Beispiel #1
0
def pvi(candles: np.ndarray, source_type: str = "close", sequential: bool = False) -> Union[float, np.ndarray]:
    """
    PVI - Positive Volume Index

    :param candles: np.ndarray
    :param source_type: str - default: "close"
    :param sequential: bool - default=False

    :return: float | np.ndarray
    """
    candles = slice_candles(candles, sequential)

    source = get_candle_source(candles, source_type=source_type)
    res = ti.pvi(np.ascontiguousarray(source), np.ascontiguousarray(candles[:, 5]))

    return same_length(candles, res) if sequential else res[-1]
Beispiel #2
0
def pvi(candles: np.ndarray,
        source_type="close",
        sequential=False) -> Union[float, np.ndarray]:
    """
    PVI - Positive Volume Index

    :param candles: np.ndarray
    :param source_type: str - default: "close"
    :param sequential: bool - default=False

    :return: float | np.ndarray
    """
    if not sequential and len(candles) > 240:
        candles = candles[-240:]

    source = get_candle_source(candles, source_type=source_type)
    res = ti.pvi(np.ascontiguousarray(source),
                 np.ascontiguousarray(candles[:, 5]))

    return np.concatenate(
        (np.full((candles.shape[0] - res.shape[0]), np.nan),
         res), axis=0) if sequential else res[-1]
Beispiel #3
0
    def compute(self, data_dict):
        close = data_dict.get('close')
        volume = data_dict.get('volume')

        return ti.pvi(close, volume)