Beispiel #1
0
def table_edge(robot, table, **kwargs):
    """
    This creates a TSR that allows you to sample poses from either
    long edge of the table.

    @param robot The robot (unused)
    @param table The table
    """
    table_in_world = table.GetTransform()

    # Extents of the table - y-axis is normal to table surface
    xdim = 0.93175  # half extent
    zdim = 0.3805  # half extent
    ydim = 0.785  # full extent

    # We want to create a set of TSRs, one for each edge of the table
    Bw_1 = numpy.zeros((6, 2))
    Bw_1[0, :] = [-xdim, xdim]
    Tw_e1 = numpy.array([[1., 0., 0., 0.], [0., 1., 0., ydim],
                         [0., 0., 1, zdim], [0., 0., 0., 1.]])

    tsr1 = TSR(T0_w=table_in_world, Tw_e=Tw_e1, Bw=Bw_1)
    tsr1_chain = TSRChain(TSR=tsr1)

    Bw_2 = numpy.zeros((6, 2))
    Bw_2[0, :] = [-xdim, xdim]
    Tw_e2 = numpy.array([[-1., 0., 0., 0.], [0., -1., 0., ydim],
                         [0., 0., 1, -zdim], [0., 0., 0., 1.]])

    tsr2 = TSR(T0_w=table_in_world, Tw_e=Tw_e2, Bw=Bw_2)
    tsr2_chain = TSRChain(TSR=tsr2)

    return [tsr1_chain, tsr2_chain]
Beispiel #2
0
def lift_obj(robot, transform=numpy.eye(4), manip=None, distance=0.1, epsilon=0.05):
    """
    This creates a TSR for lifting an object a specified distance.
    It is assumed that when called, the robot is grasping the object.
    This assumes that the object can be lifted with one arm.

    @param robot The robot to perform the lift
    @param transform The transform of the object to lift
    @param manip The manipulator to lift
    @param distance The distance to lift the bottle
    """

    if manip is None:
        manip = robot.GetActiveManipulator()
        manip_idx = robot.GetActiveManipulatorIndex()
    else:
        manip.SetActive()
        manip_idx = manip.GetRobot().GetActiveManipulatorIndex()

    #TSR for the goal
    start_position = manip.GetEndEffectorTransform()
    end_position = manip.GetEndEffectorTransform()
    end_position[2, 3] += distance

    Bw = numpy.zeros((6, 2))
    Bw[0, :] = [-epsilon, epsilon]
    Bw[1, :] = [-epsilon, epsilon]
    Bw[4, :] = [-epsilon, epsilon]

    tsr_goal = TSR(T0_w=end_position, Tw_e=numpy.eye(4),
            Bw=Bw, manip=manip_idx)

    goal_tsr_chain = TSRChain(sample_start=False, sample_goal=True,
            constrain=False, TSRs=[tsr_goal])

    #TSR that constrains the movement
    Bw_constrain = numpy.zeros((6, 2))
    Bw_constrain[:, 0] = -epsilon
    Bw_constrain[:, 1] = epsilon
    if distance < 0:
        Bw_constrain[1, :] = [-epsilon+distance, epsilon]
    else:
        Bw_constrain[1, :] = [-epsilon, epsilon+distance]

    tsr_constraint = TSR(T0_w=start_position, Tw_e=numpy.eye(4),
            Bw=Bw_constrain, manip=manip_idx)

    movement_chain = TSRChain(sample_start=False, sample_goal=False,
            constrain=True, TSRs=[tsr_constraint])

    return [goal_tsr_chain, movement_chain]
Beispiel #3
0
def present_obj(robot, transform, manip=None):
    """
    @param robot The robot performing the presentation gesture
    @param transform The location of where the robot the presenting
    @param manip The manipulator to present. This must be the right arm.
    """

    (manip, manip_idx) = GetManipulatorIndex(robot, manip)

    if manip.GetName() != 'right':
        raise prpy.exceptions.PrpyException('Presenting is only defined for the right arm.')

    #Compute T0_w
    T0_w = transform

    #Compute TW_e with respect to right arm
    TW_e = numpy.array([[-0.42480713,  0.81591405, 0.39220297, -0.10103751],
                        [ 0.08541525, -0.39518032, 0.91462383, -0.2806636 ],
                        [ 0.90124533,  0.42203884, 0.09818392,  0.16018878],
                        [ 0.        ,  0.        , 0.        ,  1.        ]])

    #Compute Bw
    Bw = numpy.zeros((6, 2))
    Bw[5, :] = [-numpy.pi, numpy.pi]

    T = TSR(T0_w=T0_w, Tw_e=TW_e, Bw=Bw, manip=manip_idx)
    chain = TSRChain(TSRs=[T], sample_goal=True, sample_start=False,
            constrain=False)

    return [chain]
Beispiel #4
0
def cap_palm_push(cap, **kw_args):
    """
    @param cap The cap to grasp
    @param push_distance The distance to push before grasping
    """
    epsilon = 0.005
    T0_w = cap.get_transform()
    chain_list = []

    # Base of cap (opposite side of head)
    Tw_e_front1 = numpy.array([
        [0., 0., -1., 0.04],
        [0., 1., 0., 0],
        [1., 0., 0., 0.027],  # Downward 
        [0., 0., 0., 1.]
    ])
    Bw_yz = numpy.zeros((6, 2))
    Bw_yz[1, :] = [-epsilon, epsilon]
    Bw_yz[2, :] = [-epsilon, epsilon]
    Bw_yz[5, :] = [-math.pi, math.pi]
    front_tsr1 = TSR(T0_w=T0_w, Tw_e=Tw_e_front1, Bw=Bw_yz)
    grasp_chain_front1 = TSRChain(sample_start=False,
                                  sample_goal=True,
                                  constrain=False,
                                  TSR=front_tsr1)
    chain_list += [grasp_chain_front1]  # AROUND

    # Each chain in the list can also be rotated by 180 degrees around z
    rotated_chain_list = []
    for c in chain_list:
        rval = numpy.pi
        R = numpy.array([[numpy.cos(rval), -numpy.sin(rval), 0., 0.],
                         [numpy.sin(rval),
                          numpy.cos(rval), 0., 0.], [0., 0., 1., 0.],
                         [0., 0., 0., 1.]])
        tsr = c.TSRs[0]
        Tw_e = tsr.Tw_e
        Tw_e_new = numpy.dot(Tw_e, R)
        tsr_new = TSR(T0_w=tsr.T0_w, Tw_e=Tw_e_new, Bw=tsr.Bw)
        tsr_chain_new = TSRChain(sample_start=False,
                                 sample_goal=True,
                                 constrain=False,
                                 TSR=tsr_new)
        rotated_chain_list += [tsr_chain_new]

    return chain_list + rotated_chain_list
Beispiel #5
0
    def CreateTSRChains(cls, robot, direction, distance):
        direction = numpy.array(direction, dtype=float)

        if direction.shape != (3, ):
            raise ValueError('Direction must be a three-dimensional vector.')

