Beispiel #1
0
class KShape(BaseEstimator, ClusterMixin,
             TimeSeriesCentroidBasedClusteringMixin):
    """KShape clustering for time series.

    KShape was originally presented in [1]_.

    Parameters
    ----------
    n_clusters : int (default: 3)
        Number of clusters to form.
    max_iter : int (default: 100)
        Maximum number of iterations of the k-Shape algorithm.
    tol : float (default: 1e-6)
        Inertia variation threshold. If at some point, inertia varies less than this threshold between two consecutive
        iterations, the model is considered to have converged and the algorithm stops.
    n_init : int (default: 1)
        Number of time the k-Shape algorithm will be run with different centroid seeds. The final results will be the
        best output of n_init consecutive runs in terms of inertia.
    verbose : bool (default: True)
        Whether or not to print information about the inertia while learning the model.
    random_state : integer or numpy.RandomState, optional
        Generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global
        numpy random number generator.
    init : {'random' or ndarray} optional
        Method for initialization. If an ndarray is passed, it should be of shape (n_clusters, n_features)
        and gives the initial centers.

    Attributes
    ----------
    cluster_centers_ : numpy.ndarray of shape (sz, d).
        Centroids
    labels_ : numpy.ndarray of integers with shape (n_ts, ).
        Labels of each point
    inertia_ : float
        Sum of distances of samples to their closest cluster center.

    Note
    ----
        This method requires a dataset of equal-sized time series.

    Examples
    --------
    >>> from tslearn.generators import random_walks
    >>> X = random_walks(n_ts=50, sz=32, d=1)
    >>> X = TimeSeriesScalerMeanVariance(mu=0., std=1.).fit_transform(X)
    >>> ks = KShape(n_clusters=3, n_init=1, verbose=False, random_state=0).fit(X)
    >>> ks.cluster_centers_.shape
    (3, 32, 1)
    >>> dists = ks._cross_dists(X)
    >>> numpy.alltrue(ks.labels_ == dists.argmin(axis=1))
    True
    >>> numpy.alltrue(ks.labels_ == ks.predict(X))
    True
    >>> numpy.alltrue(ks.predict(X) == KShape(n_clusters=3, n_init=1, verbose=False, random_state=0).fit_predict(X))
    True
    >>> KShape(n_clusters=101, verbose=False, random_state=0).fit(X).X_fit_ is None
    True

    References
    ----------
    .. [1] J. Paparrizos & L. Gravano. k-Shape: Efficient and Accurate Clustering of Time Series. SIGMOD 2015.
       pp. 1855-1870.
    """
    def __init__(self,
                 n_clusters=3,
                 max_iter=100,
                 tol=1e-6,
                 n_init=1,
                 verbose=True,
                 random_state=None,
                 init='random'):
        self.n_clusters = n_clusters
        self.max_iter = max_iter
        self.tol = tol
        self.random_state = random_state
        self.n_init = n_init
        self.verbose = verbose
        self.max_attempts = max(self.n_init, 10)
        self.init = init

        self.labels_ = None
        self.inertia_ = numpy.inf
        self.cluster_centers_ = None

        self._norms = 0.
        self._norms_centroids = 0.

    def _shape_extraction(self, X, k):
        sz = X.shape[1]
        Xp, mean_shift = y_shifted_sbd_vec(
            self.cluster_centers_[k],
            X[self.labels_ == k],
            norm_ref=-1,
            norms_dataset=self._norms[self.labels_ == k])
        S = numpy.dot(Xp[:, :, 0].T, Xp[:, :, 0])
        Q = numpy.eye(sz) - numpy.ones((sz, sz)) / sz
        M = numpy.dot(Q.T, numpy.dot(S, Q))
        _, vec = numpy.linalg.eigh(M)
        mu_k = numpy.zeros((sz, 1))
        mean_shift = -mean_shift

        if mean_shift > 0:
            mu_k[mean_shift:] = vec[:-mean_shift, -1].reshape(
                (sz - mean_shift, 1))
        elif mean_shift < 0:
            mu_k[:mean_shift] = vec[-mean_shift:, -1].reshape(
                (sz + mean_shift, 1))
        else:
            mu_k = vec[:, -1].reshape((sz, 1))

