Beispiel #1
0
Datei: cf.py Projekt: TkTech/Jawa
    def _from_io(self, source: IO):
        """
        Loads an existing JVM ClassFile from any file-like object.
        """
        read = source.read

        if unpack('>I', source.read(4))[0] != ClassFile.MAGIC:
            raise ValueError('invalid magic number')

        # The version is swapped on disk to (minor, major), so swap it back.
        self.version = unpack('>HH', source.read(4))[::-1]

        self._constants.unpack(source)

        # ClassFile access_flags, see section #4.1 of the JVM specs.
        self.access_flags.unpack(read(2))

        # The CONSTANT_Class indexes for "this" class and its superclass.
        # Interfaces are a simple list of CONSTANT_Class indexes.
        self._this, self._super, interfaces_count = unpack('>HHH', read(6))
        self._interfaces = unpack(
            f'>{interfaces_count}H',
            read(2 * interfaces_count)
        )

        self.fields.unpack(source)
        self.methods.unpack(source)
        self.attributes.unpack(source)
Beispiel #2
0
def scrape_variables(host: Text, logs_file: IO) -> None:
  br = mechanize.Browser()
  cj = cookielib.LWPCookieJar()
  br.set_cookiejar(cj)
  br.set_handle_equiv(True)
  # br.set_handle_gzip(True)
  br.set_handle_redirect(True)
  br.set_handle_referer(True)
  br.set_handle_robots(False)

  login_url = urlparse.urljoin(host, '/login')
  logging.info('Starting login into %s', login_url)
  response = br.open(login_url)
  br.form = next(iter(br.forms()))
  br.form['username'] = '******'
  with open('../data/secret_key.txt') as f:
    br.form['password'] = f.read()
  br.method = 'POST'
  br.submit()
  br.method = 'GET'
  logging.info('Successfully logged into %s', login_url)

  variables_url = urlparse.urljoin(host, '/monitor/variables')
  while True:
    try:
      response = br.open(variables_url)
    except urllib2.URLError as e:
      logging.error('Could not open "%s": %s', variables_url, e)
      time.sleep(59 + random.random())
      continue
    raw_vars = response.read()
    logs_file.write(raw_vars)
    logs_file.write('\n')
    # variables = json.loads(raw_vars)
    time.sleep(59 + random.random())
Beispiel #3
0
    def _get_single_df(
        stream: IO, filetype: Optional[TypeEnum], **kwargs
    ) -> Union[pd.DataFrame, Iterable[pd.DataFrame]]:
        """
        Read a stream and retrieve the data frame or data frame generator (chunks)
        It uses `stream.name`, which is the path to a local file (often temporary)
        to avoid closing it. It will be closed at the end of the method.
        """
        if filetype is None:
            filetype = TypeEnum(detect_type(stream.name))

        # Check encoding
        encoding = kwargs.get('encoding')
        if not validate_encoding(stream.name, encoding):
            encoding = detect_encoding(stream.name)
        kwargs['encoding'] = encoding

        # Check separator for CSV files if it's not set
        if filetype is TypeEnum.CSV and 'sep' not in kwargs:
            if not validate_sep(stream.name, encoding=encoding):
                kwargs['sep'] = detect_sep(stream.name, encoding)

        pd_read = getattr(pd, f'read_{filetype}')
        try:
            df = pd_read(stream.name, **kwargs)
        finally:
            stream.close()

        # In case of sheets, the df can be a dictionary
        if kwargs.get('sheet_name', NOTSET) is None:
            for sheet_name, _df in df.items():
                _df['__sheet__'] = sheet_name
            df = pd.concat(df.values(), sort=False)

        return df
Beispiel #4
0
def http_get(url: str, temp_file: IO) -> None:
    req = requests.get(url, stream=True)
    content_length = req.headers.get('Content-Length')
    total = int(content_length) if content_length is not None else None
    for chunk in req.iter_content(chunk_size=1024):
        if chunk: # filter out keep-alive new chunks
            temp_file.write(chunk)
def run(f: t.IO, out: t.IO = sys.stdout) -> None:
    r = csv.DictReader(f)
    rows = list(r)
    w = ColorfulWriter(out, fieldnames=list(rows[0].keys()))
    w.writeheader()
    w.writerows(rows)
    out.write(RESET)
Beispiel #6
0
def decode(input: IO, output: IO) -> None:
    """Decode a file; input and output are binary files."""
    while True:
        line = input.readline()
        if not line:
            break
        s = binascii.a2b_base64(line)
        output.write(s)
Beispiel #7
0
def http_get(url: str, temp_file: IO) -> None:
    req = requests.get(url, stream=True)
    content_length = req.headers.get('Content-Length')
    total = int(content_length) if content_length is not None else None
    progress = Tqdm.tqdm(unit="B", total=total)
    for chunk in req.iter_content(chunk_size=1024):
        if chunk: # filter out keep-alive new chunks
            progress.update(len(chunk))
            temp_file.write(chunk)
    progress.close()
Beispiel #8
0
    def _download_to_stream(self, blobname: str, stream: IO) -> bool:

        try:
            resource = self._azure_client.get_object(blobname)
        except ObjectDoesNotExistError:
            return False
        else:
            for chunk in resource.as_stream():
                stream.write(chunk)
            return True
Beispiel #9
0
def encode(input: IO, output: IO) -> None:
    """Encode a file; input and output are binary files."""
    while True:
        s = input.read(MAXBINSIZE)
        if not s:
            break
        while len(s) < MAXBINSIZE:
            ns = input.read(MAXBINSIZE-len(s))
            if not ns:
                break
            s += ns
        line = binascii.b2a_base64(s)
        output.write(line)
Beispiel #10
0
    def pack(self, out: IO):
        """
        Write the Field to the file-like object `out`.

        .. note::

            Advanced usage only. You will typically never need to call this
            method as it will be called for you when saving a ClassFile.

