Beispiel #1
0
def train_and_validate(args):
    set_seed(args.seed)

    # Load vocabulary.
    vocab = Vocab()
    vocab.load(args.vocab_path)
    args.vocab = vocab

    # Build model.
    model = build_model(args)

    # Load or initialize parameters.
    if args.pretrained_model_path is not None:
        # Initialize with pretrained model.
        model = load_model(model, args.pretrained_model_path)
    else:
        # Initialize with normal distribution.
        for n, p in list(model.named_parameters()):
            if 'gamma' not in n and 'beta' not in n:
                p.data.normal_(0, 0.02)

    if args.dist_train:
        # Multiprocessing distributed mode.
        mp.spawn(worker,
                 nprocs=args.ranks_num,
                 args=(args.gpu_ranks, args, model),
                 daemon=False)
    elif args.single_gpu:
        # Single GPU mode.
        worker(args.gpu_id, None, args, model)
    else:
        # CPU mode.
        worker(None, None, args, model)
Beispiel #2
0
def train_and_validate(args):
    set_seed(args.seed)

    # Load vocabulary.
    if args.spm_model_path:
        try:
            import sentencepiece as spm
        except ImportError:
            raise ImportError(
                "You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece"
                "pip install sentencepiece")
        sp_model = spm.SentencePieceProcessor()
        sp_model.Load(args.spm_model_path)
        args.vocab = {
            sp_model.IdToPiece(i): i
            for i in range(sp_model.GetPieceSize())
        }
        if args.target == "mt":
            tgt_sp_model = spm.SentencePieceProcessor()
            tgt_sp_model.Load(args.tgt_spm_model_path)
            args.tgt_vocab = {
                tgt_sp_model.IdToPiece(i): i
                for i in range(tgt_sp_model.GetPieceSize())
            }
    else:
        vocab = Vocab()
        vocab.load(args.vocab_path)
        args.vocab = vocab.w2i
        if args.target == "mt":
            tgt_vocab = Vocab()
            tgt_vocab.load(args.tgt_vocab_path)
            args.tgt_vocab = tgt_vocab.w2i

    # Build model.
    model = build_model(args)

    # Load or initialize parameters.
    if args.pretrained_model_path is not None:
        # Initialize with pretrained model.
        model = load_model(model, args.pretrained_model_path)
    else:
        # Initialize with normal distribution.
        for n, p in list(model.named_parameters()):
            if 'gamma' not in n and 'beta' not in n:
                p.data.normal_(0, 0.02)

    if args.dist_train:
        # Multiprocessing distributed mode.
        mp.spawn(worker,
                 nprocs=args.ranks_num,
                 args=(args.gpu_ranks, args, model),
                 daemon=False)
    elif args.single_gpu:
        # Single GPU mode.
        worker(args.gpu_id, None, args, model)
    else:
        # CPU mode.
        worker(None, None, args, model)
Beispiel #3
0
def train_and_validate(args):
    set_seed(args.seed)

    # Load vocabulary.
    if args.data_processor == "mt":
        args.tgt_tokenizer = str2tokenizer[args.tgt_tokenizer](args,
                                                               is_src=False)
        args.tgt_vocab = args.tgt_tokenizer.vocab

    args.tokenizer = str2tokenizer[args.tokenizer](args)
    args.vocab = args.tokenizer.vocab

    # Build model.
    model = build_model(args)

    # Load or initialize parameters.
    if args.pretrained_model_path is not None:
        # Initialize with pretrained model.
        model = load_model(model, args.pretrained_model_path)
    else:
        # Initialize with normal distribution.
        if args.deep_init:
            scaled_factor = 1 / math.sqrt(2.0 * args.layers_num)
            for n, p in list(model.named_parameters()):
                if "gamma" not in n and "beta" not in n:
                    if "linear_2.weight" in n or "final_linear.weight" in n:
                        p.data.normal_(0, 0.02 * scaled_factor)
                    elif "linear_2.bias" in n or "final_linear.bias" in n:
                        p.data.zero_()
                    else:
                        p.data.normal_(0, 0.02)
        else:
            for n, p in list(model.named_parameters()):
                if "gamma" not in n and "beta" not in n:
                    p.data.normal_(0, 0.02)