        # The way the optimization problem is (ill-)formulated, both mu_k and -mu_k are candidates for barycenters
        # In the following, we check which one is best candidate
        dist_plus_mu = numpy.sum(numpy.linalg.norm(Xp - mu_k, axis=(1, 2)))
        dist_minus_mu = numpy.sum(numpy.linalg.norm(Xp + mu_k, axis=(1, 2)))
        if dist_minus_mu < dist_plus_mu:
            mu_k *= -1

        return mu_k

    def _update_centroids(self, X):
        for k in range(self.n_clusters):
            self.cluster_centers_[k] = self._shape_extraction(X, k)
        self.cluster_centers_ = TimeSeriesScalerMeanVariance(
            mu=0., std=1.).fit_transform(self.cluster_centers_)
        self._norms_centroids = numpy.linalg.norm(self.cluster_centers_,
                                                  axis=(1, 2))

    def _cross_dists(self, X):
        return 1. - cdist_normalized_cc(X,
                                        self.cluster_centers_,
                                        norms1=self._norms,
                                        norms2=self._norms_centroids,
                                        self_similarity=False)

    def _assign(self, X):
        dists = self._cross_dists(X)
        self.labels_ = dists.argmin(axis=1)
        _check_no_empty_cluster(self.labels_, self.n_clusters)
        self.inertia_ = _compute_inertia(dists, self.labels_)

    def _fit_one_init(self, X, rs):
        n_samples, sz, d = X.shape
        if hasattr(self.init, '__array__'):
            self.cluster_centers_ = self.init.copy()
        else:
            self.cluster_centers_ = rs.randn(self.n_clusters, sz, d)
        self._norms_centroids = numpy.linalg.norm(self.cluster_centers_,
                                                  axis=(1, 2))
        if hasattr(self.init, '__array__'):
            self._assign(X)
        else:
            self.labels_ = rs.randint(self.n_clusters, size=n_samples)
        old_inertia = numpy.inf

        for it in range(self.max_iter):
            old_cluster_centers = self.cluster_centers_.copy()
            self._update_centroids(X)
            self._assign(X)
            if self.verbose:
                print("%.3f" % self.inertia_, end=" --> ")

            if numpy.abs(old_inertia - self.inertia_) < self.tol:
                break
            if old_inertia - self.inertia_ < 0:
                self.cluster_centers_ = old_cluster_centers
                self._assign(X)
                break

            old_inertia = self.inertia_
        if self.verbose:
            print("")

        return self

    def fit(self, X, y=None):
        """Compute k-Shape clustering.

        Parameters
        ----------
        X : array-like of shape=(n_ts, sz, d)
            Time series dataset.
        """

        X_ = to_time_series_dataset(X)
        self._norms = numpy.linalg.norm(X_, axis=(1, 2))

        assert X_.shape[-1] == 1, "kShape is supposed to work on monomodal data, provided data has " \
                                  "dimension {}".format(X_.shape[-1])
        _check_initial_guess(self.init, X_, self.n_clusters)

        rs = check_random_state(self.random_state)

        best_correct_centroids = None
        min_inertia = numpy.inf
        n_successful = 0
        n_attempts = 0
        while n_successful < self.n_init and n_attempts < self.max_attempts:
            try:
                if self.verbose and self.n_init > 1:
                    print("Init %d" % (n_successful + 1))
                n_attempts += 1
                self._fit_one_init(X_, rs)
                if self.inertia_ < min_inertia:
                    best_correct_centroids = self.cluster_centers_.copy()
                    min_inertia = self.inertia_
                n_successful += 1
            except EmptyClusterError:
                if self.verbose:
                    print("Resumed because of empty cluster")
        self._post_fit(X_, best_correct_centroids, min_inertia)
        self._norms_centroids = numpy.linalg.norm(self.cluster_centers_,
                                                  axis=(1, 2))
        return self

    def fit_predict(self, X, y=None):
        """Fit k-Shape clustering using X and then predict the closest cluster each time series in X belongs to.

        It is more efficient to use this method than to sequentially call fit and predict.

        Parameters
        ----------
        X : array-like of shape=(n_ts, sz, d)
            Time series dataset to predict.

        Returns
        -------
        labels : array of shape=(n_ts, )
            Index of the cluster each sample belongs to.
        """
        return self.fit(X, y).labels_

    def predict(self, X):
        """Predict the closest cluster each time series in X belongs to.

        Parameters
        ----------
        X : array-like of shape=(n_ts, sz, d)
            Time series dataset to predict.