        :param out: Any file-like object providing `write()`
        """
        out.write(self.access_flags.pack())
        out.write(pack('>HH', self._name_index, self._descriptor_index))
        self.attributes.pack(out)
Beispiel #11
0
    def pack(self, out: IO):
        """
        Write the FieldTable to the file-like object `out`.

        .. note::

            Advanced usage only. You will typically never need to call this
            method as it will be called for you when saving a ClassFile.

        :param out: Any file-like object providing `write()`
        """
        out.write(pack('>H', len(self)))
        for field in self._table:
            field.pack(out)
Beispiel #12
0
    def unpack(self, source: IO):
        """
        Read the Field from the file-like object `fio`.

        .. note::

            Advanced usage only. You will typically never need to call this
            method as it will be called for you when loading a ClassFile.

        :param source: Any file-like object providing `read()`
        """
        self.access_flags.unpack(source.read(2))
        self._name_index, self._descriptor_index = unpack('>HH', source.read(4))
        self.attributes.unpack(source)
Beispiel #13
0
    def embed_file(self,
                   input_file: IO,
                   output_file_path: str,
                   output_format: str = "all",
                   batch_size: int = DEFAULT_BATCH_SIZE) -> None:
        """
        Computes ELMo embeddings from an input_file where each line contains a sentence tokenized by whitespace.
        The ELMo embeddings are written out in HDF5 format, where each sentences is saved in a dataset.

        Parameters
        ----------
        input_file : ``IO``, required
            A file with one tokenized sentence per line.
        output_file_path : ``str``, required
            A path to the output hdf5 file.
        output_format : ``str``, optional, (default = "all")
            The embeddings to output.  Must be one of "all", "top", or "average".
        batch_size : ``int``, optional, (default = 64)
            The number of sentences to process in ELMo at one time.
        """

        assert output_format in ["all", "top", "average"]

        # Tokenizes the sentences.
        sentences = [line.strip() for line in input_file if line.strip()]
        split_sentences = [sentence.split() for sentence in sentences]
        # Uses the sentence as the key.
        embedded_sentences = zip(sentences, self.embed_sentences(split_sentences, batch_size))

        logger.info("Processing sentences.")
        with h5py.File(output_file_path, 'w') as fout:
            for key, embeddings in Tqdm.tqdm(embedded_sentences):
                if key in fout.keys():
                    logger.warning(f"Key already exists in {output_file_path}, skipping: {key}")
                else:
                    if output_format == "all":
                        output = embeddings
                    elif output_format == "top":
                        output = embeddings[2]
                    elif output_format == "average":
                        output = numpy.average(embeddings, axis=0)

                    fout.create_dataset(
                            key,
                            output.shape, dtype='float32',
                            data=output
                    )
        input_file.close()
Beispiel #14
0
    def unpack(self, source: IO):
        """
        Read the ConstantPool from the file-like object `source`.

        .. note::

            Advanced usage only. You will typically never need to call this
            method as it will be called for you when loading a ClassFile.

        :param source: Any file-like object providing `read()`
        """
        count = unpack('>H', source.read(2))[0]
        for _ in repeat(None, count):
            name_index, length = unpack('>HI', source.read(6))
            info_blob = source.read(length)
            self._table.append((name_index, info_blob))
def html_table_to_csv(input_f: IO, output_f: IO, table_num: int) -> None:
    doc = bs4.BeautifulSoup(input_f.read(), 'html5lib')
    tables = doc.find_all('table')
    try:
        table = tables[table_num]
        trows = table.find_all('tr')
        csv_writer = csv.writer(output_f)
        for trow in trows:
            cells = trow.find_all(RX_TH_OR_TD)
            csv_writer.writerow([cell.text.strip() for cell in cells])
    except IndexError:
        sys.stderr.write('ERROR: no table at index {}\n'.format(table_num))
        sys.exit(1)
Beispiel #16
0
    def unpack(self, source: IO):
        """
        Read the FieldTable from the file-like object `source`.

        .. note::

            Advanced usage only. You will typically never need to call this
            method as it will be called for you when loading a ClassFile.

        :param source: Any file-like object providing `read()`
        """
        field_count = unpack('>H', source.read(2))[0]
        for _ in repeat(None, field_count):
            field = Field(self._cf)
            field.unpack(source)
            self.append(field)
Beispiel #17
0
def _print_truncate(
    lines: Iterable,
    max_lines: int,
    outfile: IO,
) -> None:
    for i, line in enumerate(itertools.islice(lines, max_lines)):
        if i + 1 == max_lines:
            outfile.write('... (diff goes on) ...\n')
        else:
            outfile.write(line)
            if not line.endswith('\n'):
                outfile.write('<EOF>\n')
Beispiel #18
0
def style(
    text: str,
    fg: typing.Optional[int] = None,
    *,
    bold: bool = False,
    file: typing.IO = sys.stdout,
) -> str:
    use_color = not os.environ.get("NO_COLOR") and file.isatty()
    if use_color:
        parts = [
            fg and f"\033[{fg}m",
            bold and f"\033[{BOLD}m",
            text,
            f"\033[{RESET_ALL}m",
        ]
        return "".join([e for e in parts if e])
    else:
        return text
Beispiel #19
0
    def parse_html(self, fh: IO) -> Dict[str, Any]:
        '''Return head and content elements of the document.'''
        capsule = html_parser.parse(fh.read(), maybe_xhtml=True)
        doc = etree.adopt_external_document(capsule).getroot()

        result = {}
        result['head'] = doc.cssselect('head')[0]

        for candidate in ('.main-column .section', '.main__content'):
            elements = doc.cssselect(candidate)
            if elements:
                result['main_content'] = elements[0]
                break

        if 'main_content' not in result:
            raise ValueError('No main content element found')

        return result
Beispiel #20
0
def get_length(stream: IO) -> int:
    """Gets the number of bytes in the stream."""
    old_position = stream.tell()
    stream.seek(0)
    length = 0
    try:
        while True:
            r = stream.read(1024)
            if not r:
                break
            length += len(r)
    finally:
        stream.seek(old_position)
    return length
Beispiel #21
0
    def pack(self, out: IO):
        """
        Write the AttributeTable to the file-like object `out`.