    if args.deepspeed:
        worker(args.local_rank, None, args, model)
    elif args.dist_train:
        # Multiprocessing distributed mode.
        mp.spawn(worker,
                 nprocs=args.ranks_num,
                 args=(args.gpu_ranks, args, model),
                 daemon=False)
    elif args.single_gpu:
        # Single GPU mode.
        worker(args.gpu_id, None, args, model)
    else:
        # CPU mode.
        worker(None, None, args, model)
Beispiel #4
0
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    # Path options.
    parser.add_argument("--pretrained_model_path",
                        default=None,
                        type=str,
                        help="Path of the pretrained model.")
    parser.add_argument("--output_model_path",
                        default="./models/ner_model.bin",
                        type=str,
                        help="Path of the output model.")
    parser.add_argument("--vocab_path",
                        type=str,
                        required=True,
                        help="Path of the vocabulary file.")
    parser.add_argument("--train_path",
                        type=str,
                        required=True,
                        help="Path of the trainset.")
    parser.add_argument("--dev_path",
                        type=str,
                        required=True,
                        help="Path of the devset.")
    parser.add_argument("--test_path", type=str, help="Path of the testset.")
    parser.add_argument("--config_path",
                        default="./models/bert_base_config.json",
                        type=str,
                        help="Path of the config file.")

    # Model options.
    parser.add_argument("--batch_size",
                        type=int,
                        default=32,
                        help="Batch_size.")
    parser.add_argument("--seq_length",
                        default=128,
                        type=int,
                        help="Sequence length.")
    parser.add_argument("--embedding",
                        choices=["bert", "word"],
                        default="bert",
                        help="Emebdding type.")
    parser.add_argument("--encoder", choices=["bert", "lstm", "gru", \
                                                   "cnn", "gatedcnn", "attn", \
                                                   "rcnn", "crnn", "gpt", "bilstm"], \
                                                   default="bert", help="Encoder type.")
    parser.add_argument("--bidirectional",
                        action="store_true",
                        help="Specific to recurrent model.")

    # Subword options.
    parser.add_argument("--subword_type",
                        choices=["none", "char"],
                        default="none",
                        help="Subword feature type.")
    parser.add_argument("--sub_vocab_path",
                        type=str,
                        default="models/sub_vocab.txt",
                        help="Path of the subword vocabulary file.")
    parser.add_argument("--subencoder",
                        choices=["avg", "lstm", "gru", "cnn"],
                        default="avg",
                        help="Subencoder type.")
    parser.add_argument("--sub_layers_num",
                        type=int,
                        default=2,
                        help="The number of subencoder layers.")

    # Optimizer options.
    parser.add_argument("--learning_rate",
                        type=float,
                        default=2e-5,
                        help="Learning rate.")
    parser.add_argument("--warmup",
                        type=float,
                        default=0.1,
                        help="Warm up value.")

    # Training options.
    parser.add_argument("--dropout", type=float, default=0.1, help="Dropout.")
    parser.add_argument("--epochs_num",
                        type=int,
                        default=3,
                        help="Number of epochs.")
    parser.add_argument("--report_steps",
                        type=int,
                        default=100,
                        help="Specific steps to print prompt.")
    parser.add_argument("--seed", type=int, default=7, help="Random seed.")

    args = parser.parse_args()

    # Load the hyperparameters of the config file.
    args = load_hyperparam(args)

    set_seed(args.seed)

    labels_map = {"[PAD]": 0}
    begin_ids = []

    # Find tagging labels
    with open(args.train_path, mode="r", encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            if line_id == 0:
                continue
            labels = line.strip().split("\t")[1].split()
            for l in labels:
                if l not in labels_map:
                    if l.startswith("B") or l.startswith("S"):
                        begin_ids.append(len(labels_map))
                    labels_map[l] = len(labels_map)

    print("Labels: ", labels_map)
    args.labels_num = len(labels_map)

