def getCategoryName(self, sentenceGraph, e1, e2, directed=True): # Dummies are potential entities that do not exist in the # training data. If both entities of an interaction are dummies # it can't exist in the training data and is therefore a negative if e1[2] or e2[2]: return "neg" e1 = e1[0] e2 = e2[0] interactions = sentenceGraph.getInteractions(e1, e2) if not directed: interactions.extend(sentenceGraph.getInteractions(e2, e1)) types = set() for interaction in interactions: types.add(interaction.attrib["type"]) types = list(types) types.sort() categoryName = "" for name in types: if categoryName != "": categoryName += "---" categoryName += name if categoryName != "": return categoryName else: return "neg"
def getWx(wxtypes, wxvisibilities): from com.raytheon.uf.common.dataplugin.gfe.weather import WeatherCoverage, WeatherIntensity, WeatherAttribute from com.raytheon.edex.plugin.gfe.config import SimpleWeatherTypeConfig types = ArrayList() for t in wxtypes: symbol, description, cov, inten, attr = \ check(t, (str, str, list, list, list), "Error in WeatherType") coverages = ArrayList() intensities = ArrayList() attributes = ArrayList() for c in cov: csym, cdes = check(c, (str, str), "Error in Weather Coverage", t) coverages.add(WeatherCoverage(csym, cdes)) for i in inten: isym, ides = check(i, (str, str), "Error in Weather Intensity", t) intensities.add(WeatherIntensity(isym, ides)) for a in attr: asym, ades = check(a, (str, str), "Error in Weather Attributes", t) attributes.add(WeatherAttribute(asym, ades)) types.add(SimpleWeatherTypeConfig(symbol, description, coverages, intensities, attributes)) vis = ArrayList() for v in wxvisibilities: vis.add(v) return (vis, types)
def getWx(wxtypes, wxvisibilities): from com.raytheon.uf.common.dataplugin.gfe.weather import WeatherCoverage, WeatherIntensity, WeatherAttribute from com.raytheon.edex.plugin.gfe.config import SimpleWeatherTypeConfig types = ArrayList() for t in wxtypes: symbol, description, cov, inten, attr = \ check(t, (str, str, list, list, list), "Error in WeatherType") coverages = ArrayList() intensities = ArrayList() attributes = ArrayList() for c in cov: csym, cdes = check(c, (str, str), "Error in Weather Coverage", t) coverages.add(WeatherCoverage(csym, cdes)) for i in inten: isym, ides = check(i, (str, str), "Error in Weather Intensity", t) intensities.add(WeatherIntensity(isym, ides)) for a in attr: asym, ades = check(a, (str, str), "Error in Weather Attributes", t) attributes.add(WeatherAttribute(asym, ades)) types.add( SimpleWeatherTypeConfig(symbol, description, coverages, intensities, attributes)) vis = ArrayList() for v in wxvisibilities: vis.add(v) return (vis, types)
def lord_types(self): """Return a set of names of all lords in this legion.""" types = set() for creature in self.creatures: if creature.is_lord: types.add(creature.name) return types
def types(): types = set() for t in _.__dict__.values(): if isinstance(t, Type): types.add(t) t = list(t) return t
def getCategoryName(self, sentence1, sentence2, e1, e2, directed=True): """ Example class. Multiple overlapping edges create a merged type. """ e1Id = e1.get("id") e2Id = e2.get("id") allInteractions = sentence1.interSentenceInteractions + sentence2.interSentenceInteractions interactions = [] #if len(allInteractions) > 0: # print len(allInteractions) for interaction in allInteractions: if interaction.get("e1") == e1Id and interaction.get("e2") == e2Id: interactions.append(interaction) types = set() for interaction in interactions: types.add(interaction.get("type")) types = list(types) types.sort() categoryName = "" for name in types: if categoryName != "": categoryName += "---" categoryName += name if categoryName != "": return categoryName else: return "neg"