        .. note::

            Advanced usage only. You will typically never need to call this
            method as it will be called for you when saving a ClassFile.

        :param out: Any file-like object providing `write()`
        """
        out.write(pack('>H', len(self._table)))
        for attribute in self:
            info = attribute.pack()
            out.write(pack('>HI', attribute.name.index, len(info)))
            out.write(info)
Beispiel #22
0
    def deserialize(file: IO):
        module_logger.info("Loading FernDetector from {}".format(file.name))
        version = int(file.readline().strip())

        if version != 1:
            msg = "Can't deserialize FernDetector from {}. Incorrect version of model. Expected 1, found {}"\
                .format(file.name, version)
            module_logger.error(msg)
            raise AssertionError(msg)

        num_ferns = int(file.readline().strip())
        ph, pw = map(int, file.readline().strip().split(","))

        with Timer("Deserializing ferns"):
            ferns = [Fern.deserialize(file) for _ in range(num_ferns)]

        fern_bits, max_train, max_match = map(
            int,
            file.readline().strip().split(","))

        with Timer("Deserializing fern_p"):
            F, C, K = map(int, file.readline().strip().split(","))
            fern_p = np.zeros((F, C, K), dtype=float)
            for fern_idx in range(F):
                for class_idx in range(C):
                    line = list(map(float, file.readline().strip().split(",")))
                    fern_p[fern_idx, class_idx, :] = line

        line = file.readline().strip().split(",")
        key_points = list(grouper(map(int, line), 2))

        module_logger.debug("Creating FernDetector")
        detector = FernDetector(patch_size=(ph, pw),
                                max_train_corners=max_train,
                                max_match_corners=max_match,
                                ferns=ferns,
                                ferns_p=fern_p,
                                classes_cnt=C,
                                key_points=key_points,
                                fern_bits=fern_bits)

        return detector
Beispiel #23
0
def _write_top_defaults(openff_sys: "Interchange", top_file: IO):
    """Write [ defaults ] section"""
    top_file.write("[ defaults ]\n")
    top_file.write("; nbfunc\tcomb-rule\tgen-pairs\tfudgeLJ\tfudgeQQ\n")

    if "vdW" in openff_sys.handlers:
        nbfunc = 1
        scale_lj = openff_sys["vdW"].scale_14
        gen_pairs = "no"
        handler_key = "vdW"
    elif "Buckingham-6" in openff_sys.handlers:
        nbfunc = 2
        gen_pairs = "no"
        scale_lj = openff_sys["Buckingham-6"].scale_14
        handler_key = "Buckingham-6"
    else:
        raise UnsupportedExportError(
            "Could not find a handler for short-ranged vdW interactions that is compatible "
            "with GROMACS. Looked for handlers named `vdW` and `Buckingham-6`."
        )

    mixing_rule = openff_sys[handler_key].mixing_rule
    if mixing_rule == "lorentz-berthelot":
        comb_rule = 2
    elif mixing_rule == "geometric":
        comb_rule = 3
    elif mixing_rule == "buckingham" and handler_key == "Buckingham-6":
        # TODO: Not clear what the compatibility is here. `comb-rule` only applies to LJ terms.
        #  The documentation lists the combination rule for Buckingham potentials, but it does not
        #  seem like GROMACS will do this automatically, and needs to be implemented manully via
        #  [ nonbond_params ].
        # https://manual.gromacs.org/current/reference-manual/topologies/parameter-files.html#non-bonded-parameters
        # https://gromacs.bioexcel.eu/t/how-to-use-buckingham-function/1181/4
        comb_rule = 2
    else:
        raise UnsupportedExportError(
            f"Mixing rule `{mixing_rule} not compatible with GROMACS and/or not supported "
            "by current exporter. Supported values are `lorentez-berthelot` and `geometric`."
        )

    top_file.write("{:6d}\t{:6d}\t{:6s} {:8.6f} {:8.6f}\n\n".format(
        nbfunc,
        comb_rule,
        gen_pairs,
        scale_lj,
        openff_sys.handlers["Electrostatics"].scale_14,
    ))
    def push_file(self,
                  *,
                  source: IO,
                  destination: str,
                  bufsize: int = 1024) -> None:
        """Passthrough for pushing a file through `multipass transfer`.

        :param IO source: a file-like object to read from
        :param str destination: the destination of the copied file, using syntax
                                expected by multipass
        """
        assert isinstance(source, io.IOBase)

        # can't use std{in,out}=open(...) due to LP#1849753
        p = _popen([self.provider_cmd, "transfer", "-", destination],
                   stdin=subprocess.PIPE)

        while True:
            read = source.read(bufsize)
            if read:
                p.stdin.write(read)
            if len(read) < bufsize:
                logger.debug("Finished streaming source file")
                break

        while True:
            try:
                out, err = p.communicate(timeout=1)
            except subprocess.TimeoutExpired:
                pass
            else:
                if p.returncode == 0:
                    logger.debug("Process completed")
                    break

                elif p.returncode is not None:
                    raise errors.ProviderFileCopyError(
                        provider_name=self.provider_name,
                        exit_code=p.returncode)
Beispiel #25
0
def save_historical_prices(tmp_file: IO) -> None:
    """Прочитать исторические данные из файла и сохранить их в базу.