    # Load vocabulary.
    vocab = Vocab()
    vocab.load(args.vocab_path)
    args.vocab = vocab

    # Build bert model.
    # A pseudo target is added.
    args.target = "bert"
    model = build_model(args)

    # Load or initialize parameters.
    if args.pretrained_model_path is not None:
        # Initialize with pretrained model.
        model.load_state_dict(torch.load(args.pretrained_model_path),
                              strict=False)
    else:
        # Initialize with normal distribution.
        for n, p in list(model.named_parameters()):
            if 'gamma' not in n and 'beta' not in n:
                p.data.normal_(0, 0.02)

    # Build sequence labeling model.
    model = BertTagger(args, model)

    # For simplicity, we use DataParallel wrapper to use multiple GPUs.
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if torch.cuda.device_count() > 1:
        print("{} GPUs are available. Let's use them.".format(
            torch.cuda.device_count()))
        model = nn.DataParallel(model)

    model = model.to(device)

    # Datset loader.
    def batch_loader(batch_size, input_ids, label_ids, mask_ids):
        instances_num = input_ids.size()[0]
        for i in range(instances_num // batch_size):
            input_ids_batch = input_ids[i * batch_size:(i + 1) * batch_size, :]
            label_ids_batch = label_ids[i * batch_size:(i + 1) * batch_size, :]
            mask_ids_batch = mask_ids[i * batch_size:(i + 1) * batch_size, :]
            yield input_ids_batch, label_ids_batch, mask_ids_batch
        if instances_num > instances_num // batch_size * batch_size:
            input_ids_batch = input_ids[instances_num // batch_size *
                                        batch_size:, :]
            label_ids_batch = label_ids[instances_num // batch_size *
                                        batch_size:, :]
            mask_ids_batch = mask_ids[instances_num // batch_size *
                                      batch_size:, :]
            yield input_ids_batch, label_ids_batch, mask_ids_batch

    # Read dataset.
    def read_dataset(path):
        dataset = []
        with open(path, mode="r", encoding="utf-8") as f:
            f.readline()
            tokens, labels = [], []
            for line_id, line in enumerate(f):
                tokens, labels = line.strip().split("\t")
                tokens = [vocab.get(t) for t in tokens.split(" ")]
                labels = [labels_map[l] for l in labels.split(" ")]
                mask = [1] * len(tokens)
                if len(tokens) > args.seq_length:
                    tokens = tokens[:args.seq_length]
                    labels = labels[:args.seq_length]
                    mask = mask[:args.seq_length]
                while len(tokens) < args.seq_length:
                    tokens.append(0)
                    labels.append(0)
                    mask.append(0)
                dataset.append([tokens, labels, mask])

        return dataset

    # Evaluation function.
    def evaluate(args, is_test):
        if is_test:
            dataset = read_dataset(args.test_path)
        else:
            dataset = read_dataset(args.dev_path)

        input_ids = torch.LongTensor([sample[0] for sample in dataset])
        label_ids = torch.LongTensor([sample[1] for sample in dataset])
        mask_ids = torch.LongTensor([sample[2] for sample in dataset])

        instances_num = input_ids.size(0)
        batch_size = args.batch_size

        if is_test:
            print("Batch size: ", batch_size)
            print("The number of test instances:", instances_num)

        correct = 0
        gold_entities_num = 0
        pred_entities_num = 0

        confusion = torch.zeros(len(labels_map),
                                len(labels_map),
                                dtype=torch.long)

        model.eval()

        for i, (input_ids_batch, label_ids_batch, mask_ids_batch) in enumerate(
                batch_loader(batch_size, input_ids, label_ids, mask_ids)):
            input_ids_batch = input_ids_batch.to(device)
            label_ids_batch = label_ids_batch.to(device)
            mask_ids_batch = mask_ids_batch.to(device)
            loss, _, pred, gold = model(input_ids_batch, label_ids_batch,
                                        mask_ids_batch)

            for j in range(gold.size()[0]):
                if gold[j].item() in begin_ids:
                    gold_entities_num += 1

