y_other = []
text_other = []

x_all = []
y_all = []

x_male = []
y_male = []
text_male = []

x_female = []
y_female = []
text_female = []

for handle, magnitude in dictionaryByValue(tweet_density):
    subject = get_values(handle=handle)[0]
    print(subject['name'])

    x_all.append(magnitude)
    y_all.append(deleted_density[handle])

    if subject['sex'] == 'male':
        text_male.append(subject['name'])
        x_male.append(magnitude)
        y_male.append(deleted_density[handle])

    else:
        text_female.append(subject['name'])
        x_female.append(magnitude)
        y_female.append(deleted_density[handle])
Beispiel #2
0
my_suspended_deleted_list = []
subjects_dict = {}
stance_count = {}

with open('closed_accounts.txt', mode='r') as fs:
    for account in fs:
        my_deleted_list.append(account.strip().lower())
        my_suspended_deleted_list.append(account.strip().lower())

with open('suspended.txt', mode='r') as fs:
    for account in fs:
        my_suspended_list.append(account.strip().lower())
        my_suspended_deleted_list.append(account.strip().lower())

# get political stance for all Twitter observed accounts
for account in get_values():
    subjects_dict[account['handle'].lower()] = {'stance': account['stance']}
    if account['stance'] not in stance_count:
        stance_count[account['stance']] = 1
    else:
        stance_count[account['stance']] += 1

max_density = 0
handle_max_density = ''
is_tweet_density = True
appearance = {}

print(
    observed.handle_text_conversation_replies('iamsambee',
                                              '885869337063686144',
                                              'camarogirl91'))
import numpy as np
import plotly
from twitter_apps.Subjects import get_values

plotly.offline.init_notebook_mode(connected=True)

with open('data/account_features.pkl', mode='rb') as fhd:
    obj = pickle.load(fhd)

x = list(range(1, len(obj) + 1))
y = []
text = []
values = []

for account in obj:
    subject = get_values(handle=account)[0]

    print(subject['name'])
    print(
        'User-name: {}, Number of appearances across conversations: {}, Ave. appearances across conversations: {}'
        .format(account, obj[account]['appearance-across-conversation-count'],
                obj[account]['ave-handle-appearance-across-conversation']))

    values.append((obj[account]['appearance-across-conversation-count'],
                   subject['name']))

    #for feature in obj[account]:
    #    print('\t{}: {}'.format(feature, obj[account]['ave-handle-appearance-across-conversation']))

print(len(obj))
my_suspended_deleted_list = []
subjects_dict = {}
stance_count = {}

with open('closed_accounts.txt', mode='r') as fs:
    for account in fs:
        my_deleted_list.append(account.strip().lower())
        my_suspended_deleted_list.append(account.strip().lower())

with open('suspended.txt', mode='r') as fs:
    for account in fs:
        my_suspended_list.append(account.strip().lower())
        my_suspended_deleted_list.append(account.strip().lower())

# get political stance for all Twitter observed accounts
for account in get_values():
    subjects_dict[account['handle'].lower()] = {'stance': account['stance']}
    if account['stance'] not in stance_count:
        stance_count[account['stance']] = 1
    else:
        stance_count[account['stance']] += 1

max_density = 0
handle_max_density = ''
is_tweet_density = True
appearance = {}

total_number_tweets = 0
total_number_handles = 0
total_number_conversations = 0
total_number_handles_in_conversation = 0
my_suspended_deleted_list = []
subjects_dict = {}
stance_count = {}

with open('closed_accounts.txt', mode='r') as fs:
    for account in fs:
        my_deleted_list.append(account.strip().lower())
        my_suspended_deleted_list.append(account.strip().lower())

with open('suspended.txt', mode='r') as fs:
    for account in fs:
        my_suspended_list.append(account.strip().lower())
        my_suspended_deleted_list.append(account.strip().lower())

# get political stance for all Twitter observed accounts
for account in get_values():
    subjects_dict[account['handle'].lower()] = {'stance': account['stance']}
    if account['stance'] not in stance_count:
        stance_count[account['stance']] = 1
    else:
        stance_count[account['stance']] += 1

max_density = 0
handle_max_density = ''
is_tweet_density = True
appearance = {}

print(
    observed.handle_text_conversation_replies('iamsambee',
                                              '885869337063686144',
                                              'camarogirl91'))
Beispiel #6
0
from twitter_apps.Subjects import get_values
from twitter_apps.TwitterFunctions import TwitterObject

all_handles = []
for account in get_values():
    print(account['handle'])
    all_handles.append(account['handle'])

my_api = TwitterObject()

user_ids = my_api.api.lookup_users(screen_names=all_handles[:100])

for user in user_ids:
    print(user.screen_name, user.id)

user_ids = my_api.api.lookup_users(screen_names=all_handles[100:])

print()
print(all_handles[99:105])
print()

for user in user_ids:
    print(user.screen_name, user.id)
y4 = []
text5 = []
x5 = []
y5 = []

with open('closed_accounts.txt', mode='r') as fs:
    for account in fs:
        my_deleted_list.append(account.strip().lower())
        my_suspended_deleted_list.append(account.strip().lower())

with open('suspended.txt', mode='r') as fs:
    for account in fs:
        my_suspended_list.append(account.strip().lower())
        my_suspended_deleted_list.append(account.strip().lower())

for current_handle in get_values():
    del_rows, all_handles = observed.handle_conversation_matrix(
        current_handle['handle'], my_suspended_deleted_list)
    all_rows = observed.handle_conversations_id(current_handle['handle'])

    deleted_amount[current_handle['handle']] = 0
    for row in del_rows:
        for handle in row[list(row)[0]]:
            deleted_amount[current_handle['handle']] += row[list(row)
                                                            [0]][handle]

    deleted_percent = len(del_rows) / len(all_rows)
    deleted_data[current_handle['handle']] = deleted_percent
    subjects_dict[current_handle['handle']] = current_handle['name']

    print(deleted_amount[current_handle['handle']])