        if not (distance >= 0):
            raise ValueError(
                'Distance must be non-negative; got {:f}.'.format(distance))

        manip, manip_index = GetManipulatorIndex(robot)
        H_world_ee = manip.GetEndEffectorTransform()
        direction = direction / numpy.linalg.norm(direction)

        # 'object frame w' is at ee, z pointed along direction to move
        H_world_w = H_from_op_diff(H_world_ee[0:3, 3], direction)
        H_w_ee = numpy.dot(invert_H(H_world_w), H_world_ee)
        Hw_end = numpy.eye(4)
        Hw_end[2, 3] = distance

        goal_chain = TSRChain(sample_goal=True,
                              TSR=TSR(T0_w=numpy.dot(H_world_w, Hw_end),
                                      Tw_e=H_w_ee,
                                      Bw=numpy.zeros((6, 2)),
                                      manipindex=manip_index))
        constraint_chain = TSRChain(
            constrain=True,
            TSR=TSR(T0_w=H_world_w,
                    Tw_e=H_w_ee,
                    Bw=numpy.array([[-cls.epsilon, cls.epsilon],
                                    [-cls.epsilon, cls.epsilon],
                                    [min(0.0, distance),
                                     max(0.0, distance)],
                                    [-cls.epsilon, cls.epsilon],
                                    [-cls.epsilon, cls.epsilon],
                                    [-cls.epsilon, cls.epsilon]]),
                    manipindex=manip_index))

        return [goal_chain, constraint_chain]
Beispiel #6
0
def pills_transport(robot,
                    pills,
                    manip=None,
                    roll_epsilon=0.2,
                    pitch_epsilon=0.2,
                    yaw_epsilon=0.2):
    '''
    Generates a trajectory-wide constraint for transporting the object with
    little roll, pitch or yaw. Assumes the object has already been grasped
    and is in the proper configuration for transport.

    @param robot The robot grasping the glass
    @param pills The grasped object
    @param manip the manipulator grasping the object, if None the active
                 manipulator of the robot is used
    @param roll_epsilon The amount to let the object roll during
                        transport (object frame)
    @param pitch_epsilon The amount to let the object pitch during
                         transport (object frame)
    @param yaw_epsilon The amount to let the object yaw during
                       transport (object frame)
    '''

    if manip is None:
        manip_idx = robot.GetActiveManipulatorIndex()
        manip = robot.GetActiveManipulator()
    else:
        manip.SetActive()
        manip_idx = manip.GetRobot().GetActiveManipulatorIndex()

    ee_in_glass = numpy.dot(numpy.linalg.inv(pills.GetTransform()),
                            manip.GetEndEffectorTransform())
    Bw = numpy.array([
        [-100., 100.],  # bounds that cover full reachability of manip
        [-100., 100.],
        [-100., 100.],
        [-roll_epsilon, roll_epsilon],
        [-pitch_epsilon, pitch_epsilon],
        [-yaw_epsilon, yaw_epsilon]
    ])
    transport_tsr = TSR(T0_w=pills.GetTransform(),
                        Tw_e=ee_in_glass,
                        Bw=Bw,
                        manip=manip_idx)

    transport_chain = TSRChain(sample_start=False,
                               sample_goal=False,
                               constrain=True,
                               TSR=transport_tsr)

    return [transport_chain]
Beispiel #7
0
def point_on(robot, block_bin, manip=None, padding=0.04):
    '''
    This creates a TSR that allows you to sample poses on the tray.
    The samples from this TSR should be used to find points for
    object placement. They are directly on the tray, and thus not
    suitable as an end-effector pose. Grasp specific calculations are
    necessary to find a suitable end-effector pose.

    @param robot The robot performing the grasp
    @param tray The tray to sample poses on
    @param manip The manipulator to perform the grasp, if None
       the active manipulator on the robot is used
    @param padding The amount of space around the edge to exclude
       from sampling. If using this to place an object, this would
       be the maximum radius of the object
    @param handle_padding If true add extra padding along the edges
       of the tray that have the handles to prevent choosing a pose
       too near the handle of the tray
    '''
    if manip is None:
        manip_idx = robot.GetActiveManipulatorIndex()
    else:
        manip.SetActive()
        manip_idx = manip.GetRobot().GetActiveManipulatorIndex()

    T0_w = block_bin.GetTransform()  # Coordinate system on bottom of bin

    Tw_e = numpy.eye(4)
    Tw_e[2, 3] = 0.17  # set the object on top of the bin - bin is 13cm high

    Bw = numpy.zeros((6, 2))

    xdim = max(0.085 - padding, 0.0)
    ydim = max(0.135 - padding, 0.0)
    # move along x, y directions to get any point on tray
    Bw[0, :] = [-xdim, xdim]
    Bw[1, :] = [-ydim, ydim]
    Bw[2, :] = [-0.02, 0.04]  # verticle movement
    # allow any rotation around z - which is the axis normal to the tray top
    Bw[5, :] = [-numpy.pi, numpy.pi]

    manip_tsr = TSR(T0_w=T0_w, Tw_e=Tw_e, Bw=Bw, manip=manip_idx)
    tsr_chain = TSRChain(sample_start=False,
                         sample_goal=True,
                         constrain=False,
                         TSR=manip_tsr)
    return [tsr_chain]
Beispiel #8
0
def point_on(robot, table, manip=None, padding=0, **kwargs):
    """
    This creates a TSR that allows you to sample poses on the table.
    The sampled poses will have z-axis point up, normal to the table top.
    The xy-plane of the sampled of the sample poses will be parallel to the
    table surface.

    The samples from this TSR should be used to find points for object
    placement. They are directly on the table, and thus not suitable as an
    end-effector pose. Grasp specific calculations are necessary to find a
    suitable end-effector pose.