            for j in range(pred.size()[0]):
                if pred[j].item(
                ) in begin_ids and gold[j].item() != labels_map["[PAD]"]:
                    pred_entities_num += 1

            pred_entities_pos = []
            gold_entities_pos = []
            start, end = 0, 0

            for j in range(gold.size()[0]):
                if gold[j].item() in begin_ids:
                    start = j
                    for k in range(j + 1, gold.size()[0]):
                        if gold[k].item(
                        ) == labels_map["[PAD]"] or gold[k].item(
                        ) == labels_map["O"] or gold[k].item() in begin_ids:
                            end = k - 1
                            break
                    else:
                        end = gold.size()[0] - 1
                    gold_entities_pos.append((start, end))

            for j in range(pred.size()[0]):
                if pred[j].item(
                ) in begin_ids and gold[j].item() != labels_map["[PAD]"]:
                    start = j
                    for k in range(j + 1, pred.size()[0]):
                        if pred[k].item(
                        ) == labels_map["[PAD]"] or pred[k].item(
                        ) == labels_map["O"] or pred[k].item() in begin_ids:
                            end = k - 1
                            break
                    else:
                        end = pred.size()[0] - 1
                    pred_entities_pos.append((start, end))

            for entity in pred_entities_pos:
                if entity not in gold_entities_pos:
                    continue
                for j in range(entity[0], entity[1] + 1):
                    if gold[j].item() != pred[j].item():
                        break
                else:
                    correct += 1

        print("Report precision, recall, and f1:")
        p = correct / pred_entities_num
        r = correct / gold_entities_num
        f1 = 2 * p * r / (p + r)
        print("{:.3f}, {:.3f}, {:.3f}".format(p, r, f1))

        return f1

    # Training phase.
    print("Start training.")
    instances = read_dataset(args.train_path)

    input_ids = torch.LongTensor([ins[0] for ins in instances])
    label_ids = torch.LongTensor([ins[1] for ins in instances])
    mask_ids = torch.LongTensor([ins[2] for ins in instances])

    instances_num = input_ids.size(0)
    batch_size = args.batch_size
    train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    print("Batch size: ", batch_size)
    print("The number of training instances:", instances_num)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.0
    }]
    ooptimizer = AdamW(optimizer_grouped_parameters,
                       lr=args.learning_rate,
                       correct_bias=False)
    scheduler = WarmupLinearSchedule(optimizer,
                                     warmup_steps=train_steps * args.warmup,
                                     t_total=train_steps)

    total_loss = 0.
    f1 = 0.0
    best_f1 = 0.0

    for epoch in range(1, args.epochs_num + 1):
        model.train()
        for i, (input_ids_batch, label_ids_batch, mask_ids_batch) in enumerate(
                batch_loader(batch_size, input_ids, label_ids, mask_ids)):
            model.zero_grad()

            input_ids_batch = input_ids_batch.to(device)
            label_ids_batch = label_ids_batch.to(device)
            mask_ids_batch = mask_ids_batch.to(device)

            loss, _, _, _ = model(input_ids_batch, label_ids_batch,
                                  mask_ids_batch)
            if torch.cuda.device_count() > 1:
                loss = torch.mean(loss)
            total_loss += loss.item()
            if (i + 1) % args.report_steps == 0:
                print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".
                      format(epoch, i + 1, total_loss / args.report_steps))
                total_loss = 0.

            loss.backward()
            optimizer.step()
            scheduler.step()

        f1 = evaluate(args, False)
        if f1 > best_f1:
            best_f1 = f1
            save_model(model, args.output_model_path)
        else:
            continue

    # Evaluation phase.
    if args.test_path is not None:
        print("Test set evaluation.")
        model = load_model(model, args.output_model_path)
        evaluate(args, True)
Beispiel #5
0
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    # Path options.
    parser.add_argument("--pretrained_model_path",
                        default=None,
                        type=str,
                        help="Path of the pretrained model.")
    parser.add_argument("--output_model_path",
                        default="./models/classifier_model.bin",
                        type=str,
                        help="Path of the output model.")
    parser.add_argument("--vocab_path",
                        default="./models/google_vocab.txt",
                        type=str,
                        help="Path of the vocabulary file.")
    parser.add_argument("--train_path",
                        type=str,
                        required=True,
                        help="Path of the trainset.")
    parser.add_argument("--dev_path",
                        type=str,
                        required=True,
                        help="Path of the devset.")
    parser.add_argument("--test_path", type=str, help="Path of the testset.")
    parser.add_argument("--config_path",
                        default="./models/bert_base_config.json",
                        type=str,
                        help="Path of the config file.")

