def test_crop_cuda(): inp = torch.cuda.FloatTensor([[ [1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 1, 1], [0, 0, 1, 1], ]]) expected = torch.cuda.FloatTensor([[ [2, 2, 2, 2, 2], [1, 0, 0, 2, 2], ]]) actual = crop(inp, -1, 1, 2, 5, padding_mode='constant', fill=2) assert_allclose(actual, expected)
def test_crop(): inp = torch.FloatTensor([[ [1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 1, 1], [0, 0, 1, 1], ]]) expected = torch.FloatTensor([[ [1, 0], [0, 1], [0, 1], ]]) actual = crop(inp, 1, 1, 3, 2) assert_allclose(actual, expected)
def test_crop_random(data, t, l, w, h, device): inp = torch.from_numpy(data).to(device) actual = crop(inp, t, l, h, w) assert actual.shape == (data.shape[0], h, w)