def main(): data = Z0Data.fromROOTFile('../data/daten/daten_1.root', 'h33') energiedatas = data.splitEnergies() xmin, xmax = -0.9, 0.9 binsizes = {88.48021:80, 89.47158:80, 90.22720:80, 91.23223:50, 91.97109:25, 92.97091:59, 93.71841:80} integrals = [] eds = list(energiedatas.items()) # energy datas sorted after energy eds.sort(key=lambda x: x[0]) table = [] for energie, data in eds: (s, ss), (t, st) = stFit(data, energie, xmin, xmax, binsizes[energie]) # s intergral: Is = s * (xmax - xmin + (xmax ** 3 - xmin ** 3) / 3) sIs = Is * ss / s # t integral It = t * (1 / (1 - xmax) - 1 / (1 - xmin)) sIt = It * st / t r = Is / (Is + It) # s-ratio sr = r * sqrt((sIs / Is) ** 2 + (sIs ** 2 + sIt ** 2) / ((Is + It) ** 2)) integrals.append((energie, Is, sIs, It, sIt, r, sr)) table.append([energie, r, sr]) with TxtFile('../calc/s-t-integrals.txt', 'w') as f: f.write2DArrayToFile(integrals, ['%.5f'] + ['%.3f'] * 6) with TxtFile('../src/tab_st_ratios.tex', 'w') as f: f.write2DArrayToLatexTable(table, [r"$\sqrt{s}$ / GeV", r"$c_{\text{st}}$", r"$s_{c_{\text{st}}}$"], ["%.2f", "%.2f", "%.2f"], r"Korrekturfaktoren $c_{\text{st}}$ der s-t-Kanal Trennung für verschiedene Schwerpunktsenergien.", "tab:st:corrs")
def evalEnergyCalibration(peaks, percents): maxenergy = 1.95 * 0.87 * 84 smaxenergy = maxenergy * sqrt((0.05 / 1.95)**2 + (0.01 / 0.87)**2 + (5 / 84)**2) channels = list(list(zip(*peaks))[0]) schannels = list(list(zip(*peaks))[1]) energies = list(map(lambda x: x / 100 * maxenergy, percents)) senergies = list(map(lambda x: x / 100 * smaxenergy, percents)) print(energies) print(senergies) with TxtFile('../src/tab_energycalibration.tex', 'w') as f: f.write2DArrayToLatexTable( list(zip(*[percents, channels, schannels, energies, senergies])), ['\% energy', '$c$', '$s_c$', '$E$ / MeV', '$s_E$ / MeV'], ['%d', '%.3f', '%.3f', '%.1f', '%.1f'], "Channels of fitted peaks and their theoretical energy for the energy calibration.", "tab:ecal") data = DataErrors.fromLists(channels, energies, schannels, senergies) c = TCanvas('c_energycalibration', '', 1280, 720) g = data.makeGraph('g_energycalibration', 'channel c', 'energy E / MeV') g.Draw('AP') fit = Fitter('fit_energycalibration', 'pol1(0)') fit.function.SetNpx(1000) fit.setParam(0, 'a', 0) fit.setParam(1, 'b', 1 / 3) fit.fit(g, 0, max(channels) + 5) fit.saveData('../fit/energyCalibration.txt') l = TLegend(0.15, 0.6, 0.575, 0.85) l.SetTextSize(0.03) l.AddEntry(g, 'Peaks of flight through spectra / pedestal', 'p') l.AddEntry(fit.function, 'fit with E(c) = a + b * c', 'l') fit.addParamsToLegend(l, (('%.2f', '%.2f'), ('%.3f', '%.3f')), chisquareformat='%.2f', units=('MeV', 'MeV / channel'), lang='en') l.Draw() c.Update() c.Print('../img/energyCalibration.pdf', 'pdf') with TxtFile('../calc/energyCalibration.txt', 'w') as f: f.writeline('\t', str(fit.params[0]['value']), str(fit.params[0]['error'])) f.writeline('\t', str(fit.params[1]['value']), str(fit.params[1]['error'])) f.writeline('\t', str(fit.getCovMatrixElem(0, 1)))
def main(): effmatrix = loadCSVToList('../calc/efficencies.txt') seffmatrix = loadCSVToList('../calc/efficencies_error.txt') t1 = time.time() #generate matrices ms = [] for i in range(100000): m = generateErrorMatrix(effmatrix, seffmatrix) ms.append(inv(m)) #group values sigmas = [[[] for i in range(4)] for j in range(4)] # empty 4x4 matrix for i in range(4): for j in range(4): entries = [] for m in ms: entries.append(m[i][j]) sigmas[i][j] = std(entries, ddof=1) t2 = time.time() print('%.3f' % (t2 - t1)) print(matrix(sigmas)) with TxtFile('../calc/invEfficencies_error.txt', 'w') as f: f.write2DArrayToFile(sigmas, ['%.7f'] * 4)
def evalIntervalConst(avgspectrum): def avg2vals(val1, val2): return avgerrors([val1[0], val2[0]], [val1[1], val2[1]]) def sub2vals(val1, val2): return val1[0] - val2[0], sqrt(val1[1] ** 2 + val2[1] ** 2) s = avgspectrum sfreq85 = sub2vals(s[3], s[2]) # 85 S delta freq s = avgspectrum[:2] + avgspectrum[-2:] sfreq87 = avg2vals(sub2vals(s[2], s[0]), sub2vals(s[3], s[1])) # 87 S delta freq pfreq87 = avg2vals(sub2vals(s[3], s[2]), sub2vals(s[1], s[0])) # 87 P delta freq freqs = [sfreq85, sfreq87, pfreq87] Fs = [2, 1, 1] # F of HFS names = [r"\rb{85}: ${}^2\text{S}_{1/2}$", r"\rb{87}: ${}^2\text{S}_{1/2}$", r"\rb{87}: ${}^2\text{P}_{1/2}$"] litvals = ["4.185", "14.13", "1.692"] As = [] for name, litval, (freq, sfreq87), F in zip(*[names, litvals, freqs, Fs]): A = freq * h_eVs / (F + 1) * 1e15 # in µeV and GHz in Hz sA = sfreq87 * h_eVs / (F + 1) * 1e15 As.append([name, litval, A, sA]) with TxtFile('../src/tab_part2_A.tex', 'w') as f: f.write2DArrayToLatexTable(As, ["Isotop / Feinstruktur", r"$A^\text{Lit.}$ / \textmu eV", r"$A^\text{exp}$ / \textmu eV", r"$s_{A^\text{exp}}$ / \textmu eV"], ['%s', '%s', '%.2f', '%.2f'], r"Errechnete HFS-Intervallkonstanten $A$ für das ${}^2\text{S}_{1/2}$ Niveau von \rb{85} " + r"und für das ${}^2\text{S}_{1/2}$- und ${}^2\text{P}_{1/2}$ Niveau von \rb{87}.", "tab:hfs:intervalconsts")