        Returns
        -------
        labels : array of shape=(n_ts, )
            Index of the cluster each sample belongs to.
        """
        X_ = to_time_series_dataset(X)
        X_ = TimeSeriesScalerMeanVariance(mu=0., std=1.).fit_transform(X_)
        dists = self._cross_dists(X_)
        return dists.argmin(axis=1)
Beispiel #2
0
class KShape(ClusterMixin, TimeSeriesCentroidBasedClusteringMixin,
             BaseModelPackage, TimeSeriesBaseEstimator):
    """KShape clustering for time series.

    KShape was originally presented in [1]_.

    Parameters
    ----------
    n_clusters : int (default: 3)
        Number of clusters to form.

    max_iter : int (default: 100)
        Maximum number of iterations of the k-Shape algorithm.

    tol : float (default: 1e-6)
        Inertia variation threshold. If at some point, inertia varies less than
        this threshold between two consecutive
        iterations, the model is considered to have converged and the algorithm
        stops.

    n_init : int (default: 1)
        Number of time the k-Shape algorithm will be run with different
        centroid seeds. The final results will be the
        best output of n_init consecutive runs in terms of inertia.

    verbose : bool (default: False)
        Whether or not to print information about the inertia while learning
        the model.

    random_state : integer or numpy.RandomState, optional
        Generator used to initialize the centers. If an integer is given, it
        fixes the seed. Defaults to the global
        numpy random number generator.

    init : {'random' or ndarray} (default: 'random')
        Method for initialization.
        'random': choose k observations (rows) at random from data for the
        initial centroids.
        If an ndarray is passed, it should be of shape (n_clusters, ts_size, d)
        and gives the initial centers.

    Attributes
    ----------
    cluster_centers_ : numpy.ndarray of shape (sz, d).
        Centroids

    labels_ : numpy.ndarray of integers with shape (n_ts, ).
        Labels of each point

    inertia_ : float
        Sum of distances of samples to their closest cluster center.

    n_iter_ : int
        The number of iterations performed during fit.

    Notes
    -----
        This method requires a dataset of equal-sized time series.

    Examples
    --------
    >>> from tslearn.generators import random_walks
    >>> X = random_walks(n_ts=50, sz=32, d=1)
    >>> X = TimeSeriesScalerMeanVariance(mu=0., std=1.).fit_transform(X)
    >>> ks = KShape(n_clusters=3, n_init=1, random_state=0).fit(X)
    >>> ks.cluster_centers_.shape
    (3, 32, 1)

    References
    ----------
    .. [1] J. Paparrizos & L. Gravano. k-Shape: Efficient and Accurate
       Clustering of Time Series. SIGMOD 2015. pp. 1855-1870.
    """

    def __init__(self, n_clusters=3, max_iter=100, tol=1e-6, n_init=1,
                 verbose=False, random_state=None, init='random'):
        self.n_clusters = n_clusters
        self.max_iter = max_iter
        self.tol = tol
        self.random_state = random_state
        self.n_init = n_init
        self.verbose = verbose
        self.init = init

    def _is_fitted(self):
        """
        Check if the model has been fit.

        Returns
        -------
        bool
        """

        check_is_fitted(self,
                        ['cluster_centers_', 'norms_', 'norms_centroids_'])
        return True

    def _shape_extraction(self, X, k):
        sz = X.shape[1]
        Xp = y_shifted_sbd_vec(self.cluster_centers_[k], X[self.labels_ == k],
                               norm_ref=-1,
                               norms_dataset=self.norms_[self.labels_ == k])
        S = numpy.dot(Xp[:, :, 0].T, Xp[:, :, 0])
        Q = numpy.eye(sz) - numpy.ones((sz, sz)) / sz
        M = numpy.dot(Q.T, numpy.dot(S, Q))
        _, vec = numpy.linalg.eigh(M)
        mu_k = vec[:, -1].reshape((sz, 1))

        # The way the optimization problem is (ill-)formulated, both mu_k and
        # -mu_k are candidates for barycenters
        # In the following, we check which one is best candidate
        dist_plus_mu = numpy.sum(numpy.linalg.norm(Xp - mu_k, axis=(1, 2)))
        dist_minus_mu = numpy.sum(numpy.linalg.norm(Xp + mu_k, axis=(1, 2)))
        if dist_minus_mu < dist_plus_mu:
            mu_k *= -1

        return mu_k

    def _update_centroids(self, X):
        for k in range(self.n_clusters):
            self.cluster_centers_[k] = self._shape_extraction(X, k)
        self.cluster_centers_ = TimeSeriesScalerMeanVariance(
            mu=0., std=1.).fit_transform(self.cluster_centers_)
        self.norms_centroids_ = numpy.linalg.norm(self.cluster_centers_,
                                                  axis=(1, 2))