    @param robot The robot performing the grasp
    @param pitcher The pitcher to grasp
    @param manip The manipulator to perform the grasp, if None
       the active manipulator on the robot is used
    @param padding The min distance of the sampled point from any edge of the table
    """
    if manip is None:
        manip_idx = robot.GetActiveManipulatorIndex()
    else:
        manip.SetActive()
        manip_idx = manip.GetRobot().GetActiveManipulatorIndex()

    T0_w = table.GetTransform()

    # The frame is set on the table such that the y-axis is normal to the table surface
    Tw_e = numpy.array([[1., 0., 0., 0.], [0., 0., 1., 0.75],
                        [0., -1., 0., 0.], [0., 0., 0., 1.]])
    Bw = numpy.zeros((6, 2))
    # move along x and z directios to get any point on table
    Bw[0, :] = [-0.93 + padding, 0.93 - padding]
    Bw[2, :] = [-0.38 + padding, 0.38 - padding]
    # allow any rotation around y - which is the axis normal to the table top
    Bw[4, :] = [-numpy.pi, numpy.pi]

    table_top_tsr = TSR(T0_w=T0_w, Tw_e=Tw_e, Bw=Bw, manip=manip_idx)
    table_top_chain = TSRChain(sample_start=False,
                               sample_goal=True,
                               constrain=False,
                               TSR=table_top_tsr)
    return [table_top_chain]
Beispiel #9
0
def point_obj(robot, transform, manip=None):
    """
    @param robot The robot performing the point
    @param transform The location of where the robot is pointing to
    @param manip The manipulator to point with. This must be the right arm.
    """

    (manip, manip_idx) = GetManipulatorIndex(robot, manip)

    if manip.GetName() != 'right':
        raise prpy.exceptions.PrPyException('Pointing is only defined on the right arm.')

    # compute T_ow
    T0_w_0 = transform
    T0_w_1 = numpy.identity(4)

    # compute T_we with respect to right arm.
    TW_e_0 = numpy.array([[ 0.07277, -0.71135, 0.69905, -0.41425],
                          [ 0.0336 ,  0.70226, 0.71111, -0.44275],
                          [-0.99678, -0.02825, 0.07501, -0.04314],
                          [ 0.     ,  0.     , 0.     ,  1.     ]])

    TW_e_1 = numpy.identity(4)

    # compute B_w
    Bw_0 = numpy.zeros((6, 2))
    Bw_0[3, :] = [-numpy.pi, numpy.pi]
    Bw_0[4, :] = [0, numpy.pi]
    Bw_0[5, :] = [-numpy.pi, numpy.pi]

    Bw_1 = numpy.zeros((6, 2))
    Bw_1[2, :] = [-0.5, 0.5]

    T_0 = TSR(T0_w=T0_w_0, Tw_e=TW_e_0, Bw=Bw_0, manip=manip_idx)
    T_1 = TSR(T0_w=T0_w_1, Tw_e=TW_e_1, Bw=Bw_1, manip=manip_idx)

    chain = TSRChain(TSRs=[T_0, T_1], sample_goal=True,
                     sample_start=False, constrain=False)

    return [chain]
Beispiel #10
0
def block_on_surface(robot, block, pose_tsr_chain, manip=None):
    '''
    Generates end-effector poses for placing the block on a surface.
    This factory assumes the block is grasped at the time it is called.

    @param robot The robot grasping the block
    @param block The grasped object
    @param pose_tsr_chain The tsr chain for sampling placement
                          poses for the block
    @param manip The manipulator grasping the object, if None the active
       manipulator of the robot is used
    '''
    if manip is None:
        manip_idx = robot.GetActiveManipulatorIndex()
        manip = robot.GetActiveManipulator()
    else:
        manip.SetActive()
        manip_idx = manip.GetRobot().GetActiveManipulatorIndex()

    block_pose = block.GetTransform()
    block_pose[:3, :3] = numpy.eye(3)  # ignore orientation
    ee_in_block = numpy.dot(numpy.linalg.inv(block_pose),
                            manip.GetEndEffectorTransform())
    Bw = numpy.zeros((6, 2))
    Bw[2, :] = [0., 0.04]  # Allow some vertical movement

    for tsr in pose_tsr_chain.TSRs:
        if tsr.manipindex != manip_idx:
            raise ValueError(
                'pose_tsr_chain defined for a different manipulator.')

    grasp_tsr = TSR(Tw_e=ee_in_block, Bw=Bw, manip=manip_idx)
    all_tsrs = list(pose_tsr_chain.TSRs) + [grasp_tsr]
    place_chain = TSRChain(sample_start=False,
                           sample_goal=True,
                           constrain=False,
                           TSRs=all_tsrs)

    return [place_chain]
Beispiel #11
0
def block_at_pose(robot, block, position, manip=None):
    '''
    Generates end-effector poses for placing the block on another object

    @param robot The robot grasping the block
    @param block The block being grasped
    @param position The position to place the block [x,y,z]
    @param manip The manipulator grasping the object, if None the
       active manipulator of the robot is used
    '''

    if manip is None:
        manip_idx = robot.GetActiveManipulatorIndex()
        manip = robot.GetActiveManipulator()
    else:
        manip.SetActive()
        manip_idx = manip.GetRobot().GetActiveManipulatorIndex()

    # Block on the object
    T0_w = numpy.eye(4)
    T0_w[:3, 3] = position

    Bw = numpy.zeros((6, 2))
    Bw[5, :] = [-numpy.pi, numpy.pi]

    place_tsr = TSR(T0_w=T0_w, Tw_e=numpy.eye(4), Bw=Bw, manip=manip_idx)

    ee_in_block = numpy.dot(numpy.linalg.inv(block.GetTransform()),
                            manip.GetEndEffectorTransform())
    ee_tsr = TSR(
        T0_w=numpy.eye(4),  #ignored
        Tw_e=ee_in_block,
        Bw=numpy.zeros((6, 2)),
        manip=manip_idx)

    place_tsr_chain = TSRChain(sample_start=False,
                               sample_goal=True,
                               TSRs=[place_tsr, ee_tsr])
    return [place_tsr_chain]
Beispiel #12
0
def pills_on_table(robot, pills, pose_tsr_chain, manip=None):
    '''
    Generates end-effector poses for placing the pill bottle on the table.
    This factory assumes the pill bottle is grasped at the time it is called.