def saveDataToLaTeX(self, thead, format, caption, label, path, mode, encoding='utf-8'): """prints all points formatted into an latex file and saves it. Arguments: thead -- list of descriptions for columns, is used as first row format -- list of formatting rules, how to convert numbers into strings caption -- caption of table in latex label -- label of table in latex path -- relative path to file in which the data is saved to mode -- write mode (usually 'w' for overwriting or 'a' for appending) encoding -- file encoding (default = 'utf-8') """ i = ' ' # intendation with TxtFile(path, mode, encoding) as f: f.writeline('\\begin{table}[H]') f.writeline('\\caption{' + caption + '}') f.writeline('\\begin{center}') f.writeline('\\begin{tabular}{' + '|c' * len(self.points[0]) + '|}') f.writeline(i + '\hline') f.writeline(i + ' & '.join(thead) + ' \\\\ \hline ') for point in self.points: f.writeline(i + ' & '.join(format) % (point[0], point[1]) + ' \\\\ \hline') f.writeline('\\end{tabular}') f.writeline('\\end{center}') f.writeline('\\label{' + label + '}') f.writeline('\\end{table}')
def evalTotalGamma(gammas): gammas.append(avgerrors(list(zip(*gammas))[0], list(zip(*gammas))[1])) with TxtFile('../calc/gamma_total.txt', 'w') as f: f.write2DArrayToFile(gammas, ['%f'] * 2) table = [] desc = [LATEXE, LATEXM, LATEXT, LATEXQ, "gew. Mittel"] for i, (gamma, sgamma) in enumerate(gammas): table.append([desc[i], gamma, sgamma]) with TxtFile('../src/tab_gamma_total.tex', 'w') as f: f.write2DArrayToLatexTable( table, [ "Zerfallskanal", r"$\Gamma_\text{Z}$ / GeV", r"$s_{\Gamma_\text{Z}}$ / GeV" ], ['%s', '%.3f', '%.3f'], r"Durch Fits bestimmte totale Zerfallsbreite des \Z-Bosons und gewichtetes Mittel.", "tab:gamma:total")
def makeProgTables(): name = 'prog%dnl.txt' for i in range(1, 3 + 1): prog = I2Data.fromPath('../data/' + name % i) x = prog.getX() y = prog.getY() prog.correctValues(False) yc = prog.getY() yce = prog.getEY() f = TxtFile('../src/prog%d.tex' % i, 'w') f.write2DArrayToLatexTable(zip(x, y, yc, yce), ['$\\nu\'$', r'$\lambda_{\text{exp}}$ / nm', r'$\lambda_{\text{cor}}$ / nm', r'$s_{\lambda_{\text{cor}}}$ / nm'], ['%0.f', '%3.2f', '%3.2f', '%.8f'], 'Measured position of transmission minima in $I_2$-spectrum and corrected values of progession %d.' % i, 'tab:prog%d' % i) f.close()
def evalMasses(masses): masses.append(avgerrors(list(zip(*masses))[0], list(zip(*masses))[1])) with TxtFile('../calc/mass.txt', 'w') as f: f.write2DArrayToFile(masses, ['%f'] * 2) table = [] desc = [LATEXE, LATEXM, LATEXT, LATEXQ, "gew. Mittel"] for i, (mass, smass) in enumerate(masses): table.append([desc[i], mass, smass]) with TxtFile('../src/tab_mass.tex', 'w') as f: f.write2DArrayToLatexTable( table, [ "Zerfallskanal", r"$M_\text{Z}$ / GeV", r"$s_{M_\text{Z}}$ / GeV" ], ['%s', '%.3f', '%.3f'], r"Durch Fits bestimmte Masse des \Z-Bosons und gewichtetes Mittel.", "tab:mass")
def calibrateNDFilters(): errorp = 0.01 # percentage error offset = 70 data = loadCSVToList('../data/part5/04.10/filters.txt') ref = data[0][2] + offset sref = sqrt((data[0][2] * errorp)**2 + (offset * errorp)**2) newdata = [] filters = dict() for d in data: int = (d[2] + offset) / ref if int == 1: sint = 0 else: sint = int * sqrt((sqrt((d[2] * errorp)**2 + (offset * errorp)**2) / (d[2] + offset))**2 + (sref / ref)**2) newdata.append(d + [int * 100, sint * 100]) filters[d[0]] = (int, sint) with TxtFile('../src/tab_part5_NDFilters.tex', 'w') as f: f.write2DArrayToLatexTable( newdata, [ "Stärke des Filters", r"$I_\text{nominell}$ / \%", r"$U_\text{ph}$ / mV", r"$I_\text{mess}$ / \%", r"$s_{I_\text{mess}}$ / \%" ], ['%.1f', '%.3f', '%d', '%.2f', '%.2f'], r'Kalibrierung der Neutraldichtefilter: Nominelle Transmission $I_{\text{nominell}}$, gemessene Spannung an der Photodiode $U_{\text{ph}}$ und daraus berechnete Transmission $I_{\text{mess}}$. ', 'tab:deh:dnfilter') return filters