def all_instruments(type=None, date=None): # type: (str, Union[str, datetime, date]) -> pd.DataFrame """ 获取某个国家市场的所有合约信息。使用者可以通过这一方法很快地对合约信息有一个快速了解,目前仅支持中国市场。 :param type: 需要查询合约类型,例如:type='CS'代表股票。默认是所有类型 :param date: 查询时间点 其中type参数传入的合约类型和对应的解释如下: ========================= =================================================== 合约类型 说明 ========================= =================================================== CS Common Stock, 即股票 ETF Exchange Traded Fund, 即交易所交易基金 LOF Listed Open-Ended Fund,即上市型开放式基金 INDX Index, 即指数 Future Futures,即期货,包含股指、国债和商品期货 ========================= =================================================== """ env = Environment.get_instance() if date is None: dt = env.trading_dt else: dt = pd.Timestamp(date).to_pydatetime() dt = min(dt, env.trading_dt) if type is not None: if isinstance(type, six.string_types): type = [type] types = set() for t in type: if t == "Stock": types.add("CS") elif t == "Fund": types.update(["ETF", "LOF"]) else: types.add(t) else: types = None result = env.data_proxy.all_instruments(types, dt) if types is not None and len(types) == 1: data = [] for i in result: instrument_dic = {k: v for k, v in i.__dict__.items() if not k.startswith("_")} data.append(instrument_dic) return pd.DataFrame(data) return pd.DataFrame( [ [i.order_book_id, i.symbol, i.type, i.listed_date, i.de_listed_date] for i in result ], columns=["order_book_id", "symbol", "type", "listed_date", "de_listed_date"], )
def find_simple(self, seen): types = set() for type in self.types: if type.is_promotion: types.add(type.types) else: type.add(type) return types
def infer(self): p = self._signature_param evaluator = self.parent_context.evaluator types = set() if p.default is not p.empty: types.add(create(evaluator, p.default)) if p.annotation is not p.empty: annotation = create(evaluator, p.annotation) types |= annotation.execute_evaluated() return types
def dfs(self, types, seen): for type in self.types: if type not in seen: seen.add(type) type = resolve_type_chain(type) seen.add(type) if type.is_promotion: type.dfs(types, seen) elif not type.is_uninitialized: types.add(type)
def __cast_to_general_type(self): types = set() for coordinate in self._coordinates: if isinstance(coordinate, numbers.Number): types.add(type(coordinate)) else: coordinate = self._parse(coordinate, (int, float, complex)) types.add(type(coordinate)) for i in (complex, float, int): if i in types: self._coordinates = [i(elem) for elem in self._coordinates] break
def add_type(self, seen, type, types): if type not in seen: if type.is_unresolved: seen.add(type) new_type = type.resolve() if new_type is not type: seen.add(new_type) self.add_type(seen, new_type, types) type = new_type else: types.add(type) else: types.add(type) return type
def getMergedEntityType(self, entities): """ If a single token belongs to multiple entities of different types, a new, composite type is defined. This type is the alphabetically ordered types of these entities joined with '---'. """ types = set() for entity in entities: types.add(entity.get("type")) types = list(types) types.sort() typeString = "" for type in types: if typeString != "": typeString += "---" typeString += type return typeString
