def pvi(candles: np.ndarray, source_type: str = "close", sequential: bool = False) -> Union[float, np.ndarray]: """ PVI - Positive Volume Index :param candles: np.ndarray :param source_type: str - default: "close" :param sequential: bool - default=False :return: float | np.ndarray """ candles = slice_candles(candles, sequential) source = get_candle_source(candles, source_type=source_type) res = ti.pvi(np.ascontiguousarray(source), np.ascontiguousarray(candles[:, 5])) return same_length(candles, res) if sequential else res[-1]
def pvi(candles: np.ndarray, source_type="close", sequential=False) -> Union[float, np.ndarray]: """ PVI - Positive Volume Index :param candles: np.ndarray :param source_type: str - default: "close" :param sequential: bool - default=False :return: float | np.ndarray """ if not sequential and len(candles) > 240: candles = candles[-240:] source = get_candle_source(candles, source_type=source_type) res = ti.pvi(np.ascontiguousarray(source), np.ascontiguousarray(candles[:, 5])) return np.concatenate( (np.full((candles.shape[0] - res.shape[0]), np.nan), res), axis=0) if sequential else res[-1]
def compute(self, data_dict): close = data_dict.get('close') volume = data_dict.get('volume') return ti.pvi(close, volume)