    # Model options.
    parser.add_argument("--batch_size",
                        type=int,
                        default=64,
                        help="Batch size.")
    parser.add_argument("--seq_length",
                        type=int,
                        default=128,
                        help="Sequence length.")
    parser.add_argument("--embedding",
                        choices=["bert", "word"],
                        default="bert",
                        help="Emebdding type.")
    parser.add_argument("--encoder", choices=["bert", "lstm", "gru", \
                                                   "cnn", "gatedcnn", "attn", \
                                                   "rcnn", "crnn", "gpt", "bilstm"], \
                                                   default="bert", help="Encoder type.")
    parser.add_argument("--bidirectional",
                        action="store_true",
                        help="Specific to recurrent model.")
    parser.add_argument("--pooling",
                        choices=["mean", "max", "first", "last"],
                        default="first",
                        help="Pooling type.")

    # Subword options.
    parser.add_argument("--subword_type",
                        choices=["none", "char"],
                        default="none",
                        help="Subword feature type.")
    parser.add_argument("--sub_vocab_path",
                        type=str,
                        default="models/sub_vocab.txt",
                        help="Path of the subword vocabulary file.")
    parser.add_argument("--subencoder",
                        choices=["avg", "lstm", "gru", "cnn"],
                        default="avg",
                        help="Subencoder type.")
    parser.add_argument("--sub_layers_num",
                        type=int,
                        default=2,
                        help="The number of subencoder layers.")

    # Tokenizer options.
    parser.add_argument(
        "--tokenizer",
        choices=["bert", "char", "space"],
        default="bert",
        help="Specify the tokenizer."
        "Original Google BERT uses bert tokenizer on Chinese corpus."
        "Char tokenizer segments sentences into characters."
        "Space tokenizer segments sentences into words according to space.")

    # Optimizer options.
    parser.add_argument("--learning_rate",
                        type=float,
                        default=2e-5,
                        help="Learning rate.")
    parser.add_argument("--warmup",
                        type=float,
                        default=0.1,
                        help="Warm up value.")

    # Training options.
    parser.add_argument("--dropout", type=float, default=0.5, help="Dropout.")
    parser.add_argument("--epochs_num",
                        type=int,
                        default=3,
                        help="Number of epochs.")
    parser.add_argument("--report_steps",
                        type=int,
                        default=100,
                        help="Specific steps to print prompt.")
    parser.add_argument("--seed", type=int, default=7, help="Random seed.")

    # Evaluation options.
    parser.add_argument("--mean_reciprocal_rank",
                        action="store_true",
                        help="Evaluation metrics for DBQA dataset.")

    args = parser.parse_args()

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    set_seed(args.seed)

    # Count the number of labels.
    labels_set = set()
    columns = {}
    with open(args.train_path, mode="r", encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            try:
                line = line.strip().split("\t")
                if line_id == 0:
                    for i, column_name in enumerate(line):
                        columns[column_name] = i
                    continue
                label = int(line[columns["label"]])
                labels_set.add(label)
            except:
                pass
    args.labels_num = len(labels_set)

    # Load vocabulary.
    vocab = Vocab()
    vocab.load(args.vocab_path)
    args.vocab = vocab

    # Build bert model.
    # A pseudo target is added.
    args.target = "bert"
    model = build_model(args)

    # Load or initialize parameters.
    if args.pretrained_model_path is not None:
        # Initialize with pretrained model.
        model.load_state_dict(torch.load(args.pretrained_model_path),
                              strict=False)
    else:
        # Initialize with normal distribution.
        for n, p in list(model.named_parameters()):
            if 'gamma' not in n and 'beta' not in n:
                p.data.normal_(0, 0.02)