    :param tmp_file: временный файл, откуда откуда будут прочитаны данные и сохранены в файл
    """
    for chunk in chunked(tmp_file.readlines(), Config.CHUNK_SIZE):
        historical_prices = [json.loads(line) for line in chunk]

        symbols: Set[str] = set(historical_price['symbol']
                                for historical_price in historical_prices)
        Ticker.insert_tickers(symbols)
        symbol_to_uuid: Dict[str, UUID] = Ticker.get_uuids_by_symbol()

        HistoricalPrice.bulk_insert([
            dict(
                ticker_id=symbol_to_uuid[historical_price['symbol']],
                **{k: v
                   for k, v in historical_price.items() if k != 'symbol'})
            for historical_price in historical_prices
        ])

        session.commit()
Beispiel #26
0
    def __init__(self, f: IO):
        super().__init__()

        #: Key Offset (relative to key_table_offset)
        self.key_offset: int = read_u16(f, Endianess.LITTLE_ENDIAN)
        self.logger.debug(f'Key Offset: {self.key_offset}')

        #: Data Type
        self.data_type: DataType = DataType(f.read(2))
        self.logger.debug(f'Data Type: {self.data_type}')

        #: Data Length (used bytes)
        self.data_length: int = read_u32(f, Endianess.LITTLE_ENDIAN)
        self.logger.debug(f'Data Length: {self.data_length}')

        #: Data Max Length
        self.data_max_length: int = read_u32(f, Endianess.LITTLE_ENDIAN)
        self.logger.debug(f'Data Max Length: {self.data_max_length}')

        #: Data Offset (relative to data_table_offset)
        self.data_offset: int = read_u32(f, Endianess.LITTLE_ENDIAN)
        self.logger.debug(f'Data Offset: {self.data_offset}')
Beispiel #27
0
 def construct(self, fp: IO):
     abb_namer = get_unique_letterer()
     abb_names = {}
     for level, line in enumerate(fp.read().strip().split('\n'), start=1):
         floor = Floor()
         self.floors.append(floor)
         contents = \
             line.replace(',', '')\
                 .replace('.', '')\
                 .replace(' and ', ' ')\
                 .split(' ')[4:]
         for parts in grouper(contents, 3):
             if parts[0] == 'nothing':
                 break
             if parts[2] == 'generator':
                 name = parts[1]
                 abb_names[name] = abb_names.get(name, abb_namer(name))
                 floor.add(Generator(name, abb_names[name]))
             if parts[2] == 'microchip':
                 name = parts[1].rsplit('-', 1)[0]
                 abb_names[name] = abb_names.get(name, abb_namer(name))
                 floor.add(Chip(name, abb_names[name]))
Beispiel #28
0
def pprintjson(
    *obj: Union[Dict, List],
    indent: int = 4,
    end: str = "\n",
    file: IO = None,
    flush: bool = False,
) -> None:
    """
    :param *obj: Union[Dict, List]:
    :param indent: int:  (Default value = 4)
    :param end: str:  (Default value = "\n")
    :param file: IO:  (Default value = None)
    :param flush: bool:  (Default value = False)
    """
    file = stdout if file is None else file
    json = [dumps(o, indent=indent) for o in obj]
    try:
        if file.isatty():
            json = [highlight(j, JsonLexer(), TerminalFormatter()) for j in json]
    except AttributeError:
        pass
    print(*json, end=end, file=file, flush=flush)
Beispiel #29
0
def main(input_file: IO):
    # Input Parsing
    input_lines = input_file.read().split('\n')

    adjacency_map = defaultdict(list)
    for y, row in enumerate(input_lines):
        for x, seat in enumerate(row):
            adjacency_map[(x,
                           y)] = get_adjacent_coords(x, y,
                                                     len(row) - 1,
                                                     len(input_lines) - 1)

    previous = []
    current = input_lines
    result = 0
    while True:
        previous = current
        current = run_model(current, adjacency_map)

        if (joined := ''.join(current)) == ''.join(previous):
            result = joined.count(TAKEN)
            break
Beispiel #30
0
    def parse_html(self, fh: IO) -> Dict[str, Any]:
        '''Return head and content elements of the document.'''
        capsule = html_parser.parse(fh.read(), maybe_xhtml=True)
        doc = etree.adopt_external_document(capsule).getroot()

        # Remove <style> tags
        for style in list(doc.iter("style")):
            style.getparent().remove(style)

        result = {}
        result['head'] = doc.cssselect('head')[0]

        for candidate in ('.main-column .section', '.main-column section', '.main__content'):
            elements = doc.cssselect(candidate)
            if elements:
                result['main_content'] = elements[0]
                break

        if 'main_content' not in result:
            raise ValueError('No main content element found')

        return result
Beispiel #31
0
def _write_angle_coeffs(lmp_file: IO, openff_sys: Interchange):
    """Write the Angle Coeffs section of a LAMMPS data file"""
    lmp_file.write("\nAngle Coeffs\n\n")

    angle_handler = openff_sys.handlers["Angles"]
    angle_type_map = dict(enumerate(angle_handler.potentials))

    for angle_type_idx, smirks in angle_type_map.items():
        params = angle_handler.potentials[smirks].parameters

        k = params["k"].to(unit.Unit("kilocalorie / mole / radian ** 2")).magnitude
        k = k * 0.5  # Account for LAMMPS wrapping 1/2 into k
        theta = params["angle"].to(unit.degree).magnitude

        lmp_file.write(f"{angle_type_idx+1:d} harmonic\t{k:.16g}\t{theta:.16g}\n")

    lmp_file.write("\n")
Beispiel #32
0
def _write_bond_coeffs(lmp_file: IO, openff_sys: Interchange):
    """Write the Bond Coeffs section of a LAMMPS data file"""
    lmp_file.write("Bond Coeffs\n\n")

    bond_handler = openff_sys.handlers["Bonds"]
    bond_type_map = dict(enumerate(bond_handler.potentials))

    for bond_type_idx, smirks in bond_type_map.items():
        params = bond_handler.potentials[smirks].parameters

        k = params["k"].to(unit.Unit("kilocalorie / mole / angstrom ** 2")).magnitude
        k = k * 0.5  # Account for LAMMPS wrapping 1/2 into k
        length = params["length"].to(unit.angstrom).magnitude

        lmp_file.write(f"{bond_type_idx+1:d} harmonic\t{k:.16g}\t{length:.16g}\n")