def saveData(self, path, mode='w', enc='utf-8'): """saves fitting info (chi^2, DoF, chi^2/DoF, paramters with values and errors, covariance and correlation matrix) Arguments: path -- relative path to file mode -- write mode (usually 'w' for overwriting or 'a' for appending) enc -- encoding (default = 'utf-8') """ with TxtFile.fromRelPath(path, mode) as f: f.writeline('fitting info') f.writeline('============') f.writeline(TxtFile.CHISQUARE + ':\t\t' + str(self.getChisquare())) f.writeline('DoF:\t' + str(self.getDoF())) f.writeline(TxtFile.CHISQUARE + '/DoF:\t' + str(self.getChisquareOverDoF())) f.writeline('\t', 'p-value:', *map(str, self.getPValue())) f.writeline('') f.writeline('parameters') f.writeline('==========') for i, param in self.params.iteritems(): f.writeline('\t', str(i), param['name'], str(param['value']), TxtFile.PM, str(param['error'])) f.writeline('') f.writeline('covariance matrix') f.writeline('=================') f.writelines('\t'.join(str(j) for j in i) + '\n' for i in self._covMatrix) f.writeline('') f.writeline('correlation matrix') f.writeline('==================') f.writelines('\t'.join(str(j) for j in i) + '\n' for i in self._corrMatrix) f.writeline() f.close()
def main(): # load data data = Z0Data.fromROOTFile('../data/daten/daten_1.root', 'h33') energiedatas = data.splitEnergies() inveffmatrix, sinveffmatrix = loadInvEffMatrix() stRatios = loadSTRatios() lums = loadLums() corrs = loadCorrections() plotDataDistributions(data) trueVectors = dict() sTrueVectors = dict() for energie, data in energiedatas.items(): # print("E_lep: ", energie) # energies = [] # for event in data.getEvents(): # energies.append(event["E_lep"]) # print("E_lep_data: ", average(energies) * 2) MeasVector = makeDataCut(data) # print("MeasVector: ") # print(MeasVector) # print("TrueVector:") trueVector = list(dot(inveffmatrix, MeasVector)) sTrueVector = [ sqrt( sum((inveffmatrix[i][j] * MeasVector[j])**2 * ((sinveffmatrix[i][j] / inveffmatrix[i][j])**2 + (sqrt(MeasVector[j]) / MeasVector[j])**2) for j in range(4))) for i in range(4) ] old = trueVector[0] trueVector[0] = old * stRatios[energie][0] sTrueVector[0] = trueVector[0] * sqrt( (sTrueVector[0] / old)**2 + (stRatios[energie][1] / stRatios[energie][0])**2) # print(trueVector) # print("") trueVectors[energie] = trueVector sTrueVectors[energie] = sTrueVector NDatas = [[] for i in range(4)] names = ['ee', 'mm', 'tt', 'qq'] for energie in trueVectors.keys(): for i in range(4): NDatas[i].append( (energie, trueVectors[energie][i], sTrueVectors[energie][i])) crosssections = dict() for ctype, NData in zip(*[names, NDatas]): sigmas = calcCrossSection(ctype, NData, lums, corrs) crosssections[ctype] = sigmas with TxtFile('../calc/crosssections_%s.txt' % ctype, 'w') as f: for sigma in sigmas: f.writeline('\t', *list(map(str, sigma)))
def main(): evalUnderground() makeEnergyPlot() e, se = makeFermiKuriePlot() E = e * 2 sE = se * 2 print(E, sE) with TxtFile('../calc/energy.txt', 'w') as f: f.writeline('\t', *map(lambda x: '%.2f' % x, (e, se))) f.writeline('\t', *map(lambda x: '%.2f' % x, (E, sE)))
def makeTable(): sigmas = loadCSVToList('../calc/invEfficencies_error.txt') thead = [r"Schnitt$\backslash$MC-Daten", LATEXE, LATEXM, LATEXT, LATEXQ] firstrow = [LATEXE, LATEXM, LATEXT, LATEXQ] with TxtFile('../src/tab_effmat_inv_err.tex', 'w') as f: f.write2DArrayToLatexTable( list(zip(*([firstrow] + list(zip(*sigmas))))), thead, ['%s'] + ['%.7f'] * 4, 'Fehler der inversen Effizienzmatrix, berechnet mit einem toy-experiment.', 'tab:inveffmat:err')
def evalPartGamma(gammas): with TxtFile('../calc/gamma_part.txt', 'w') as f: f.write2DArrayToFile(gammas, ['%f'] * 2) table = [] desc = [LATEXE, LATEXM, LATEXT, LATEXQ] litvals = [ r"$83.91 \pm 0.12$", r"$83.99\pm0.18$", r"$84.04\pm0.22$", r"$1744.4\pm2.0$" ] for i, (gamma, sgamma) in enumerate(gammas): table.append([desc[i], gamma * 1e3, sgamma * 1e3, litvals[i]]) with TxtFile('../src/tab_gamma_part.tex', 'w') as f: f.write2DArrayToLatexTable( table, [ "Zerfallskanal $i$", r"$\Gamma_i$ / MeV", r"$s_{\Gamma_i}$ / MeV", r"$\Gamma_i^{\text{Lit.}}$ / MeV" ], ['%s', '%.1f', '%.1f', '%s'], r"Durch Fits bestimmte partielle Zerfallsbreiten des \Z-Bosons und Literaturwerte \cite{pdg}.", "tab:gamma:part")
def main(): E, sE = 107.7, 1.42 t, st = 2.237, 0.052 tToeV = 1 / hbar_eVs * 1e-6 nt, snt = tToeV * t, tToeV * st A = 192 * pi**3 G = sqrt(A / (nt * E**5)) * 1e3 sG = 1 / 2 * sqrt(A * (E**2 * snt**2 + 25 * sE**2 * nt**2) / (E**7 * nt**3)) * 1e3 print(G, sG) with TxtFile('../calc/G.txt', 'w') as f: f.writeline('\t', '%.4e' % G, '%.2e' % sG)
def main(): # luminosity lums = loadCSVToList('../data/daten/lum.txt') with TxtFile('../src/tab_lums.tex', 'w') as f: f.write2DArrayToLatexTable( lums, [ r"$\sqrt{s}$ / GeV", r"$L$ / (1/nb)", r"$s_L^\text{stat}$ / (1/nb)", r"$s_L^\text{sys}$ / (1/nb)", r"$s_L^\text{tot}$ / (1/nb)" ], ["%.2f"] + ["%.0f"] * 4, "Zeitlich integrierte Luminosität mit statistischem, systematischem und totalem " + "Fehler für verschiedene Schwerpunktsenergien.", "tab:lums") # beam correction corr = loadCSVToList('../data/daten/corr.txt') with TxtFile('../src/tab_beamcorr.tex', 'w') as f: f.write2DArrayToLatexTable( corr, [ r"$\sqrt{s}$ / GeV", r"$c_\text{beam, \qq}$ / nb", r"$c_\text{beam, \leplep}$ / nb" ], ["%.2f", "%.1f", "%.2f"], r"Strahlungskorrekturen für hadronische und leptonische Zerfälle bei verschiedenen Schwerpunktsenergien.", "tab:beamcorrs")