    # Build classification model.
    model = BertClassifier(args, model)

    # For simplicity, we use DataParallel wrapper to use multiple GPUs.
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if torch.cuda.device_count() > 1:
        print("{} GPUs are available. Let's use them.".format(
            torch.cuda.device_count()))
        model = nn.DataParallel(model)

    model = model.to(device)

    # Datset loader.
    def batch_loader(batch_size, input_ids, label_ids, mask_ids):
        instances_num = input_ids.size()[0]
        for i in range(instances_num // batch_size):
            input_ids_batch = input_ids[i * batch_size:(i + 1) * batch_size, :]
            label_ids_batch = label_ids[i * batch_size:(i + 1) * batch_size]
            mask_ids_batch = mask_ids[i * batch_size:(i + 1) * batch_size, :]
            yield input_ids_batch, label_ids_batch, mask_ids_batch
        if instances_num > instances_num // batch_size * batch_size:
            input_ids_batch = input_ids[instances_num // batch_size *
                                        batch_size:, :]
            label_ids_batch = label_ids[instances_num // batch_size *
                                        batch_size:]
            mask_ids_batch = mask_ids[instances_num // batch_size *
                                      batch_size:, :]
            yield input_ids_batch, label_ids_batch, mask_ids_batch

    # Build tokenizer.
    tokenizer = globals()[args.tokenizer.capitalize() + "Tokenizer"](args)

    # Read dataset.
    def read_dataset(path):
        dataset = []
        with open(path, mode="r", encoding="utf-8") as f:
            for line_id, line in enumerate(f):
                if line_id == 0:
                    continue
                try:
                    line = line.strip().split('\t')
                    if len(line) == 2:
                        label = int(line[columns["label"]])
                        text = line[columns["text_a"]]
                        tokens = [
                            vocab.get(t) for t in tokenizer.tokenize(text)
                        ]
                        tokens = [CLS_ID] + tokens
                        mask = [1] * len(tokens)
                        if len(tokens) > args.seq_length:
                            tokens = tokens[:args.seq_length]
                            mask = mask[:args.seq_length]
                        while len(tokens) < args.seq_length:
                            tokens.append(0)
                            mask.append(0)
                        dataset.append((tokens, label, mask))
                    elif len(line) == 3:  # For sentence pair input.
                        label = int(line[columns["label"]])
                        text_a, text_b = line[columns["text_a"]], line[
                            columns["text_b"]]

                        tokens_a = [
                            vocab.get(t) for t in tokenizer.tokenize(text_a)
                        ]
                        tokens_a = [CLS_ID] + tokens_a + [SEP_ID]
                        tokens_b = [
                            vocab.get(t) for t in tokenizer.tokenize(text_b)
                        ]
                        tokens_b = tokens_b + [SEP_ID]

                        tokens = tokens_a + tokens_b
                        mask = [1] * len(tokens_a) + [2] * len(tokens_b)

                        if len(tokens) > args.seq_length:
                            tokens = tokens[:args.seq_length]
                            mask = mask[:args.seq_length]
                        while len(tokens) < args.seq_length:
                            tokens.append(0)
                            mask.append(0)
                        dataset.append((tokens, label, mask))
                    elif len(line) == 4:  # For dbqa input.
                        qid = int(line[columns["qid"]])
                        label = int(line[columns["label"]])
                        text_a, text_b = line[columns["text_a"]], line[
                            columns["text_b"]]

                        tokens_a = [
                            vocab.get(t) for t in tokenizer.tokenize(text_a)
                        ]
                        tokens_a = [CLS_ID] + tokens_a + [SEP_ID]
                        tokens_b = [
                            vocab.get(t) for t in tokenizer.tokenize(text_b)
                        ]
                        tokens_b = tokens_b + [SEP_ID]

                        tokens = tokens_a + tokens_b
                        mask = [1] * len(tokens_a) + [2] * len(tokens_b)

