tsa.zone_crop_list)):

            threat_zone = threat_zone_x_crop_dims[0]
            crop_dims = threat_zone_x_crop_dims[1]

            # get label
            label = np.array(tsa.get_subject_zone_label(tz_num, tsa.get_subject_labels(STAGE1_LABELS, subject)))

            for img_num, img in enumerate(images):

                print('Threat Zone:Image -> {}:{}'.format(tz_num, img_num))
                print('Threat Zone Label -> {}'.format(label))
                
                if threat_zone[img_num] is not None:

                    # correct the orientation of the image
                    print('-> reorienting base image') 
                    base_img = np.flipud(img)
                    print('-> shape {}|mean={}'.format(base_img.shape, 
                                                       base_img.mean()))

                    # convert to grayscale
                    print('-> converting to grayscale')
                    rescaled_img = tsa.convert_to_grayscale(base_img)
                    print('-> shape {}|mean={}'.format(rescaled_img.shape, 
                                                       rescaled_img.mean()))

                    # spread the spectrum to improve contrast
                    print('-> spreading spectrum')
                    high_contrast_img = tsa.spread_spectrum(rescaled_img)
                    print('-> shape {}|mean={}'.format(high_contrast_img.shape,high_contrast_img.mean()))

                    # get the masked image
                    print('-> masking image')
                    masked_img = tsa.roi(high_contrast_img, threat_zone[img_num])
                    print('-> shape {}|mean={}'.format(masked_img.shape, masked_img.mean()))

                    # crop the image
                    print('-> cropping image')
                    cropped_img = tsa.crop(masked_img, crop_dims[img_num])
                    print('-> shape {}|mean={}'.format(cropped_img.shape, cropped_img.mean()))

                    # normalize the image
                    print('-> normalizing image')
                    normalized_img = tsa.normalize(cropped_img)
                    print('-> shape {}|mean={}'.format(normalized_img.shape, normalized_img.mean()))

                    # zero center the image
                    print('-> zero centering')
                    zero_centered_img = tsa.zero_center(normalized_img)
                    print('-> shape {}|mean={}'.format(zero_centered_img.shape,zero_centered_img.mean()))

                    # append the features and labels to this threat zone's example array
                    print ('-> appending example to threat zone {}'.format(tz_num))
                    threat_zone_examples.append([[tz_num], zero_centered_img, label])
                    print ('-> shape {:d}:{:d}:{:d}:{:d}:{:d}:{:d}'.format(len(threat_zone_examples),len(threat_zone_examples[0]),len(threat_zone_examples[0][0]),len(threat_zone_examples[0][1][0]),len(threat_zone_examples[0][1][1]),len(threat_zone_examples[0][2])))
                else:
                    print('-> No view of tz:{} in img:{}. Skipping to next...'.format(tz_num, img_num))
                print('------------------------------------------------')

        # each subject gets EXAMPLES_PER_SUBJECT number of examples (182 to be exact, 
        # so this section just writes out the the data once there is a full minibatch 
        # complete.
        if ((len(threat_zone_examples) % (BATCH_SIZE * EXAMPLES_PER_SUBJECT)) == 0):
            for tz_num, tz in enumerate(tsa.zone_slice_list):

                tz_examples_to_save = []

                # write out the batch and reset
                print(' -> writing: ' + PREPROCESSED_DATA_FOLDER + 
                                        'preprocessed_TSA_scans-tz{}-{}-{}-b{}.npy'.format( 
                                        tz_num+1,
                                        len(threat_zone_examples[0][1][0]),
                                        len(threat_zone_examples[0][1][1]), 
                                        batch_num))

                # get this tz's examples
                tz_examples = [example for example in threat_zone_examples if example[0] == 
                               [tz_num]]

                # drop unused columns
                tz_examples_to_save.append([[features_label[1], features_label[2]] 
                                            for features_label in tz_examples])

                # save batch.  Note that the trainer looks for tz{} where {} is a 
                # tz_num 1 based in the minibatch file to select which batches to 
                # use for training a given threat zone
                np.save(PREPROCESSED_DATA_FOLDER + 
                        'preprocessed_TSA_scans-tz{}-{}-{}-b{}.npy'.format(tz_num+1, 
                                                         len(threat_zone_examples[0][1][0]),
                                                         len(threat_zone_examples[0][1][1]), 
                                                         batch_num), 
                                                         tz_examples_to_save)
                del tz_examples_to_save

            #reset for next batch 
            del threat_zone_examples
            threat_zone_examples = []
            batch_num += 1
    