    lmp_file.write("\n")
Beispiel #33
0
    def _print(self, stream: IO, message: str, **kwargs: Any) -> None:
        if None in (stream, message):
            return

        stream_tty = stream.isatty()
        print_tty = kwargs.pop('tty', True) if self._tty else kwargs.pop(
            'tty', False)
        print_notty = kwargs.pop('notty', True) if self._notty else kwargs.pop(
            'notty', False)

        if (stream_tty and print_tty) or (not stream_tty and print_notty):
            prefix = None

            if kwargs.pop('prefix', self._prefix):
                if callable(self._prefix):
                    prefix = self._prefix()
                elif self._prefix:
                    prefix = str(self._prefix)

            message = f'{prefix} {message}' if prefix else message

            if not stream.isatty() or not kwargs.pop('colors_enabled',
                                                     self._colors_enabled):
                message = self.strip_style(message)
            else:
                style_args = {
                    k: v
                    for (k, v) in kwargs.items() if k in _style_keys
                }
                if len(style_args) > 0:
                    message = self.style(message, **style_args)

            stream.write(message)
            endl = kwargs.pop('endl', self._endl)
            stream.write(endl)
            stream.flush()
Beispiel #34
0
    def le(self, arq: IO):
        def converte_tabela_em_df() -> pd.DataFrame:
            df = pd.DataFrame(tabela)
            cols = ["Inicial"
                    ] + [f"Estágio {s}" for s in range(1, n_semanas + 1)]
            df.columns = cols
            df["Usina"] = usinas
            df["Número"] = numeros
            df = df[["Número", "Usina"] + cols]
            return df

        # Salta duas linhas
        arq.readline()
        arq.readline()
        # Descobre o número de semanas
        linha = arq.readline()
        sems = [
            s for s in linha.split(" ")
            if (len(s) > 0 and ("Sem" in s or "Mes" in s))
        ]
        reg_usina = RegistroAn(12)
        reg_numero = RegistroIn(4)
        reg_vol = RegistroFn(6)
        n_semanas = len(sems)
        usinas: List[str] = []
        numeros: List[int] = []
        tabela = np.zeros((300, n_semanas + 1))
        # Salta outra linha
        arq.readline()
        i = 0
        while True:
            # Confere se a leitura não acabou
            linha = arq.readline()
            if "X-------X" in linha:
                tabela = tabela[:i, :]
                self._dados = converte_tabela_em_df()
                break
            # Senão, lê mais uma linha
            # Subsistema e REE
            numero = reg_numero.le_registro(linha, 4)
            usina = reg_usina.le_registro(linha, 9)
            numeros.append(numero)
            usinas.append(usina)
            # Semanas
            tabela[i, :] = reg_vol.le_linha_tabela(linha, 23, 1, n_semanas + 1)
            i += 1
Beispiel #35
0
def solve(input_file: typing.IO) -> typing.Generator[str, None, None]:
    start_square = int(input_file.readline().strip())

    # PART 1
    radius = 0
    while (2 * radius + 1)**2 < start_square:
        radius += 1
    square = (2 * radius + 1)**2

    # Move clockwise around the grid to find the value at the appropriate radius
    pos = (radius, radius)
    while square != start_square:
        if pos[0] > -radius and pos[1] == radius:
            pos = (pos[0] - 1, pos[1])
        elif pos[0] == -radius:
            pos = (pos[0], pos[1] - 1)
        elif pos[1] == -radius:
            pos = (pos[0] + 1, pos[1])
        else:
            pos = (pos[0], pos[1] + 1)
        square -= 1
    yield str(sum([abs(dim) for dim in pos]))

    # PART 2
    grid = {(0, 0): 1}
    pos = (0, 0)
    dirs = ((1, 0), (0, -1), (-1, 0), (0, 1))
    dir_idx = 0
    while grid[pos] <= start_square:
        pos = move(pos, dirs[dir_idx])
        grid[pos] = adjacent_sum(grid, pos)
        # wrote grid[]

        # If we can turn left, do so
        left_idx = (dir_idx + 1) % len(dirs)
        if move(pos, dirs[left_idx]) not in grid:
            dir_idx = left_idx
    yield str(grid[pos])
Beispiel #36
0
 def initialize(self, log: IO, missions: MassacreMissions,
                initialized: bool):
     self.check_process()
     # have to store the current log in RAM
     # TODO: possbily avoid this way?
     events = log.readlines()
     if not events:
         raise RuntimeError
     ln = 0
     # find the latest login event for existing missions
     for line in reversed(events):
         ln += 1
         if '"event":"Missions"' in line:
             current_missions = json.loads(line)
             self.log_time = parse(
                 current_missions['timestamp']).timestamp()
             # grab all mission ID's
             self.find_resumed_missions(current_missions)
             # find mission details in old journals
             self.find_mission_details(missions)
             # mark initialized as done
             initialized = True
             break
     if not initialized:
         raise RuntimeError
     elif self.label_texts.current_log_status.get(
     ) == "Waiting for log file update":
         self.label_texts.current_log_status.set(
             "Current log file: " +
             os.path.relpath(self.current_log_name, self.log_path))
     # every entry before the restarting will be useless
     cut = len(events) - ln + 1
     # check possible mission events before resume in current log
     self.read_event(events[:cut - 1], missions, False)
     # check all new mission and bounty events
     self.read_event(events[cut:], missions, initialized)
     # assign values to the labels
     return initialized
Beispiel #37
0
def paste(file: IO, syntax: str, expires: int, title: str, raw: bool,
          copy: bool) -> None:
    """
    Paste to dpaste.com
    """
    try:
        with open(CONF_PATH, "r") as conf_file:
            options = json.load(conf_file)
    except FileNotFoundError:
        options = _create_default_config()

    content = file.read()

    r = requests.post(
        "http://dpaste.com/api/v2/",
        data={
            "title":
            title,
            "content":
            content,
            "syntax": (syntax or options.get("syntax")
                       or get_syntax(file.name, content)),
            "expiry_days":
            expires or options.get("expires"),
        },
    )