    @param robot The robot grasping the glass
    @param pills bottle The grasped object
    @param pose_tsr_chain The tsr chain for sampling placement poses
                          for the glass
    @param manip The manipulator grasping the object, if None the active
       manipulator of the robot is used
    '''
    if manip is None:
        manip_idx = robot.GetActiveManipulatorIndex()
        manip = robot.GetActiveManipulator()
    else:
        manip.SetActive()
        manip_idx = manip.GetRobot().GetActiveManipulatorIndex()

    ee_in_glass = numpy.dot(numpy.linalg.inv(pills.GetTransform()),
                            manip.GetEndEffectorTransform())
    ee_in_glass[2, 3] += 0.04  # Let go slightly above table
    Bw = numpy.zeros((6, 2))
    Bw[2, :] = [0., 0.04]  # Allow some lateral movement

    for tsr in pose_tsr_chain.TSRs:
        if tsr.manipindex != manip_idx:
            raise Exception(
                'pose_tsr_chain defined for a different manipulator.')

    grasp_tsr = TSR(Tw_e=ee_in_glass, Bw=Bw, manip=manip_idx)
    all_tsrs = list(pose_tsr_chain.TSRs) + [grasp_tsr]
    place_chain = TSRChain(sample_start=False,
                           sample_goal=True,
                           constrain=False,
                           TSRs=all_tsrs)

    return [place_chain]
Beispiel #13
0
def _pills_grasp(robot, pills, manip=None, push_distance=0.0, **kw_args):
    """
    @param robot The robot performing the grasp
    @param pills The pill bottle to grasp
    @param manip The manipulator to perform the grasp, if None
       the active manipulator on the robot is used
    @param push_distance The offset distance for pushing
    """
    if manip is None:
        manip_idx = robot.GetActiveManipulatorIndex()
    else:
        manip.SetActive()
        manip_idx = manip.GetRobot().GetActiveManipulatorIndex()

    T0_w = pills.GetTransform()

    ee_to_palm = 0.18
    palm_to_glass_center = .04
    total_offset = ee_to_palm + palm_to_glass_center + push_distance
    Tw_e = numpy.array([
        [0., 0., 1., -total_offset],
        [1., 0., 0., 0.],
        [0., 1., 0., 0.06],  # bottle height
        [0., 0., 0., 1.]
    ])

    Bw = numpy.zeros((6, 2))
    Bw[2, :] = [0.0, 0.02]  # Allow a little vertical movement
    Bw[5, :] = [-numpy.pi, numpy.pi]  # Allow any orientation

    grasp_tsr = TSR(T0_w=T0_w, Tw_e=Tw_e, Bw=Bw, manip=manip_idx)
    grasp_chain = TSRChain(sample_start=False,
                           sample_goal=True,
                           constrain=False,
                           TSR=grasp_tsr)

    return [grasp_chain]
Beispiel #14
0
def block_grasp(robot, block, manip=None, **kw_args):
    """
    Generates end-effector poses for moving the arm near the block
    @param robot The robot grasping the block
    @param block The block being grasped
    @param manip The manipulator to move near the block, if None
       the active manipulator of the robot is used
    """
    if manip is None:
        manip_idx = robot.GetActiveManipulatorIndex()
        manip = robot.GetActiveManipulator()
    else:
        manip.SetActive()
        manip_idx = manip.GetRobot().GetActiveManipulatorIndex()

    offset = 0.01  #vertical offset relative to block
    alpha = 0.8  # orientation of end-effector relative to block

    block_in_world = block.GetTransform()
    block_in_world[:3, :3] = numpy.eye(3)  # ignore orientation
    ee_in_block = numpy.array([[
        numpy.cos(alpha), 0., -numpy.sin(alpha), 0.3 * numpy.sin(alpha) + 0.04
    ], [0., -1, 0,
        0.], [-numpy.sin(alpha), 0., -numpy.cos(alpha), 0.25 + offset],
                               [0., 0., 0., 1.]])
    Bw = numpy.zeros((6, 2))
    Bw[5, :] = [-numpy.pi, numpy.pi]

    pose_tsr = TSR(T0_w=block_in_world,
                   Tw_e=ee_in_block,
                   Bw=Bw,
                   manip=manip_idx)

    pose_tsr_chain = TSRChain(sample_start=False,
                              sample_goal=True,
                              TSRs=[pose_tsr])
    return [pose_tsr_chain]
Beispiel #15
0
def pitcher_pour(robot,
                 pitcher,
                 min_tilt=1.4,
                 max_tilt=1.57,
                 manip=None,
                 grasp_transform=None,
                 pitcher_pose=None,
                 **kw_args):
    '''
    @param robot The robot whose active manipulator should be used to pour
    @param pitcher The pitcher to pour
    @param min_tilt The minimum amount to tilt the pitcher in the pouring motion
    @param max_tilt The maximum amount to tilt the pitcher in the pouring motion
    @param grasp_transform The pose of the end-effector in world frame when
       grasping the pitcher, if this parameter is not provided, it is assumed
       the robot is currently grasping the object and the current end-effector
       transform is used
    '''

    if manip is None:
        manip = robot.GetActiveManipulator()
        manip_idx = robot.GetActiveManipulatorIndex()
    else:
        manip.SetActive()
        manip_idx = manip.GetRobot().GetActiveManipulatorIndex()

    if pitcher_pose is None:
        pitcher_pose = pitcher.GetTransform()
    pitcher_in_world = pitcher.GetTransform()

    # spout in pitcher
    spout_in_pitcher = numpy.array([[-0.7956, 0.6057, 0., 0.],
                                    [-0.6057, -0.7956, 0., 0.],
                                    [0., 0., 1., 0.0599], [0., 0., 0., 1.]])
    spout_offset = 0.113
    spout_in_pitcher[:2, 3] = spout_offset * spout_in_pitcher[:2, 0]

    # end-effector relative to spout
    ee_in_world = manip.GetEndEffectorTransform()
    ee_in_pitcher = numpy.dot(numpy.linalg.inv(pitcher_in_world), ee_in_world)
    ee_in_spout = numpy.dot(numpy.linalg.inv(spout_in_pitcher), ee_in_pitcher)
    Bw_pour = numpy.zeros((6, 2))
    Bw_pour[4, :] = [0, 2 * numpy.pi]
    Bw_pour[3, :] = [-10 * numpy.pi / 180, 10 * numpy.pi / 180]

    tsr_0 = TSR(T0_w=pitcher_pose,
                Tw_e=spout_in_pitcher,
                Bw=numpy.zeros((6, 2)),
                manip=manip_idx)

    tsr_1_constraint = TSR(Tw_e=ee_in_spout, Bw=Bw_pour, manip=manip_idx)

    pour_chain = TSRChain(sample_start=False,
                          sample_goal=False,
                          constrain=True,
                          TSRs=[tsr_0, tsr_1_constraint])

    Bw_goal = numpy.zeros((6, 2))
    Bw_goal[4, :] = [min_tilt, max_tilt]
    tsr_1_goal = TSR(Tw_e=ee_in_spout, Bw=Bw_goal, manip=manip_idx)
    pour_goal = TSRChain(sample_start=False,
                         sample_goal=True,
                         constrain=False,
                         TSRs=[tsr_0, tsr_1_goal])

    return [pour_chain, pour_goal], min_tilt, max_tilt
Beispiel #16
0
def cylinder_handle_grasp(tool, push_distance=0.0,
                width_offset=0.0,
                **kw_args):
    """
    @param tool The tool to grasp
    @param push_distance The distance to push before grasping
    """
    ee_to_palm_distance = 0.098 
    lateral_offset=ee_to_palm_distance + push_distance