def all_instruments(type=None, date=None): """ 获取某个国家市场的所有合约信息。使用者可以通过这一方法很快地对合约信息有一个快速了解,目前仅支持中国市场。 :param str type: 需要查询合约类型,例如:type='CS'代表股票。默认是所有类型 :param date: 查询时间点 :type date: `str` | `datetime` | `date` :return: `pandas DataFrame` 所有合约的基本信息。 其中type参数传入的合约类型和对应的解释如下: ========================= =================================================== 合约类型 说明 ========================= =================================================== CS Common Stock, 即股票 ETF Exchange Traded Fund, 即交易所交易基金 LOF Listed Open-Ended Fund,即上市型开放式基金 FenjiMu Fenji Mu Fund, 即分级母基金 FenjiA Fenji A Fund, 即分级A类基金 FenjiB Fenji B Funds, 即分级B类基金 INDX Index, 即指数 Future Futures,即期货,包含股指、国债和商品期货 ========================= =================================================== :example: 获取中国市场所有分级基金的基础信息: .. code-block:: python3 :linenos: [In]all_instruments('FenjiA') [Out] abbrev_symbol order_book_id product sector_code symbol 0 CYGA 150303.XSHE null null 华安创业板50A 1 JY500A 150088.XSHE null null 金鹰500A 2 TD500A 150053.XSHE null null 泰达稳健 3 HS500A 150110.XSHE null null 华商500A 4 QSAJ 150235.XSHE null null 鹏华证券A ... """ env = Environment.get_instance() if date is None: dt = env.trading_dt else: dt = pd.Timestamp(date).to_pydatetime() dt = min(dt, env.trading_dt) if type is not None: if isinstance(type, six.string_types): type = [type] types = set() for t in type: if t == 'Stock': types.add('CS') elif t == 'Fund': types.update(['ETF', 'LOF', 'SF', 'FenjiA', 'FenjiB', 'FenjiMu']) else: types.add(t) else: types = None result = env.data_proxy.all_instruments(types, dt) if types is not None and len(types) == 1: return pd.DataFrame([i._ins_dict for i in result]) return pd.DataFrame( [[i.order_book_id, i.symbol, i.type, i.listed_date, i.de_listed_date] for i in result], columns=['order_book_id', 'symbol', 'type', 'listed_date', 'de_listed_date'])
def all_instruments(type=None, date=None): """ 获取某个国家市场的所有合约信息。使用者可以通过这一方法很快地对合约信息有一个快速了解,目前仅支持中国市场。 :param str type: 需要查询合约类型,例如:type='CS'代表股票。默认是所有类型 :param date: 查询时间点 :type date: `str` | `datetime` | `date` :return: `pandas DataFrame` 所有合约的基本信息。 其中type参数传入的合约类型和对应的解释如下: ========================= =================================================== 合约类型 说明 ========================= =================================================== CS Common Stock, 即股票 ETF Exchange Traded Fund, 即交易所交易基金 LOF Listed Open-Ended Fund,即上市型开放式基金 FenjiMu Fenji Mu Fund, 即分级母基金 FenjiA Fenji A Fund, 即分级A类基金 FenjiB Fenji B Funds, 即分级B类基金 INDX Index, 即指数 Future Futures,即期货,包含股指、国债和商品期货 ========================= =================================================== :example: 获取中国市场所有分级基金的基础信息: .. code-block:: python3 :linenos: [In]all_instruments('FenjiA') [Out] abbrev_symbol order_book_id product sector_code symbol 0 CYGA 150303.XSHE null null 华安创业板50A 1 JY500A 150088.XSHE null null 金鹰500A 2 TD500A 150053.XSHE null null 泰达稳健 3 HS500A 150110.XSHE null null 华商500A 4 QSAJ 150235.XSHE null null 鹏华证券A ... """ env = Environment.get_instance() if date is None: dt = env.trading_dt else: dt = pd.Timestamp(date).to_pydatetime() dt = min(dt, env.trading_dt) if type is not None: if isinstance(type, six.string_types): type = [type] types = set() for t in type: if t == "Stock": types.add("CS") elif t == "Fund": types.update(["ETF", "LOF", "SF", "FenjiA", "FenjiB", "FenjiMu"]) else: types.add(t) else: types = None result = env.data_proxy.all_instruments(types, dt) if types is not None and len(types) == 1: return pd.DataFrame([i.__dict__ for i in result]) return pd.DataFrame( [ [i.order_book_id, i.symbol, i.type, i.listed_date, i.de_listed_date] for i in result ], columns=["order_book_id", "symbol", "type", "listed_date", "de_listed_date"], )