    def _cross_dists(self, X):
        return 1. - cdist_normalized_cc(X, self.cluster_centers_,
                                        norms1=self.norms_,
                                        norms2=self.norms_centroids_,
                                        self_similarity=False)

    def _assign(self, X):
        dists = self._cross_dists(X)
        self.labels_ = dists.argmin(axis=1)
        _check_no_empty_cluster(self.labels_, self.n_clusters)
        self.inertia_ = _compute_inertia(dists, self.labels_)

    def _fit_one_init(self, X, rs):
        if hasattr(self.init, '__array__'):
            self.cluster_centers_ = self.init.copy()
        elif self.init == "random":
            indices = rs.choice(X.shape[0], self.n_clusters)
            self.cluster_centers_ = X[indices].copy()
        else:
            raise ValueError("Value %r for parameter 'init' is "
                             "invalid" % self.init)
        self.norms_centroids_ = numpy.linalg.norm(self.cluster_centers_,
                                                  axis=(1, 2))
        self._assign(X)
        old_inertia = numpy.inf

        for it in range(self.max_iter):
            old_cluster_centers = self.cluster_centers_.copy()
            self._update_centroids(X)
            self._assign(X)
            if self.verbose:
                print("%.3f" % self.inertia_, end=" --> ")

            if numpy.abs(old_inertia - self.inertia_) < self.tol or \
                    (old_inertia - self.inertia_ < 0):
                self.cluster_centers_ = old_cluster_centers
                self._assign(X)
                break

            old_inertia = self.inertia_
        if self.verbose:
            print("")

        self._iter = it + 1

        return self

    def fit(self, X, y=None):
        """Compute k-Shape clustering.

        Parameters
        ----------
        X : array-like of shape=(n_ts, sz, d)
            Time series dataset.

        y
            Ignored
        """
        X = check_array(X, allow_nd=True)

        max_attempts = max(self.n_init, 10)

        self.labels_ = None
        self.inertia_ = numpy.inf
        self.cluster_centers_ = None

        self.norms_ = 0.
        self.norms_centroids_ = 0.

        self.n_iter_ = 0

        X_ = to_time_series_dataset(X)
        self._X_fit = X_
        self.norms_ = numpy.linalg.norm(X_, axis=(1, 2))

        _check_initial_guess(self.init, self.n_clusters)

        rs = check_random_state(self.random_state)

        best_correct_centroids = None
        min_inertia = numpy.inf
        n_successful = 0
        n_attempts = 0
        while n_successful < self.n_init and n_attempts < max_attempts:
            try:
                if self.verbose and self.n_init > 1:
                    print("Init %d" % (n_successful + 1))
                n_attempts += 1
                self._fit_one_init(X_, rs)
                if self.inertia_ < min_inertia:
                    best_correct_centroids = self.cluster_centers_.copy()
                    min_inertia = self.inertia_
                    self.n_iter_ = self._iter
                n_successful += 1
            except EmptyClusterError:
                if self.verbose:
                    print("Resumed because of empty cluster")
        self.norms_centroids_ = numpy.linalg.norm(self.cluster_centers_,
                                                  axis=(1, 2))
        self._post_fit(X_, best_correct_centroids, min_inertia)
        return self

    def fit_predict(self, X, y=None):
        """Fit k-Shape clustering using X and then predict the closest cluster
        each time series in X belongs to.

        It is more efficient to use this method than to sequentially call fit
        and predict.

        Parameters
        ----------
        X : array-like of shape=(n_ts, sz, d)
            Time series dataset to predict.

        y
            Ignored

        Returns
        -------
        labels : array of shape=(n_ts, )
            Index of the cluster each sample belongs to.
        """
        return self.fit(X, y).labels_

    def predict(self, X):
        """Predict the closest cluster each time series in X belongs to.

        Parameters
        ----------
        X : array-like of shape=(n_ts, sz, d)
            Time series dataset to predict.

        Returns
        -------
        labels : array of shape=(n_ts, )
            Index of the cluster each sample belongs to.
        """
        X = check_array(X, allow_nd=True)
        check_is_fitted(self,
                        ['cluster_centers_', 'norms_', 'norms_centroids_'])

        X_ = check_dims(X, X_fit_dims=self.cluster_centers_.shape)
        X_ = TimeSeriesScalerMeanVariance(mu=0., std=1.).fit_transform(X_)
        dists = self._cross_dists(X_)
        return dists.argmin(axis=1)