    T0_w = tool.get_transform()
    chain_list = []

    # Base of tool
    Tw_e_head = numpy.array([[ 0., 0., -1.,  lateral_offset],
                             [ 0., 1.,  0., 0.0],
                             [ 1., 0.,  0., 0.0], 
                             [ 0., 0.,  0., 1.]])
    Bw_yz = numpy.zeros((6,2))
    Bw_yz[0, :] = [-0.03, 0]
    Bw_yz[1, :] = [-width_offset, width_offset]
    Bw_yz[2, :] = [-width_offset, width_offset]
    Bw_yz[3, :] = [-math.pi, math.pi]
    Bw_yz[4, :] = [-math.pi/2.0, math.pi/2.0]
    head_tsr = TSR(T0_w = T0_w, Tw_e = Tw_e_head, Bw = Bw_yz)
    grasp_chain_head = TSRChain(sample_start=False, sample_goal=True,
                                 constrain=False, TSR=head_tsr)
    chain_list += [ grasp_chain_head ] 


    # Sides
    Tw_e_side = numpy.array([[ 1., 0.,  0., 0.0],
                             [ 0.,-1.,  0., 0.0],
                             [ 0., 0., -1., lateral_offset],
                             [ 0., 0.,  0., 1.]])
    Bw_side = numpy.zeros((6,2))
    Bw_side[0, :] = [-0.08, 0.0]
    Bw_side[1, :] = [-width_offset, width_offset]
    Bw_side[3, :] = [-math.pi, math.pi]
    Bw_side[4,:] = [-math.pi/4.0, math.pi/4.0]
    side_tsr = TSR(T0_w = T0_w, Tw_e = Tw_e_side, Bw = Bw_side)
    grasp_chain_side = TSRChain(sample_start=False, sample_goal=True,
                                constrain=False, TSR=side_tsr)
    chain_list += [ grasp_chain_side ]

    # Each chain in the list can also be rotated by 180 degrees around z
    rotated_chain_list = []
    for c in chain_list:
        rval = numpy.pi
        R = numpy.array([[numpy.cos(rval), -numpy.sin(rval), 0., 0.],
                         [numpy.sin(rval),  numpy.cos(rval), 0., 0.],
                         [             0.,               0., 1., 0.],
                         [             0.,               0., 0., 1.]])
        tsr = c.TSRs[0]
        Tw_e = tsr.Tw_e
        Tw_e_new = numpy.dot(Tw_e, R)
        tsr_new = TSR(T0_w = tsr.T0_w, Tw_e=Tw_e_new, Bw=tsr.Bw)
        tsr_chain_new = TSRChain(sample_start=False, sample_goal=True, constrain=False,
                                     TSR=tsr_new)
        rotated_chain_list += [ tsr_chain_new ]

    return chain_list + rotated_chain_list
Beispiel #17
0
def handle_grasp(tool, push_distance=0.0,
                width_offset=0.009, #0.008,
                toolLength=0.08,
                **kw_args):
    """
    @param tool The tool to grasp
    @param push_distance The distance to push before grasping
    """
    ee_to_palm_distance = 0.1 #0.098 
    lateral_offset=ee_to_palm_distance + push_distance

    T0_w = tool.get_transform()
    chain_list = []

    # Base of tool - horizontal (opposite side of head)
    Tw_e_horiz = numpy.array([[ 0., 0., -1.,  lateral_offset],
                              [ 0., 1.,  0., 0.0],
                              [ 1., 0.,  0., 0.0], 
                              [ 0., 0.,  0., 1.]])
    Bw_h = numpy.zeros((6,2))
    Bw_h[0, :] = [-0.03, 0]
    Bw_h[1, :] = [-width_offset, width_offset] #XXX
    Bw_h[2, :] = [-width_offset, width_offset] #XXX
    #Bw_h[4, :] = [-math.pi/2.0, math.pi/2.0] 
    horiz_tsr = TSR(T0_w=T0_w, Tw_e=Tw_e_horiz, Bw=Bw_h)
    grasp_chain_horiz = TSRChain(sample_start=False, sample_goal=True,
                                 constrain=False, TSR=horiz_tsr)
    chain_list += [ grasp_chain_horiz ] #XXX

    # Base of tool - vertical (opposite side of head)
    Tw_e_vert = numpy.array([[ 0.,  0., -1., lateral_offset],
                             [ 1.,  0.,  0., 0.0],
                             [ 0., -1.,  0., 0.0],
                             [ 0.,  0.,  0., 1.]])
    Bw_v = numpy.zeros((6,2))
    Bw_v[0, :] = [-0.03, 0]
    Bw_v[1, :] = [-width_offset, width_offset] #XXX
    Bw_v[2, :] = [-width_offset, width_offset] #XXX
    #Bw_v[5, :] = [-math.pi/2.0, math.pi/2.0] 
    vert_tsr = TSR(T0_w=T0_w, Tw_e=Tw_e_vert, Bw = Bw_v)
    grasp_chain_vert = TSRChain(sample_start=False, sample_goal=True,
                                 constrain=False, TSR=vert_tsr)
    chain_list += [ grasp_chain_vert ] #XXX
 
    # Top and Bottom sides
    Tw_e_side1 = numpy.array([[ 1., 0.,  0., 0.0],
                              [ 0.,-1.,  0., 0.0],
                              [ 0., 0., -1., lateral_offset],
                              [ 0., 0.,  0., 1.]])

    Tw_e_side2 = numpy.array([[ 1., 0., 0., 0.0],
                              [ 0., 1., 0., 0.0],
                              [ 0., 0., 1., -lateral_offset],
                              [ 0., 0., 0., 1.]])
    Bw_side = numpy.zeros((6,2))
    Bw_side[0, :] = [-toolLength, 0.0]
    Bw_side[2, :] = [-width_offset, width_offset] #XXX
    #Bw_side[4,:] = [-math.pi/4.0, math.pi/4.0] 
    side_tsr1 = TSR(T0_w = T0_w, Tw_e = Tw_e_side1, Bw = Bw_side)
    grasp_chain_side1 = TSRChain(sample_start=False, sample_goal=True,
                                constrain=False, TSR=side_tsr1)
    chain_list += [ grasp_chain_side1 ]
    side_tsr2 = TSR(T0_w = T0_w, Tw_e = Tw_e_side2, Bw = Bw_side)
    grasp_chain_side2 = TSRChain(sample_start=False, sample_goal=True,
                                 constrain=False, TSR=side_tsr2)
    chain_list += [ grasp_chain_side2 ] 


    # Two side faces
    Tw_e_bottom1 = numpy.array([[ 1., 0.,  0., 0.],
                                [ 0., 0., -1., lateral_offset],
                                [ 0., 1.,  0., 0.0],
                                [ 0., 0.,  0., 1.]])