    r.raise_for_status()

    url: str = r.text.strip()

    if raw or options.get("raw"):
        url += ".txt"

    click.echo(url)

    if copy or options["autocp"]:
        pyperclip.copy(url)
Beispiel #38
0
def parse_winner_mapping(file: IO) -> Dict:
    lines = file.readlines()
    lines = list(map(lambda l: l.replace('\n', ''), lines))
    header = filter(lambda l: l.startswith('$'), lines)
    header = dict(map(lambda l: (l[1:].split(' ')[0], l.split(' ')[1]),
                      header))
    mapping = {}

    mappings = list(filter(lambda l: not l.startswith('$'), lines))
    mappings = [(mappings[i], mappings[i + 1])
                for i in range(0,
                               len(mappings) - 1, 2)]
    for vec, winners in mappings:
        matchings = []
        winner_info = winners.split(' ')
        for i in range(0, len(winner_info) - 1, 3):
            x = int(winner_info[i])
            y = int(winner_info[i + 1])
            distance = float(winner_info[i + 2])
            matchings.append((x, y, distance))
        mapping[vec] = matchings
    header['MAPPING'] = mapping
    return header
Beispiel #39
0
def paste_to_dpaste(config: Dict[str, Any], file: IO, syntax: str,
                    expires: int, title: str, raw: bool, copy: bool) -> str:
    content = file.read()

    r = requests.post(
        'http://dpaste.com/api/v2/',
        data={
            'title':
            title,
            'content':
            content,
            'syntax':
            syntax or config.get('syntax') or get_syntax(file.name, content),
            'expiry_days':
            expires or config.get('expires'),
        },
    )
    r.raise_for_status()

    url: str = r.text.strip()
    if raw or config.get('raw'):
        url += '.txt'
    return url
Beispiel #40
0
def parse_map(map_file: IO) -> Dict[str, Object]:
    objects = {"COM": Object("COM", None, set(), 0)}
    for line in map_file.readlines():
        parent_id, child_id = line.strip().split(")", 1)

        if parent_id not in objects:
            parent = Object(parent_id, None, set())
            objects[parent.id] = parent
        else:
            parent = objects[parent_id]
        if child_id in objects:
            child = objects[child_id]
        else:
            child = Object(child_id, parent, set())
        child.parent = parent
        if parent.orbit_count is not None:
            child.orbit_count = parent.orbit_count + 1
        parent.children.add(child)
        objects[child.id] = child

    calculate_object_orbits(objects["COM"])

    return objects
Beispiel #41
0
def publish_raw_request(deployment_file: IO, request_file: IO):
    """Request a new layer in every region in DEPLOYMENT_FILE.
    The Layer must be described in the Accretion format in REQUEST_FILE.

    .. code:: json

        {
            "Name": "layer name",
            "Language": "Language to target",
            "Requirements": {
                "Type": "accretion",
                "Requirements": [
                    {
                        "Name": "Requirement Name",
                        "Details": "Requirement version or other identifying details"
                    }
                ]
            },
            "Requirements": {
                "Type": "requirements.txt",
                "Requirements": "Raw contents of requirements.txt file format"
            }
        }

    .. note::

        Language must be a valid
        `runtime prefix <https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html>`_
        (ex: "python", "java", etc).

    """
    record = DeploymentFile.from_dict(json.load(deployment_file))

    request = request_file.read()
    # TODO: Validate the request

    _publish_to_all_regions(record=record, request=request)
Beispiel #42
0
def main(input_file: IO):
    raw_input = input_file.read().split('\n\n')
    rules, my_ticket, nearby_tickets = raw_input

    rule_map = parse_rules(rules)
    my_ticket = [int(n) for n in my_ticket.split('\n')[1].split(',')]
    tickets = [row.split(',') for row in nearby_tickets.split('\n')][1:]
    possible_fields = [set()] * len(tickets[0])

    for ticket in tickets:
        for idx, num in enumerate(ticket):
            fields = set()

            for name, rule in rule_map.items():
                for from_num, to_num in rule:
                    if from_num <= int(num) <= to_num:
                        fields.add(name)

            if fields:
                possible_fields[idx] = \
                    possible_fields[idx].intersection(fields) \
                        if possible_fields[idx] else fields

    sorted_possible_fields = [[len(fields), idx, fields]
                              for idx, fields in enumerate(possible_fields)]
    sorted_possible_fields.sort()

    visited = set()
    ans = 1
    for idx, data in enumerate(sorted_possible_fields):
        length, index, fields = data
        field_name = list(fields - visited)[0]
        if 'departure' in field_name:
            ans *= my_ticket[index]
        visited = visited.union(fields)

    print('The answer for Day 16 Part B :', ans)
Beispiel #43
0
    def unlock(file_: typing.IO):
        try:
            savepos = file_.tell()
            if savepos:
                file_.seek(0)

            try:
                msvcrt.locking(file_.fileno(), constants.LockFlags.UNBLOCK,
                               lock_length)
            except IOError as exc:
                exception = exc
                if exc.strerror == 'Permission denied':
                    hfile = win32file._get_osfhandle(file_.fileno())
                    try:
                        win32file.UnlockFileEx(hfile, 0, -0x10000,
                                               __overlapped)
                    except pywintypes.error as exc:
                        exception = exc
                        if exc.winerror == winerror.ERROR_NOT_LOCKED:
                            # error: (158, 'UnlockFileEx',
                            #         'The segment is already unlocked.')
                            # To match the 'posix' implementation, silently
                            # ignore this error
                            pass
                        else:
                            # Q:  Are there exceptions/codes we should be
                            # dealing with here?
                            raise
                else:
                    raise exceptions.LockException(
                        exceptions.LockException.LOCK_FAILED,
                        exception.strerror,
                        fh=file_)
            finally:
                if savepos:
                    file_.seek(savepos)
        except IOError as exc:
            raise exceptions.LockException(
                exceptions.LockException.LOCK_FAILED, exc.strerror, fh=file_)
Beispiel #44
0
def download_component(
    logger,
    github_repo: github3.repos.repo.Repository,
    path_filter_func: typing.Callable,
    ref: str,
    target: typing.IO,
):
    url = github_repo._build_url(
        'tarball',
        ref,
        base_url=github_repo._api,
    )