def main(): peak100, sigma100 = evalFlythroughSpectrum('energiekalibration_100', 275, 600) peak050, sigma050 = evalFlythroughSpectrum('energiekalibration_50', 120, 400) peak035, sigma035 = evalFlythroughSpectrum('energiekalibration_35', 75, 240) peak000 = evalPedestal() evalEnergyCalibration([peak000, peak035, peak050, peak100], [0, 35, 50, 100]) with TxtFile('../calc/ecal_sigmas.txt', 'w') as f: for d in [[peak035, sigma035], [peak050, sigma050], [peak100, sigma100]]: f.writeline('\t', *map(str, [item for sublist in d for item in sublist]))
def makePeakFreqGraph(peaks, name): xlist = list(list(zip(*peaks))[0]) sxlist = list(list(zip(*peaks))[1]) ylist = list(map(lambda i: i * 9.924, range(len(peaks)))) sylist = list(map(lambda i: i * 0.03, range(len(peaks)))) direction = name.split('-')[0] tabledata = list(zip(*[list(range(1, len(xlist) + 1)), list(map(lambda x:x * 1000, xlist)), list(map(lambda x:x * 1000, sxlist)), ylist, sylist])) with TxtFile('../src/tab_part2_etalonfreqs_%s.tex' % direction, 'w') as f: f.write2DArrayToLatexTable(tabledata, ["i", r"$x_i$ / ms", r"$0.2 \cdot s_i$ / ms", r"$\nu_i$ / GHz", r"$s_{\nu_i}$ / GHz"], ["%d", "%.3f", "%.3f", "%.2f", "%.2f"], "Zentren $x_i$ der gefitteten Cauchy-Funktionen mit Fehler aus den " + "Breiteparametern $s_i$ und Frequenzdifferenzen zum ersten Peak. ", "tab:etalon:calib:%s" % direction) etalonData = DataErrors.fromLists(xlist, ylist, sxlist, sylist) etalonData.multiplyX(1000) c = TCanvas('c_pf_' + name, '', 1280, 720) g = etalonData.makeGraph('g_pf_' + name, 'Zeit t / ms', 'Frequenzabstand #Delta#nu / GHz') g.SetMinimum(etalonData.getMinY() - 5) g.SetMaximum(etalonData.getMaxY() + 5) g.Draw('AP') fit = Fitter('fit_pf_' + name, 'pol1(0)') fit.setParam(0, 'a') fit.setParam(1, 'r') xmin, xmax = etalonData.getMinX(), etalonData.getMaxX() deltax = (xmax - xmin) / 10 fit.fit(g, xmin - deltax, xmax + deltax) fit.saveData('../fit/part2/%s-etalon_calibration.txt' % name) if fit.params[1]['value'] < 0: l = TLegend(0.575, 0.6, 0.85, 0.85) else: l = TLegend(0.15, 0.6, 0.425, 0.85) l.SetTextSize(0.03) l.AddEntry(g, 'Etalonpeaks', 'p') l.AddEntry(fit.function, 'Fit mit #Delta#nu = a + r * t', 'l') fit.addParamsToLegend(l, [('%.1f', '%.1f'), ('%.2f', '%.2f')], chisquareformat='%.2f', units=('GHz', 'GHz/ms')) l.Draw() c.Update() if not DEBUG: c.Print('../img/part2/%s-etalon_calibration.pdf' % name, 'pdf') return (fit.params[1]['value'], fit.params[1]['error'])
def evalTaus(taus, filters): data = DataErrors() table = [] for key, (tau, stau) in taus.items(): invtau = 1 / tau sinvtau = stau / (tau**2) int, sint = filters[key] data.addPoint(int, invtau, sint, sinvtau) table.append([int * 100, sint * 100, tau * 1000, stau * 1000]) table.sort(key=lambda x: x[0], reverse=True) # make table with TxtFile('../src/tab_part5_taus.tex', 'w') as f: f.write2DArrayToLatexTable( table, [ r'$I_\text{mess}$ / \%', r'$s_{I_\text{mess}}$ / \%', r'$\tau$ / ms', r'$s_\tau$ / ms' ], ['%.2f', '%.2f', '%.3f', '%.3f'], r'Orientierungszeiten $\tau$ des Rubidiumensembles bei verschiedenen Pumpintensitäten $I_{\text{mess}}$.', 'tab:deh:fitres') # make fit c = TCanvas('c_taus', '', 1280, 720) g = data.makeGraph('g_taus', r'relative Intensitaet I_{mess}', 'inverse Orientierungszeit #tau^{ -1} / s^{-1}') g.Draw('APX') fit = Fitter('fit_taus', '[0]*x + 1/[1]') fit.setParam(0, '#alpha', 1) fit.setParam(1, 'T_{R}', 1) fit.fit(g, 0, 1.1) fit.saveData('../fit/part5/taufit.txt') l = TLegend(0.55, 0.15, 0.85, 0.5) l.SetTextSize(0.03) l.AddEntry(g, 'Inverse Orientierungszeit #tau^{ -1}', 'p') l.AddEntry(fit.function, 'Fit mit #tau^{ -1} (I) = #alpha I + #frac{1}{T_{R}}', 'l') fit.addParamsToLegend(l, [('%.0f', '%.0f'), ('%.5f', '%.5f')], chisquareformat='%.2f', units=['s^{-1}', 's']) l.Draw() g.Draw('P') c.Print('../img/part5/taufit.pdf', 'pdf')
def evalHgPeaks(): data = I2Data.fromPath('../data/02_Hg_full_ngg11.txt') mins = data.findExtrema(10, 425, 630, False) mins.filterY(1300) with TxtFile.fromRelPath('../calc/hg_lines.txt', 'w') as f: for min in mins.points: f.writeline(str(min[0])) c = TCanvas('c1', '', 1280, 720) c.SetLogy() g = data.makeGraph('g', 'wavelength #lambda / nm', 'intensity / a.u.') g.GetXaxis().SetRangeUser(415, 620) g.SetMarkerStyle(1) g.Draw('AP') m = mins.makeGraph() if m: m.SetMarkerColor(2) m.Draw('P') c.Update() c.Print('../img/HgPeaks.pdf', 'pdf')