    Tw_e_bottom2 = numpy.array([[ 1.,  0.,  0., 0.],
                                [ 0.,  0.,  1., -lateral_offset],
                                [ 0., -1.,  0., 0.0],
                                [ 0.,  0.,  0., 1.]])
    Bw_topbottom = numpy.zeros((6,2))
    Bw_topbottom[0, :] = [-toolLength, 0.0]
    Bw_topbottom[2, :] = [-width_offset, width_offset] #XXX
    #Bw_topbottom[5, :] = [-math.pi/4.0, math.pi/4.0] 
    bottom_tsr1 = TSR(T0_w = T0_w, Tw_e = Tw_e_bottom1, Bw = Bw_topbottom)
    grasp_chain_bottom1 = TSRChain(sample_start=False, sample_goal=True,
                                  constrain=False, TSR=bottom_tsr1)
    chain_list += [ grasp_chain_bottom1 ]

    bottom_tsr2 = TSR(T0_w = T0_w, Tw_e = Tw_e_bottom2, Bw = Bw_topbottom)
    grasp_chain_bottom2 = TSRChain(sample_start=False, sample_goal=True,
                                  constrain=False, TSR=bottom_tsr2)
    chain_list += [ grasp_chain_bottom2 ]

    # Each chain in the list can also be rotated by 180 degrees around z
    rotated_chain_list = []
    for c in chain_list:
        rval = numpy.pi
        R = numpy.array([[numpy.cos(rval), -numpy.sin(rval), 0., 0.],
                         [numpy.sin(rval),  numpy.cos(rval), 0., 0.],
                         [             0.,               0., 1., 0.],
                         [             0.,               0., 0., 1.]])
        tsr = c.TSRs[0]
        Tw_e = tsr.Tw_e
        Tw_e_new = numpy.dot(Tw_e, R)
        tsr_new = TSR(T0_w = tsr.T0_w, Tw_e=Tw_e_new, Bw=tsr.Bw)
        tsr_chain_new = TSRChain(sample_start=False, sample_goal=True, constrain=False,
                                     TSR=tsr_new)
        rotated_chain_list += [ tsr_chain_new ]

    return chain_list + rotated_chain_list
def handle_grasp(tool, push_distance=0.0, width_offset=0.0, **kw_args):
    """
    @param tool The tool to grasp
    @param push_distance The distance to push before grasping
    """
    ee_to_palm_distance = 0.1175
    lateral_offset = ee_to_palm_distance + push_distance

    T0_w = tool.get_transform()
    chain_list = []

    # Base of tool (opposite side of head)
    Tw_e_front1 = numpy.array([[0., 0., -1., lateral_offset],
                               [0., 1., 0., 0.0], [1., 0., 0., 0.0],
                               [0., 0., 0., 1.]])
    Bw_yz = numpy.zeros((6, 2))
    Bw_yz[1, :] = [-width_offset, width_offset]
    Bw_yz[2, :] = [-width_offset, width_offset]
    front_tsr1 = TSR(T0_w=T0_w, Tw_e=Tw_e_front1, Bw=Bw_yz)
    grasp_chain_front = TSRChain(sample_start=False,
                                 sample_goal=True,
                                 constrain=False,
                                 TSR=front_tsr1)
    chain_list += [grasp_chain_front]

    # Top and Bottom sides
    Tw_e_side1 = numpy.array([[0., 1., 0., 0.0], [1., 0., 0., 0.0],
                              [0., 0., -1., lateral_offset], [0., 0., 0., 1.]])
    Tw_e_side2 = numpy.array([[0., 1., 0., 0.0], [1., 0., 0., 0.02],
                              [0., 0., 1., -lateral_offset], [0., 0., 0., 1.]])
    Bw_side = numpy.zeros((6, 2))
    Bw_side[0, :] = [-0.08, 0.0]
    Bw_side[1, :] = [-width_offset, width_offset]
    side_tsr1 = TSR(T0_w=T0_w, Tw_e=Tw_e_side1, Bw=Bw_side)
    grasp_chain_side1 = TSRChain(sample_start=False,
                                 sample_goal=True,
                                 constrain=False,
                                 TSR=side_tsr1)
    chain_list += [grasp_chain_side1]
    side_tsr2 = TSR(T0_w=T0_w, Tw_e=Tw_e_side2, Bw=Bw_side)
    grasp_chain_side2 = TSRChain(sample_start=False,
                                 sample_goal=True,
                                 constrain=False,
                                 TSR=side_tsr2)
    chain_list += [grasp_chain_side2]

    # Two side faces
    Tw_e_bottom1 = numpy.array([[0., -1., 0., 0.],
                                [0., 0., -1., lateral_offset],
                                [-1., 0., 0., 0.0], [0., 0., 0., 1.]])
    Tw_e_bottom2 = numpy.array([[0., -1., 0., 0.],
                                [0., 0., 1., -lateral_offset],
                                [-1., 0., 0., 0.0], [0., 0., 0., 1.]])
    Bw_topbottom = numpy.zeros((6, 2))
    Bw_topbottom[0, :] = [-0.08, 0.0]
    Bw_topbottom[2, :] = [-width_offset, width_offset]
    bottom_tsr1 = TSR(T0_w=T0_w, Tw_e=Tw_e_bottom1, Bw=Bw_topbottom)
    grasp_chain_bottom1 = TSRChain(sample_start=False,
                                   sample_goal=True,
                                   constrain=False,
                                   TSR=bottom_tsr1)
    chain_list += [grasp_chain_bottom1]
    bottom_tsr2 = TSR(T0_w=T0_w, Tw_e=Tw_e_bottom2, Bw=Bw_topbottom)
    grasp_chain_bottom2 = TSRChain(sample_start=False,
                                   sample_goal=True,
                                   constrain=False,
                                   TSR=bottom_tsr2)
    chain_list += [grasp_chain_bottom2]