    files_to_scan = 0
    filtered_out_files = 0

    with tarfile.open(fileobj=target, mode='w|') as tar_out, \
        github_repo._get(url, allow_redirects=True, stream=True,) as res, \
        tarfile.open(fileobj=res.raw, mode='r|*') as src:

        res.raise_for_status()
        # valid because first tar entry is root directory and has no trailing \
        component_filename = src.next().name
        path_offset = len(component_filename) + 1

        for tar_info in src:
            if path_filter_func(tar_info.name[path_offset:]):
                tar_out.addfile(tarinfo=tar_info, fileobj=src.fileobj)
                files_to_scan += 1
            else:
                filtered_out_files += 1

    logger.info(f'{files_to_scan=}, {filtered_out_files=}')
    tar_out_size = target.tell()

    return tar_out_size
Beispiel #45
0
    def pipe(self, sink: IO, text_mode: bool = False) -> IO:
        """
        Pipes the data from the current stream object into any file-like object.

        Args:
            sink (IO): Any file-like object or AbcStream object.
            text_mode (bool, optional): If True, writes string to sink rather than bytes. Defaults to False.

        Raises:
            ValueError:  sink for pipe must be a filelike object - i.e. has write method

        Returns:
            IO: file-like object (i.e. sink) that is piped into.
        """
        if hasattr(sink, "write") and callable(sink.write):  # type: ignore
            # if empty, don't decode
            encoding = self.encoding or "utf-8"
            # update the encoding of the AbcStream to be same as source
            if hasattr(sink, "set_encoding") and encoding:
                sink.set_encoding(encoding)  # type: ignore
            self._pipes.append((encoding if text_mode else "", sink))
            # remember current pos
            pos = self.tell()
            # go to end of stream
            self._file.seek(0, 2)
            end = self.tell()
            # have some content
            if end > 0:
                # go to start
                self._file.seek(0)
                # stream existing to sink
                if text_mode:
                    for line in iter(self._file.readline, b""):
                        sink.write(line.decode(encoding))
                else:
                    for chunk in self._file:
                        sink.write(chunk)
            # go back to original position
            self.seek(pos)
            return sink

        raise ValueError(
            "sink for pipe must be a filelike object - i.e. has write method")
Beispiel #46
0
    def le(self, arq: IO):
        def converte_tabela_em_df() -> pd.DataFrame:
            df = pd.DataFrame(tabela)
            cols = [f"Estágio {s}" for s in range(1, n_semanas + 1)]
            df.columns = cols
            df["Subsistema"] = subsistemas
            df["Patamar"] = patamares
            df = df[["Subsistema", "Patamar"] + cols]
            return df

        # Salta uma linha
        arq.readline()
        # Descobre o número de semanas
        linha = arq.readline()
        sems = [
            s for s in linha.split(" ")
            if (len(s) > 0 and ("Sem" in s or "Mes" in s))
        ]
        reg_pat = RegistroAn(6)
        reg_cmo = RegistroFn(10)
        n_semanas = len(sems)
        subsistemas: List[str] = []
        patamares: List[str] = []
        tabela = np.zeros((4 * len(SUBSISTEMAS), n_semanas))
        # Salta outra linha
        arq.readline()
        i = 0
        while True:
            # Confere se a leitura não acabou
            linha = arq.readline()
            if "X------X" in linha:
                self._dados = converte_tabela_em_df()
                break
            # Senão, lê mais uma linha
            # Subsistema e patamar
            ssis = SUBSISTEMAS[int(i / 4)]
            str_pat = reg_pat.le_registro(linha, 4)
            pat = "Médio" if "Med" in str_pat else str_pat.split("_")[1]
            subsistemas.append(ssis)
            patamares.append(pat)
            # Semanas
            tabela[i, :] = reg_cmo.le_linha_tabela(linha, 11, 1, n_semanas)
            i += 1
    def save_to_fh(self, fh: IO, save_if_non_dirty_too: bool = False) -> bool:
        result = False
        can_save = self._dirty

        if not self._dirty and save_if_non_dirty_too:
            can_save = True

        if can_save:
            # 1st row is JSON object with data for DirHash
            fh.write('{json}\n'.format(json=self.to_json()))
            fh.write('\n')

            # all the FileHash objects
            for file_hash in self._cache.values():
                fh.write('{json}\n'.format(json=file_hash.to_json()))

            result = True

        return result
Beispiel #48
0
def transpile_class_constant_initialization(self, class_context: ClassContext,
                                            writer: IO):
    if class_context.cls.has_constants:
        writer.write(f"""\
            if (0 == {class_context.constants_initialized_identifier}) {{
        """)
        for const in class_context.cls.constants():
            writer.write(f"""\
                {{
                    uint8_t data[] = {{ {','.join(map(lambda b: str(b), const.data))} }};
                    int bytesRead;
                    gd2c10->variant_decode({class_context.address_of_constant(const.name)}, data, {len(const.data)}, &bytesRead, true);
                }}
            """)

        writer.write(f"""\
                {class_context.constants_initialized_identifier} = 1;
            }}
        """)
Beispiel #49
0
def add_transactions(f: typing.IO, transactions: List[Transaction],
                     take_home: int, config: Dict):
    """Generate SankeyMatic strings from filtered transactions