def evalNaPeaks(): data = I2Data.fromPath('../data/01_Na_ngg13.txt') mins = data.findExtrema(200, 508, 630, False) mins.filterY(40000) with TxtFile.fromRelPath('../calc/na_lines.txt', 'w') as f: for min in mins.points: f.writeline(str(min[0])) c = TCanvas('c1', '', 1280, 720) g = data.makeGraph('g', 'wavelength #lambda / nm', 'intensity / a.u.') g.GetXaxis().SetRangeUser(415, 620) g.GetYaxis().SetTitleOffset(1.2) g.SetMarkerStyle(1) g.Draw('AP') m = mins.makeGraph() if m: m.SetMarkerColor(2) m.Draw('P') c.Update() c.Print('../img/NaPeaks.pdf', 'pdf')
def main(): datas = Z0Data.fromROOTFile('../data/daten/daten_1.root', 'h33') energiedatas = datas.splitEnergies() binsizes = { 88.48021: 30, 89.47158: 30, 90.22720: 28, 91.23223: 75, 91.97109: 31, 92.97091: 30, 93.71841: 30 } results = dict() for energy, data in energiedatas.items(): res = makeFBAFit(energy, data, binsizes[energy]) if res: results[energy] = res ressort = list(results.items()) ressort.sort(key=lambda x: x[0]) with TxtFile('../calc/FBA.txt', 'w') as f: for energy, res in ressort: f.writeline('\t', *map(lambda x: '%.5f' % x, [energy] + list(res)))
def saveData(self, path, mode='w', enc='utf-8'): """saves fitting info (chi^2, DoF, chi^2/DoF, paramters with values and errors, covariance and correlation matrix) Arguments: path -- relative path to file mode -- write mode (usually 'w' for overwriting or 'a' for appending) enc -- encoding (default = 'utf-8') """ with TxtFile.fromRelPath(path, mode) as f: f.writeline('fitting info') f.writeline('============') f.writeline(TxtFile.CHISQUARE + ':\t\t' + str(self.getChisquare())) f.writeline('DoF:\t' + str(self.getDoF())) f.writeline(TxtFile.CHISQUARE + '/DoF:\t' + str(self.getChisquareOverDoF())) #f.writeline('\t', 'p-value:', *map(str, self.getPValue())) f.writeline('') f.writeline('parameters') f.writeline('==========') for i, param in self.params.items(): f.writeline('\t', str(i), param['name'], str(param['value']), TxtFile.PM, str(param['error'])) f.writeline('') f.writeline('covariance matrix') f.writeline('=================') if self._covMatrix: f.writelines('\t'.join(str(j) for j in i) + '\n' for i in self._covMatrix) f.writeline('') f.writeline('correlation matrix') f.writeline('==================') if self._corrMatrix: f.writelines('\t'.join(str(j) for j in i) + '\n' for i in self._corrMatrix) f.writeline() f.close()
def makeCuts(datas): efficencies = [] sefficencies = [] purities = [] for cutnum, cutinfo in enumerate(CUTS): name, cut = cutinfo (effs, seffs), purity = makeCut(datas, cut, cutnum, name) efficencies.append(effs) sefficencies.append(seffs) purities.append(purity) # output for further calculations with TxtFile('../calc/efficencies.txt', 'w') as f: f.write2DArrayToFile(efficencies, ['%.8f'] * 4) with TxtFile('../calc/efficencies_error.txt', 'w') as f: f.write2DArrayToFile(sefficencies, ['%.8f'] * 4) with TxtFile('../calc/invEfficencies.txt', 'w') as f: f.write2DArrayToFile(inv(efficencies), ['%.8f'] * 4) with TxtFile('../calc/purities.txt', 'w') as f: f.write2DArrayToFile(list(zip(*[purities])), ['%.6f']) # output for protocol thead = [r"Schnitt$\backslash$MC-Daten", LATEXE, LATEXM, LATEXT, LATEXQ] firstrow = [LATEXE, LATEXM, LATEXT, LATEXQ] with TxtFile('../src/tab_effmat_val.tex', 'w') as f: f.write2DArrayToLatexTable( list(zip(*([firstrow] + list(zip(*efficencies))))), thead, ['%s'] + ['%.6f'] * 4, 'Effizienzmatrix.', 'tab:effmat:val') with TxtFile('../src/tab_effmat_err.tex', 'w') as f: f.write2DArrayToLatexTable( list(zip(*([firstrow] + list(zip(*sefficencies))))), thead, ['%s'] + ['%.6f'] * 4, 'Fehler der Effizienzmatrix.', 'tab:effmat:err') with TxtFile('../src/tab_effmat_inv_val.tex', 'w') as f: f.write2DArrayToLatexTable( list(zip(*([firstrow] + list(zip(*inv(efficencies)))))), thead, ['%s'] + ['%.6f'] * 4, 'Inverse Effizienzmatrix.', 'tab:inveffmat:val')
def getExcitedStateOscillationConstants(): # plot spectrum data = I2Data.fromPath('../data/04_I2_ngg10_10ms.txt') progression = dict() for i in range(1, 3 + 1): progression[i] = I2Data.fromPath('../data/prog%d.txt' % i) c = TCanvas('c', '', 1280, 720) g = data.makeGraph('spectrum', 'wavelength #lambda / nm', 'intensity / a.u.') g.SetMarkerStyle(1) g.GetXaxis().SetRangeUser(505, 620) g.SetMinimum(18000) g.SetMaximum(49000) myY = TGaxis() myY.ImportAxisAttributes(g.GetYaxis()) myY.SetMaxDigits(3) g.Draw('AL') pg1 = progression[1].makeGraph('prog1') pg1.SetMarkerColor(2) pg1.Draw('P') pg2 = progression[2].makeGraph('prog2') pg2.SetMarkerColor(3) pg2.Draw('P') pg3 = progression[3].makeGraph('prog3') pg3.SetMarkerColor(4) pg3.Draw('P') l = TLegend(0.6, 0.15, 0.85, 0.4) l.AddEntry('spectrum', 'measurement', 'l') l.AddEntry('prog1', 'first progression (#nu\'\' = 1)', 'p') l.AddEntry('prog2', 'second progression (#nu\'\' = 2)', 'p') l.AddEntry('prog3', 'third progression (#nu\'\' = 3)', 'p') l.Draw() c.Update() c.Print('../img/I2_absorption.pdf', 'pdf') # calculations start = [18, 7, 9] prog1ord = {'a': [], 'ae': [], 'b': [], 'be': []} for i, prog in progression.iteritems(): # Calculate vacuum wavelength and create Birge-Sponer plot prog.correctValues() c = TCanvas('c%d' % i, '', 1280, 720) g = makeBirgeSponer(prog, start[i - 1]).makeGraph('prog%d_bs' % i, '#nu\' + 1/2', '#Delta G (#nu\' + 1/2) / (cm^{-1})') g.Draw('AP') # fit 2nd-order fit2ord = Fitter('prog%d_2ord' % i, '[0]-[1]*(2*x+2)+[2]*(3*x^2+6*x+13/4)') fit2ord.setParam(0, 'a', 120) fit2ord.setParam(1, 'b', 1) fit2ord.setParam(2, 'c', 0) fit2ord.fit(g, 4, 50) fit2ord.saveData('../calc/prog%d_fit2ord.txt' % i, 'w') l2 = TLegend(0.6, 0.7, 0.95, 0.95) l2.AddEntry(0, 'Fit 2nd. order', '') l2.AddEntry(fit2ord.function, 'y = a - b*(2*x+2) + c*(3*x^2+6*x+13/4)', 'l') fit2ord.addParamsToLegend(l2) l2.SetTextSize(0.03) l2.Draw() # fit 1st-order fit1ord = Fitter('prog%d_1ord' % i, '[0]-[1]*(2*x+2)') fit1ord.setParam(0, 'a', 120) fit1ord.setParam(1, 'b', 1) fit1ord.fit(g, 4, 50, '+') g.GetFunction('prog%d_1ord' % i).SetLineColor(4) fit1ord.saveData('../calc/prog%d_fit1ord.txt' % i, 'w') prog1ord['a'].append(fit1ord.params[0]['value']) prog1ord['ae'].append(fit1ord.params[0]['error']) prog1ord['b'].append(fit1ord.params[1]['value']) prog1ord['be'].append(fit1ord.params[1]['error']) l1 = TLegend(0.125, 0.15, 0.5, 0.4) l1.AddEntry(0, 'Fit 1st. order', '') l1.AddEntry(g.GetFunction('prog%d_1ord' % i), 'y = a - b*(2*x+2)', 'l') fit1ord.addParamsToLegend(l1) l1.SetTextSize(0.03) l1.Draw() c.Update() c.Print('../img/prog%d_birgesponer.pdf' % i, 'pdf') # save vibrational constants to latex file nus = [0, 1, 2] f = TxtFile('../src/ExcitedStateOscillationConstants.tex', 'w') f.write2DArrayToLatexTable(zip(nus, prog1ord['a'], prog1ord['ae'], prog1ord['b'], prog1ord['be']), ['$\\nu\'\'$', '$\omega_e\' / \\text{cm}^{-1}$', '$s_{\omega_e\'} / \\text{cm}^{-1}$', '$\omega_e\' x_e\' / \\text{cm}^{-1}$', '$s_{\omega_e\' x_e\'} / \\text{cm}^{-1}$'], ['%0.f', '%3.1f', '%.1f', '%.3f', '%.3f'], 'Oscillation constants for first order fit of Birge-Sponer plots', 'tab:prog1ord') f.close() # calculate weighted average for fit 1st- order with TxtFile.fromRelPath('../calc/ExcitedStateOscillationConstants.txt', 'w') as f: f.writeline('\t', *map(lambda x: str(x), avgerrors(prog1ord['a'], prog1ord['ae']))) f.writeline('\t', *map(lambda x: str(x), avgerrors(prog1ord['b'], prog1ord['be'])))
def evalNuclearSpin(): results = [] data = loadCSVToList('../data/part3/part3.txt') tabledata = [] for d in data[-4:]: tabledata.append([d[0], d[2]] + d[4:-2]) with TxtFile('../src/tab_part3_data.tex', 'w') as f: f.write2DArrayToLatexTable(tabledata, [ r"$I_\text{L}$ / mA", r"$\nu$ / kHz", "$I_1$ / mA", "$s_{I_1}$ / mA", "$I_1'$ / mA", "$s_{I_1'}$ / mA" ], ['%.1f', '%.2f', '%d', '%d', '%d', '%d'], 'Messdaten des Doppelresonanzexperiments.', 'tab:part3:data') for iL, siL, f, sf, i1, si1, i1_, si1_, i4, si4 in data: # I-Laser, frequency, I1, I1', I4 with respective errors # from mA to A i1 *= 1e-3 si1 *= 1e-3 i1_ *= 1e-3 si1_ *= 1e-3 i4 *= 1e-3 si4 *= 1e-3 # from kHz to Hz f *= 1e3 sf *= 1e3 # calc B1, B1' B1, sB1 = inductorIToB(1, i1, si1) B1_, sB1_ = inductorIToB(1, i1_, si1_) # calc B for nuclear spin B, sB = (B1 + B1_) / 2, sqrt(sB1**2 + sB1_**2) / 2 # calc horizontal B-Field Bhor, sBhor = abs(B1 - B1_) / 2, sqrt(sB1**2 + sB1_**2) / 2 # calc vertical B-Field Bvert, sBvert = inductorIToB(4, i4, si4) # calc nuclear spin I = mub_JT * B / (h_Js * f) - 0.5 sI = mub_JT * B / (h_Js * f) * sqrt((sB / B)**2 + (sf / f)**2) results.append([["I_L/mA", (iL, siL)], ["f/kHz", (f * 1e-3, sf * 1e-3)], ["Bhor/µT", (Bhor * 1e6, sBhor * 1e6)], ["Bver/µT", (Bvert * 1e6, sBvert * 1e6)], ["I\t", (I, sI)]]) # print out results with TxtFile('../calc/part3.txt', 'w') as f: for result in results: for description, values in result: f.writeline( '\t', *([description] + list(map(lambda x: '%.2f' % x, values)))) f.writeline('') tableresults = [] for result in results: flattend = [item for sublist in result for item in sublist[1]] flattend.pop(7) flattend.pop(6) flattend.pop(3) flattend.pop(1) tableresults.append(flattend) with TxtFile('../src/tab_part3_results.tex', 'w') as f: f.write2DArrayToLatexTable( tableresults[-4:], [ r"$I_\text{L}$ / mA", r"$\nu$ / kHz", r"$B_\text{hor}$ / \textmu T", r"$s_{B_\text{hor}}$ / \textmu T", "$I$", "$s_I$" ], ['%.1f', '%.2f', '%.1f', '%.1f', '%.2f', '%.2f'], r"Berechnete horizontale Komponenten des Erdmagnetfeldes und Kernspin von Rubidium für das " + r"Doppelresonanzexperiment bei verschiedenen Lasterströmen $I_\text{L}$ und RF-Sender-Frequenzen $\nu$.", "tab:part3:results")