    # Each chain in the list can also be rotated by 180 degrees around z
    rotated_chain_list = []
    for c in chain_list:
        rval = numpy.pi
        R = numpy.array([[numpy.cos(rval), -numpy.sin(rval), 0., 0.],
                         [numpy.sin(rval),
                          numpy.cos(rval), 0., 0.], [0., 0., 1., 0.],
                         [0., 0., 0., 1.]])
        tsr = c.TSRs[0]
        Tw_e = tsr.Tw_e
        Tw_e_new = numpy.dot(Tw_e, R)
        tsr_new = TSR(T0_w=tsr.T0_w, Tw_e=Tw_e_new, Bw=tsr.Bw)
        tsr_chain_new = TSRChain(sample_start=False,
                                 sample_goal=True,
                                 constrain=False,
                                 TSR=tsr_new)
        rotated_chain_list += [tsr_chain_new]

    return chain_list + rotated_chain_list
Beispiel #19
0
def bar_grasp(box, push_distance=0.0,
                width_offset=0.0,
                **kw_args):
    """
    @param box The box to grasp
    @param push_distance The distance to push before grasping
    """
    ee_to_palm_distance = 0.098 
    lateral_offset=ee_to_palm_distance + push_distance
    epsilon = 0.01
 
    T0_w = box.get_transform()
    chain_list = []

    # Base of box (opposite side of head)
    Tw_e_front1 = numpy.array([[ 0., 0., -1.,  lateral_offset],
                               [-1., 0.,  0., 0.0],
                               [ 0., 1.,  0., 0.0], 
                               [ 0., 0.,  0., 1.]])

    Tw_e_front2 = numpy.array([[ 0.,  0.,  1., -lateral_offset],
                               [ 1.,  0.,  0., 0.0],
                               [ 0.,  1.,  0., 0.0],
                               [ 0.,  0.,  0., 1.]])
    Bw_yz = numpy.zeros((6,2))
    Bw_yz[0, :] = [-epsilon, epsilon] 
    Bw_yz[1, :] = [-0.2, 0.2] 
    front_tsr1 = TSR(T0_w = T0_w, Tw_e = Tw_e_front1, Bw = Bw_yz)
    grasp_chain_front1 = TSRChain(sample_start=False, sample_goal=True,
                                 constrain=False, TSR=front_tsr1)
    chain_list += [ grasp_chain_front1 ] 
    front_tsr2 = TSR(T0_w = T0_w, Tw_e = Tw_e_front2, Bw = Bw_yz)
    grasp_chain_front2 = TSRChain(sample_start=False, sample_goal=True,
                                 constrain=False, TSR=front_tsr2)
    chain_list += [ grasp_chain_front2 ]

 
    # Top and Bottom sides 
    Tw_e_side3 = numpy.array([[ 0., 1.,  0., 0.0],
                              [ 1., 0.,  0., 0.0],
                              [ 0., 0., -1., lateral_offset],
                              [ 0., 0.,  0., 1.]])

    Tw_e_side4 = numpy.array([[ 0., 1., 0., 0.0],
                              [-1., 0., 0., 0.0],
                              [ 0., 0., 1., -lateral_offset-0.05],
                              [ 0., 0., 0., 1.]])
    Bw_side = numpy.zeros((6,2))
    Bw_side[0, :] = [-epsilon, epsilon]
    Bw_side[1, :] = [-0.2, 0.2]
    side_tsr3 = TSR(T0_w = T0_w, Tw_e = Tw_e_side3, Bw = Bw_side)
    grasp_chain_side3 = TSRChain(sample_start=False, sample_goal=True,
                                constrain=False, TSR=side_tsr3)
    chain_list += [ grasp_chain_side3 ]
    side_tsr4 = TSR(T0_w = T0_w, Tw_e = Tw_e_side4, Bw = Bw_side)
    grasp_chain_side4 = TSRChain(sample_start=False, sample_goal=True,
                                 constrain=False, TSR=side_tsr4)
    chain_list += [ grasp_chain_side4 ] 


    # Two side faces
    Tw_e_bottom1 = numpy.array([[ 0., -1.,  0., 0.],
                                [ 0.,  0., -1., lateral_offset+0.19],
                                [ 1.,  0.,  0., 0.0],
                                [ 0.,  0.,  0., 1.]])

    Tw_e_bottom2 = numpy.array([[ 0.,  1.,  0., 0.],
                                [ 0.,  0.,  1., -lateral_offset-0.19],
                                [ 1.,  0.,  0., 0.0],
                                [ 0.,  0.,  0., 1.]])

    Tw_e_bottom3 = numpy.array([[ 1.,  0.,  0., 0.],
                                [ 0.,  0.,  1., -lateral_offset-0.19],
                                [ 0., -1.,  0., 0.0],
                                [ 0.,  0.,  0., 1.]])

    Tw_e_bottom4 = numpy.array([[ 1.,  0.,  0., 0.],
                                [ 0.,  0., -1., lateral_offset+0.19],
                                [ 0.,  1.,  0., 0.0],
                                [ 0.,  0.,  0., 1.]])

    Bw_topbottom = numpy.zeros((6,2))
    Bw_topbottom[1, :] = [-epsilon, epsilon]
    bottom_tsr1 = TSR(T0_w = T0_w, Tw_e = Tw_e_bottom1, Bw = Bw_topbottom)
    grasp_chain_bottom1 = TSRChain(sample_start=False, sample_goal=True,
                                  constrain=False, TSR=bottom_tsr1)
    chain_list += [ grasp_chain_bottom1 ]

    bottom_tsr2 = TSR(T0_w = T0_w, Tw_e = Tw_e_bottom2, Bw = Bw_topbottom)
    grasp_chain_bottom2 = TSRChain(sample_start=False, sample_goal=True,
                                  constrain=False, TSR=bottom_tsr2)
    chain_list += [ grasp_chain_bottom2 ]

    bottom_tsr3 = TSR(T0_w = T0_w, Tw_e = Tw_e_bottom3, Bw = Bw_topbottom)
    grasp_chain_bottom3 = TSRChain(sample_start=False, sample_goal=True,
                                  constrain=False, TSR=bottom_tsr3)
    chain_list += [ grasp_chain_bottom3 ]

    bottom_tsr4 = TSR(T0_w = T0_w, Tw_e = Tw_e_bottom4, Bw = Bw_topbottom)
    grasp_chain_bottom4 = TSRChain(sample_start=False, sample_goal=True,
                                  constrain=False, TSR=bottom_tsr4)
    chain_list += [ grasp_chain_bottom4 ]