    Args:
        f: output file
        transactions: list of all transactions
        take_home: total take home pay for the period
        config: config file
    """

    start_date = datetime.strptime(config['time']['start_date'], '%m/%d/%Y')
    end_date = datetime.strptime(config['time']['end_date'], '%m/%d/%Y')

    filt_trans = filter_transactions(
        transactions=transactions,
        start_date=start_date,
        end_date=end_date,
        vendors=config['transactions']['ignore_vendors'],
        categories=config['transactions']['ignore_categories'],
        ignore=True,
        use_labels=config['transactions']['prefer_labels'])

    summed_categories = summarize_transactions(
        transactions=filt_trans,
        use_labels=config['transactions']['prefer_labels'],
        threshold=config['transactions']['category_threshold'])

    expenditure = 0
    sorted_cat = sorted(summed_categories.items(), key=lambda kv: kv[1])
    sorted_cat.reverse()
    for name, value in sorted_cat:
        if config['transactions']['use_percentages']:
            f.write(f'Take Home [{int(100 * value / take_home)}] {name}\n')
        else:
            f.write(f'Take Home [{value}] {name}\n')
        expenditure += value

    if config['transactions']['use_percentages']:
        savings = int(100 * (take_home - expenditure) / take_home)
    else:
        savings = take_home - expenditure
    f.write(f'Take Home [{savings}] Savings\n')
Beispiel #50
0
def create_proxysg_all_category_out_format(indicators_file: IO,
                                           files_by_category: dict):
    """write all indicators to file in proxysg format.

    Args:
        indicators_file (IO): the fields to return.
        files_by_category (dict): all indicators by category

    Returns:
        a file in proxysg format.
    """
    for category, category_file in files_by_category.items():
        indicators_file.write(f"define category {category}\n")
        category_file.seek(0)
        indicators_file.write(category_file.read())
        category_file.close()
        indicators_file.write("end\n")

    return indicators_file
Beispiel #51
0
    def pack(self, out: IO):
        """
        Write the AttributeTable to the file-like object `out`.

        .. note::

            Advanced usage only. You will typically never need to call this
            method as it will be called for you when saving a ClassFile.

        :param out: Any file-like object providing `write()`
        """
        out.write(pack('>H', len(self._table)))
        for attribute in self:
            info = attribute.pack()
            out.write(pack(
                '>HI',
                attribute.name.index,
                len(info)
            ))
            out.write(info)
Beispiel #52
0
 def stuff(a: IO) -> AnyStr:
     return a.readline()
Beispiel #53
0
def iter_ceph_ops(fd: IO):
    data = fd.read()
    offset = 0
    while offset < len(data):
        op, offset = CephOp.unpack(data, offset)
        yield op
Beispiel #54
0
    def embed_file(self,
                   input_file: IO,
                   output_file_path: str,
                   output_format: str = "all",
                   batch_size: int = DEFAULT_BATCH_SIZE,
                   forget_sentences: bool = False,
                   use_sentence_keys: bool = False) -> None:
        """
        Computes ELMo embeddings from an input_file where each line contains a sentence tokenized by whitespace.
        The ELMo embeddings are written out in HDF5 format, where each sentence embedding
        is saved in a dataset with the line number in the original file as the key.

        Parameters
        ----------
        input_file : ``IO``, required
            A file with one tokenized sentence per line.
        output_file_path : ``str``, required
            A path to the output hdf5 file.
        output_format : ``str``, optional, (default = "all")
            The embeddings to output.  Must be one of "all", "top", or "average".
        batch_size : ``int``, optional, (default = 64)
            The number of sentences to process in ELMo at one time.
        forget_sentences : ``bool``, optional, (default = False).
            If use_sentence_keys is False, whether or not to include a string
            serialized JSON dictionary that associates sentences with their
            line number (its HDF5 key). The mapping is placed in the
            "sentence_to_index" HDF5 key. This is useful if
            you want to use the embeddings without keeping the original file
            of sentences around.
        use_sentence_keys : ``bool``, optional, (default = False).
            Whether or not to use full sentences as keys. By default,
            the line numbers of the input file are used as ids, which is more robust.
        """

        assert output_format in ["all", "top", "average"]

        # Tokenizes the sentences.
        sentences = [line.strip() for line in input_file]

        blank_lines = [i for (i, line) in enumerate(sentences) if line == ""]
        if blank_lines:
            raise ConfigurationError(f"Your input file contains empty lines at indexes "
                                     f"{blank_lines}. Please remove them.")
        split_sentences = [sentence.split() for sentence in sentences]
        # Uses the sentence index as the key.

        if use_sentence_keys:
            logger.warning("Using sentences as keys can fail if sentences "
                           "contain forward slashes or colons. Use with caution.")
            embedded_sentences = zip(sentences, self.embed_sentences(split_sentences, batch_size))
        else:
            embedded_sentences = ((str(i), x) for i, x in
                                  enumerate(self.embed_sentences(split_sentences, batch_size)))

        sentence_to_index = {}
        logger.info("Processing sentences.")
        with h5py.File(output_file_path, 'w') as fout:
            for key, embeddings in Tqdm.tqdm(embedded_sentences):
                if use_sentence_keys and key in fout.keys():
                    raise ConfigurationError(f"Key already exists in {output_file_path}. "
                                             f"To encode duplicate sentences, do not pass "
                                             f"the --use-sentence-keys flag.")

                if not forget_sentences and not use_sentence_keys:
                    sentence = sentences[int(key)]
                    sentence_to_index[sentence] = key

                if output_format == "all":
                    output = embeddings
                elif output_format == "top":
                    output = embeddings[-1]
                elif output_format == "average":
                    output = numpy.average(embeddings, axis=0)

                fout.create_dataset(
                        str(key),
                        output.shape, dtype='float32',
                        data=output
                )
            if not forget_sentences and not use_sentence_keys:
                sentence_index_dataset = fout.create_dataset(
                        "sentence_to_index",
                        (1,),
                        dtype=h5py.special_dtype(vlen=str))
                sentence_index_dataset[0] = json.dumps(sentence_to_index)

        input_file.close()
Beispiel #55
0
def write_echo_json(f: IO, obj: object) -> None:
    f.write("echo %s\n" % shlex.quote(json.dumps(obj)))