from z0 import Z0Data from txtfile import TxtFile if __name__ == '__main__': files = [('mc/ee', 'h3'), ('mc/mm', 'h3'), ('mc/tt', 'h3'), ('mc/qq', 'h3'), ('daten/daten_1', 'h33')] for file, treename in files: data = Z0Data.fromROOTFile("../data/%s.root" % file, treename) with TxtFile('../data/%s.txt' % file, 'w') as f: for event in data.getEvents(): f.writeline( '\t', *list( map(str, [ event["run"], event["event"], event["Ncharged"], event["Pcharged"], event["E_ecal"], event["E_hcal"], event["E_lep"], event["cos_thru"], event["cos_thet"] ])))
def makeHFSGraph(name, xmin, xmax): ch2 = OPData.fromPath('../data/part2/04.16/%s.tab' % name, 2) ch2.filterX(xmin, xmax) deltaY = 0.05 c = TCanvas('c-%s' % name, '', 1280, 720) g2 = ch2.makeGraph('g2-%s' % name, "Zeit t / s", "Spannung U_{ph} / V") prepareGraph(g2, 2) g2.GetXaxis().SetRangeUser(xmin, xmax) g2.SetMinimum(ch2.getMinY() - deltaY) g2.SetMaximum(ch2.getMaxY() + deltaY) g2.Draw('APX') fitStartParams = getHFSFitStartParams(name) fitres = [] tablefitres = [] tablepeakcount = 0 legendInfo = [] isUp = name[:2] == 'up' if fitStartParams: print('got start params, starting to building fit functions') peakNum = 0 offset = ch2.getY()[0] # approx offset of underground slope = (ch2.getY()[-1] - ch2.getY()[0]) / (xmax - xmin) # approx slope of underground for peakparams, xstartend in fitStartParams: xstart, xend = xstartend peakcount = len(peakparams) print('peakNum: ', peakNum) fitfunc = 'pol1(0)+gaus(2)' dpc = 2 # delta param count for i in range(1, peakcount): fitfunc += '+gaus(%d)' % (i * 3 + dpc) fit = Fitter('fitHFS%s_%d' % (name, peakNum), fitfunc) fit.function.SetLineColor(getRootColor(peakNum)) fit.setParam(0, 'a', offset) fit.setParamLimits(0, 0, offset * 2) fit.setParam(1, 'b', slope) if isUp: fit.setParamLimits(1, 0, 2 * slope) else: fit.setParamLimits(1, 2 * slope, 0) for i, params in enumerate(peakparams): fit.setParam(i * 3 + dpc, 'A%d' % i, params[0]) fit.setParam(i * 3 + dpc + 1, 'c%d' % i, params[1]) fit.setParam(i * 3 + dpc + 2, 's%d' % i, params[2]) if params[0] < 0: fit.setParamLimits(i * 3 + dpc, 3 * params[0], 0) else: fit.setParamLimits(i * 3 + dpc, 0, 2 * params[0]) fit.setParamLimits(i * 3 + dpc + 1, params[1] - 2 * params[2], params[1] + 2 * params[2]) fit.setParamLimits(i * 3 + dpc + 2, 0, 20 * params[2]) fit.fit(g2, xstart, xend, 'M+') fit.saveData('../fit/part2/%s-%d.txt' % (name, peakNum)) legendpeaks = [] for i in range(len(peakparams)): fitres.append((fit.params[i * 3 + dpc + 1]['value'], 0.2 * fit.params[i * 3 + dpc + 2]['value'])) tablepeakcount += 1 legendpeaks.append(tablepeakcount) tablefitres.append((tablepeakcount, fit.params[i * 3 + dpc + 1]['value'] * 1e3, fit.params[i * 3 + dpc + 1]['error'] * 1e3, fit.params[i * 3 + dpc + 2]['value'] * 1e6, fit.params[i * 3 + dpc + 2]['error'] * 1e6)) legendInfo.append((fit.function, tuple(legendpeaks))) peakNum += 1 tablename = 'up' if isUp else 'down' with TxtFile('../src/tab_part2_hfspeaks_%s.tex' % tablename, 'w') as f: f.write2DArrayToLatexTable(tablefitres, ['Peak $i$', r'$\mu_i$ / ms', r'$s_{\mu_i}$ / ms', r'$\sigma_i$ / \textmu s', r'$s_{\sigma_i}$ / \textmu s'], ['%d', '%.5f', '%.5f', '%.1f', '%.1f'], r"Erwartungswerte $\mu_i$ und Standardabweichungen $\sigma_i$ der gefitteten Peaks des HFS-Spektrums.", "tab:hfs:peaks:%s" % tablename) g2.Draw('P') if isUp: l = TLegend(0.725, 0.15, 0.99, 0.45) else: l = TLegend(0.725, 0.55, 0.99, 0.85) l.SetTextSize(0.03) l.AddEntry(g2, 'Photodiodenspannung U_{ph}', 'l') for fitfunc, legendpeaks in legendInfo: n = len(legendpeaks) if n == 1: lstring = '%d' % legendpeaks elif n == 2: lstring = '%d und %d' % legendpeaks elif n == 3: lstring = '%d, %d und %d' % legendpeaks l.AddEntry(fitfunc, "Fit von Peak %s" % lstring, 'l') l.Draw() c.Update() if not DEBUG: c.Print('../img/part2/%s_fit.pdf' % name, 'pdf') return fitres