    # we may run out of subjects before we finish a batch, so we write out 
    # the last batch stub
    if (len(threat_zone_examples) > 0):
        for tz_num, tz in enumerate(tsa.zone_slice_list):

            tz_examples_to_save = []

            # write out the batch and reset
            print(' -> writing: ' + PREPROCESSED_DATA_FOLDER + 'preprocessed_TSA_scans-tz{}-{}-{}-b{}.npy'.format(tz_num+1, len(threat_zone_examples[0][1][0]), len(threat_zone_examples[0][1][1]), batch_num))

            # get this tz's examples
            tz_examples = [example for example in threat_zone_examples if example[0] == [tz_num]]

            # drop unused columns
            tz_examples_to_save.append([[features_label[1], features_label[2]] for features_label in tz_examples])

            #save batch
            np.save(PREPROCESSED_DATA_FOLDER + 
                    'preprocessed_TSA_scans-tz{}-{}-{}-b{}.npy'.format(tz_num+1, len(threat_zone_examples[0][1][0]), len(threat_zone_examples[0][1][1]), batch_num), tz_examples_to_save)
Beispiel #5
0
def preprocess_tsa_data():

    df = pd.read_csv(STAGE1_LABELS)
    df['Subject'], df['Zone'] = df['Id'].str.split('_', 1).str
    SUBJECT_LIST = df['Subject'].unique()

    # SUBJECT_LIST = ['00360f79fd6e02781457eda48f85da90','0043db5e8c819bffc15261b1f1ac5e42',
    #                 '0050492f92e22eed3474ae3a6fc907fa','006ec59fa59dd80a64c85347eef810c7',
    #                 '0097503ee9fa0606559c56458b281a08','011516ab0eca7cad7f5257672ddde70e']

    batch_num = 1
    threat_zone_examples = []
    start_time = timer()

    for subject in SUBJECT_LIST:

        print('-------------------------------------------------------------')
        print('t+>{:5.3f} |Reading subject #:{}'.format(
            timer() - start_time, subject))
        print('-------------------------------------------------------------')

        images = tsa.read_data(INPUT_FOLDER + '/' + subject + '.aps')
        images = images.transpose()

        for tz_num, threat_zone_x_crop_dims in enumerate(
                zip(tsa.zone_slice_list, tsa.zone_crop_list)):
            threat_zone = threat_zone_x_crop_dims[0]
            crop_dims = threat_zone_x_crop_dims[1]

            label = np.array(
                tsa.get_subject_zone_label(
                    tz_num, tsa.get_subject_labels(STAGE1_LABELS, subject)))

            for img_num, img in enumerate(images):
                print('Threat Zone:Image -> {}:{}'.format(tz_num, img_num))
                print('Threat Zone Label -> {}'.format(label))

                if threat_zone[img_num] is not None:
                    print('-> reorienting base image')
                    base_img = np.flipud(img)
                    print('-> shape {}| mean = {}'.format(
                        base_img.shape, base_img.mean()))

                    print('-> rescaling image')
                    rescaled_img = tsa.convert_to_grayscale((base_img))
                    print('-> shape {}| mean = {}'.format(
                        rescaled_img.shape, rescaled_img.mean()))

                    print('-> making high contrast')
                    high_contrast_img = tsa.spread_spectrum(rescaled_img)
                    print('-> shape {}| mean = {}'.format(
                        high_contrast_img.shape, high_contrast_img.mean()))

                    masked_img = tsa.roi(high_contrast_img,
                                         threat_zone[img_num])

                    print('-> cropping image')
                    cropped_img = tsa.crop(masked_img, crop_dims[img_num])
                    print('-> shape {}| mean = {}'.format(
                        cropped_img.shape, cropped_img.mean()))

                    print('-> normalizing image')
                    normalized_img = tsa.normalize(cropped_img)
                    print('-> shape {}| mean = {}'.format(
                        normalized_img.shape, normalized_img.mean()))

                    zeroed_img = tsa.zero_center(normalized_img)
                    print('-> shape {}| mean = {}'.format(
                        zeroed_img.shape, zeroed_img.mean()))

                    # threat_zone_examples.append([[tz_num],zeroed_img,label])

                    np.save(
                        PREPROCESSED_DATA_FOLDER + subject +
                        'Zone{}.npy'.format(tz_num + 1), zeroed_img)

                    # com_img = np.reshape(zeroed_img,[1,250*250])

                else:
                    print('-> No view...')

                print('----------------------weeee-----------------------')