    # Each chain in the list can also be rotated by 180 degrees around z
    rotated_chain_list = []
    for c in chain_list:
        rval = numpy.pi
        R = numpy.array([[numpy.cos(rval), -numpy.sin(rval), 0., 0.],
                         [numpy.sin(rval),  numpy.cos(rval), 0., 0.],
                         [             0.,               0., 1., 0.],
                         [             0.,               0., 0., 1.]])
        tsr = c.TSRs[0]
        Tw_e = tsr.Tw_e
        Tw_e_new = numpy.dot(Tw_e, R)
        tsr_new = TSR(T0_w = tsr.T0_w, Tw_e=Tw_e_new, Bw=tsr.Bw)
        tsr_chain_new = TSRChain(sample_start=False, sample_goal=True, constrain=False,
                                     TSR=tsr_new)
        rotated_chain_list += [ tsr_chain_new ]

    return chain_list #+ rotated_chain_list
Beispiel #20
0
def bottle_grasp(cap, push_distance=0.0, **kw_args):
    """
    @param cap The cap to grasp
    @param push_distance The distance to push before grasping
    """
    epsilon = 0.005
    ee_to_palm_distance = 0.105
    lateral_offset = ee_to_palm_distance + push_distance

    T0_w = cap.get_transform()
    chain_list = []

    # Base of cap (opposite side of head)
    Tw_e_front1 = numpy.array([[0., 0., -1., lateral_offset],
                               [0., 1., 0., 0.0], [1., 0., 0., 0.0],
                               [0., 0., 0., 1.]])
    Bw_yz = numpy.zeros((6, 2))
    Bw_yz[1, :] = [-epsilon, epsilon]
    Bw_yz[2, :] = [-0.05, 0.05]
    Bw_yz[5, :] = [-math.pi, math.pi]
    front_tsr1 = TSR(T0_w=T0_w, Tw_e=Tw_e_front1, Bw=Bw_yz)
    grasp_chain_front1 = TSRChain(sample_start=False,
                                  sample_goal=True,
                                  constrain=False,
                                  TSR=front_tsr1)
    chain_list += [grasp_chain_front1]  # AROUND

    # Top and Bottom sides
    Tw_e_side1 = numpy.array([[1., 0., 0., 0.0], [0., -1., 0., 0.0],
                              [0., 0., -1., lateral_offset], [0., 0., 0., 1.]])

    Tw_e_side2 = numpy.array([[1., 0., 0., 0.0], [0., 1., 0., 0.0],
                              [0., 0., 1., -lateral_offset], [0., 0., 0., 1.]])
    Bw_side = numpy.zeros((6, 2))
    Bw_side[0, :] = [-epsilon, epsilon]
    Bw_side[1, :] = [-epsilon, epsilon]
    Bw_side[5, :] = [-math.pi, math.pi]
    side_tsr1 = TSR(T0_w=T0_w, Tw_e=Tw_e_side1, Bw=Bw_side)
    grasp_chain_side1 = TSRChain(sample_start=False,
                                 sample_goal=True,
                                 constrain=False,
                                 TSR=side_tsr1)
    chain_list += [grasp_chain_side1]  #TOP GRASP
    side_tsr2 = TSR(T0_w=T0_w, Tw_e=Tw_e_side2, Bw=Bw_side)
    grasp_chain_side2 = TSRChain(sample_start=False,
                                 sample_goal=True,
                                 constrain=False,
                                 TSR=side_tsr2)
    chain_list += [grasp_chain_side2]  #BOTTOM GRASP

    # Each chain in the list can also be rotated by 180 degrees around z
    rotated_chain_list = []
    for c in chain_list:
        rval = numpy.pi
        R = numpy.array([[numpy.cos(rval), -numpy.sin(rval), 0., 0.],
                         [numpy.sin(rval),
                          numpy.cos(rval), 0., 0.], [0., 0., 1., 0.],
                         [0., 0., 0., 1.]])
        tsr = c.TSRs[0]
        Tw_e = tsr.Tw_e
        Tw_e_new = numpy.dot(Tw_e, R)
        tsr_new = TSR(T0_w=tsr.T0_w, Tw_e=Tw_e_new, Bw=tsr.Bw)
        tsr_chain_new = TSRChain(sample_start=False,
                                 sample_goal=True,
                                 constrain=False,
                                 TSR=tsr_new)
        rotated_chain_list += [tsr_chain_new]

    return chain_list + rotated_chain_list
Beispiel #21
0
def sweep_objs(robot, transform, manip=None):
    """
    This motion sweeps from where the manipulator currently is
    to the transform given as input.

    @param robot The robot performing the point
    @param transform The location of end of the sweeping motion
    @param manip The manipulator to sweep.
    """

    (manip, manip_idx) = GetManipulatorIndex(robot, manip)

    #TSR for the goal
    ee_offset = 0.2
    obj_position = transform
    start_position = manip.GetEndEffectorTransform()
    end_position = manip.GetEndEffectorTransform()
    end_position[0, 3] = obj_position[0, 3]
    end_position[1, 3] = obj_position[1, 3] - ee_offset

    Bw = numpy.zeros((6, 2))
    epsilon = 0.05
    Bw[0, :] = [-epsilon, epsilon]
    Bw[1, :] = [-epsilon, epsilon]
    Bw[2, :] = [-epsilon, epsilon]
    Bw[4, :] = [-epsilon, epsilon]

    tsr_goal = TSR(T0_w=end_position, Tw_e=numpy.eye(4),
            Bw=Bw, manip=manip_idx)

    goal_tsr_chain = TSRChain(sample_start=False, sample_goal=True,
            constrain=False, TSRs=[tsr_goal])

    goal_in_start = numpy.dot(numpy.linalg.inv(start_position), end_position)

    #TSR that constrains the movement
    Bw_constrain = numpy.zeros((6, 2))
    Bw_constrain[:, 0] = -epsilon
    Bw_constrain[:, 1] = epsilon
    if goal_in_start[0, 3] < 0:
        Bw_constrain[0, :] = [-epsilon+goal_in_start[0, 3], epsilon]
    else:
        Bw_constrain[0, :] = [-epsilon, epsilon+goal_in_start[0, 3]]

    if goal_in_start[1, 3] < 0:
        Bw_constrain[1, :] = [-epsilon+goal_in_start[1, 3], epsilon]
    else:
        Bw_constrain[1, :] = [-epsilon, epsilon+goal_in_start[1, 3]]

    if goal_in_start[2, 3] < 0:
        Bw_constrain[2, :] = [-epsilon+goal_in_start[2, 3], epsilon]
    else:
        Bw_constrain[2, :] = [-epsilon, epsilon+goal_in_start[2, 3]]

    tsr_constraint = TSR(T0_w=start_position, Tw_e=numpy.eye(4),
            Bw=Bw_constrain, manip=manip_idx)

    movement_chain = TSRChain(sample_start=False, sample_goal=False,
            constrain=True, TSRs=[tsr_constraint])

    return [goal_tsr_chain, movement_chain]