def main(): print('make graphs') print('===========') makeGraphs() print('eval etalon data') print('================') freqCalibrations = evalEtalonData() print('eval hfs peak data') print('==================') hfspeaks = evalHFSPeakData() litvals = (-3.07, -2.25, mean([-1.48, -1.12]), mean([1.56, 1.92]), 3.76, 4.58) reflit = litvals[3] litvals = list(map(lambda x: x - reflit, litvals)) spectra = dict() for key in freqCalibrations.keys(): gps, sgps = freqCalibrations[key] isUp = key[:2] == "up" spectrum = [] if isUp: refpeak, srefpeak = hfspeaks[key][2] m = 1 else: refpeak, srefpeak = hfspeaks[key][3] m = -1 for peak, speak in hfspeaks[key]: freq = m * (refpeak - peak) * 1000 * gps if not compare2Floats(refpeak, peak): sfreq = abs(freq) * sqrt((sgps / gps) ** 2 + (sqrt(srefpeak ** 2 + speak ** 2) / (refpeak - peak)) ** 2) else: sfreq = 1000 * gps * speak if compare2Floats(freq, 0): freq = abs(freq) spectrum.append((freq, sfreq)) if isUp: spectrum.reverse() spectra['up' if isUp else 'down'] = spectrum compareSpectrum('up' if isUp else 'down', spectrum, litvals) tabledata = [] names = [r"\rb{87}, F:2$\to$1", r"\rb{87}, F:2$\to$2", r"\rb{85}, F:3$\to$2, 3$\to$3", r"\rb{85}, F:2$\to$2, 2$\to$3", r"\rb{87}, F:1$\to$1", r"\rb{87}, F:1$\to$2"] # Übergänge for i, litval in enumerate(litvals): tabledata.append([names[i]] + [litval] + list(spectra['up'][i]) + list(spectra['down'][i])) with TxtFile('../src/tab_part2_spectrum.tex', 'w') as f: f.write2DArrayToLatexTable(tabledata, ["Übergang", r'$\Delta \nu^\text{theo}$ / GHz', r'$\Delta \nu^\text{exp}_\text{up}$ / GHz', r'$s_{\Delta \nu^\text{exp}_\text{up}}$ / GHz', r'$\Delta \nu^\text{exp}_\text{down}$ / GHz', r'$s_{\Delta \nu^\text{exp}_\text{down}}$ / GHz'], ['%s', '%.2f', '%.2f', '%.2f', '%.2f', '%.2f'], "Theoretisches und (steigende und fallende Flanke) experimentell bestimmtes Hyperfeinstrukturspektrum von Rubidium.", "tab:hfs:spectrum") avgdata = [] avgspectrum = [] for name, lit, f1, sf1, f2, sf2 in tabledata: f, sf = avgerrors([f1, f2], [sf1, sf2]) avgdata.append([name, lit, f, sf]) avgspectrum.append((f, sf)) compareSpectrum('avg', avgspectrum, litvals) with TxtFile('../src/tab_part2_spectrum_avg.tex', 'w') as f: f.write2DArrayToLatexTable(avgdata, ["Übergang", r'$\Delta \nu^\text{theo}$ / GHz', r'$\Delta \nu^\text{exp}_\text{avg}$ / GHz', r'$s_{\Delta \nu^\text{exp}_\text{avg}}$ / GHz'], ['%s', '%.2f', '%.2f', '%.2f', ], r"Theoretisches und aus den experimentellen Daten (\autoref{tab:hfs:spectrum}) gemitteltes Hyperfeinstrukturspektrum von Rubidium.", "tab:hfs:spectrum:avg") evalIntervalConst(avgspectrum)
def makeMassFit(): # config files # file = [mass, path] files = [] files.append([2.0123, "../data/11_K_m9_3200_t420.txt", 420]) files.append([2.0123, "../data/11b_K_m9_3200_t420.txt", 420]) files.append([1.9047, "../data/13_K_m8_3200_t420.txt", 420]) files.append([1.6812, "../data/15_K_m7_3200_t420.txt", 420]) files.append([1.4827, "../data/17_K_m6_3200_t420.txt", 420]) files.append([1.2952, "../data/19_K_m5_3200_t480.txt", 480]) files.append([1.0993, "../data/21_K_m4_3200_t480.txt", 480]) files.append([0.8086, "../data/23_K_m3_3200_t540.txt", 540]) files.append([0.6954, "../data/25_K_m2_3200_t540.txt", 540]) files.append([0.5007, "../data/27_K_m1_3200_t660.txt", 660]) files.append([0.3030, "../data/29_K_m0_3200_t780.txt", 780]) u = 0.760 tu = 50 d = DataErrors() for file in files: n = readSingleEntryFile(file[1]) d.addPoint(file[0], n - u, 0.001, np.sqrt(n / file[2] + u / tu)) d.saveDataToLaTeX(['Masse $m /$g', '$s_m /$g', 'Z\"ahlrate $n / (1/\\text{s})$', '$s_n / (1/\\text{s})$'], ['%.3f', '%.3f', '%.3f', '%.3f'], 'Z\"ahlraten von \\kalium\,f\"ur verschiedene Massen mit Fehlern', 'tab:data:kalium', '../src/data_kalium.tex', 'w') c = TCanvas('c2', '', 800, 600) g = d.makeGraph('g', 'Masse m / g', 'Z#ddot{a}hlrate n / (1/s)') g.SetMaximum(6) g.SetMinimum(2) g.Draw('AP') fit = Fitter('f', '[0]*(1-exp(-[1]*x))') fit.setParam(0, 'a') fit.setParam(1, 'b') fit.fit(g, 0.1, 2.5) fit.saveData('../fit/kalium.txt') a = fit.params[0]['value'] sa = fit.params[0]['error'] b = fit.params[1]['value'] sb = fit.params[1]['error'] l = TLegend(0.4, 0.15, 0.85, 0.5) l.AddEntry('g', '{}^{40} Kalium ohne Untergrund', 'p') # TODO with error bar? (options +'e') l.AddEntry(fit.function, 'Fit mit n(m)=a(1-exp(-b*m))', 'l') l.AddEntry(0, '#chi^{2} / DoF : %f' % fit.getChisquareOverDoF(), '') l.AddEntry(0, 'Paramter:', '') l.AddEntry(0, 'a: %e #pm %e' % (a, sa), '') l.AddEntry(0, 'b: %e #pm %e' % (b, sb), '') l.SetTextSize(0.03) l.Draw() NA = 6.02214129e23 hrel = 0.000118 mrel = 39.0983 + 35.45 f = 1.29 rho = fit.getCorrMatrixElem(1, 0) thalf = (np.log(2) * NA * hrel * f) / (1.12 * mrel * 2 * a * b) / (3600 * 24 * 365.242) sthalf = thalf * np.sqrt((sa / a) ** 2 + (sb / b) ** 2 + 2 * rho * (sa / a) * (sb / b)) with TxtFile.fromRelPath('../fit/kalium.txt', 'a') as f: f.writeline() f.writeline('calculations') f.writeline('============') f.writeline('\t', 'half-life of Kalium:', '%e' % thalf, TxtFile.PM, '%e' % sthalf) c.Update() c.Print('../img/Kalium40_Massenabhaengigkeit.pdf')