                        if len(tokens) > args.seq_length:
                            tokens = tokens[:args.seq_length]
                            mask = mask[:args.seq_length]
                        while len(tokens) < args.seq_length:
                            tokens.append(0)
                            mask.append(0)
                        dataset.append((tokens, label, mask, qid))
                    else:
                        pass

                except:
                    pass
        return dataset

    # Evaluation function.
    def evaluate(args, is_test):
        if is_test:
            dataset = read_dataset(args.test_path)
        else:
            dataset = read_dataset(args.dev_path)

        input_ids = torch.LongTensor([sample[0] for sample in dataset])
        label_ids = torch.LongTensor([sample[1] for sample in dataset])
        mask_ids = torch.LongTensor([sample[2] for sample in dataset])

        batch_size = args.batch_size
        instances_num = input_ids.size()[0]
        if is_test:
            print("The number of evaluation instances: ", instances_num)

        correct = 0
        # Confusion matrix.
        confusion = torch.zeros(args.labels_num,
                                args.labels_num,
                                dtype=torch.long)

        model.eval()

        if not args.mean_reciprocal_rank:
            for i, (input_ids_batch, label_ids_batch,
                    mask_ids_batch) in enumerate(
                        batch_loader(batch_size, input_ids, label_ids,
                                     mask_ids)):
                input_ids_batch = input_ids_batch.to(device)
                label_ids_batch = label_ids_batch.to(device)
                mask_ids_batch = mask_ids_batch.to(device)
                with torch.no_grad():
                    loss, logits = model(input_ids_batch, label_ids_batch,
                                         mask_ids_batch)
                logits = nn.Softmax(dim=1)(logits)
                pred = torch.argmax(logits, dim=1)
                gold = label_ids_batch
                for j in range(pred.size()[0]):
                    confusion[pred[j], gold[j]] += 1
                correct += torch.sum(pred == gold).item()

            if is_test:
                print("Confusion matrix:")
                print(confusion)
                print("Report precision, recall, and f1:")
            for i in range(confusion.size()[0]):
                p = confusion[i, i].item() / confusion[i, :].sum().item()
                r = confusion[i, i].item() / confusion[:, i].sum().item()
                f1 = 2 * p * r / (p + r)
                if is_test:
                    print("Label {}: {:.3f}, {:.3f}, {:.3f}".format(
                        i, p, r, f1))
            print("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(
                correct / len(dataset), correct, len(dataset)))
            return correct / len(dataset)
        else:
            for i, (input_ids_batch, label_ids_batch,
                    mask_ids_batch) in enumerate(
                        batch_loader(batch_size, input_ids, label_ids,
                                     mask_ids)):
                input_ids_batch = input_ids_batch.to(device)
                label_ids_batch = label_ids_batch.to(device)
                mask_ids_batch = mask_ids_batch.to(device)
                with torch.no_grad():
                    loss, logits = model(input_ids_batch, label_ids_batch,
                                         mask_ids_batch)
                logits = nn.Softmax(dim=1)(logits)
                if i == 0:
                    logits_all = logits
                if i >= 1:
                    logits_all = torch.cat((logits_all, logits), 0)

            order = -1
            gold = []
            for i in range(len(dataset)):
                qid = dataset[i][3]
                label = dataset[i][1]
                if qid == order:
                    j += 1
                    if label == 1:
                        gold.append((qid, j))
                else:
                    order = qid
                    j = 0
                    if label == 1:
                        gold.append((qid, j))

            label_order = []
            order = -1
            for i in range(len(gold)):
                if gold[i][0] == order:
                    templist.append(gold[i][1])
                elif gold[i][0] != order:
                    order = gold[i][0]
                    if i > 0:
                        label_order.append(templist)
                    templist = []
                    templist.append(gold[i][1])
            label_order.append(templist)

            order = -1
            score_list = []
            for i in range(len(logits_all)):
                score = float(logits_all[i][1])
                qid = int(dataset[i][3])
                if qid == order:
                    templist.append(score)
                else:
                    order = qid
                    if i > 0:
                        score_list.append(templist)
                    templist = []
                    templist.append(score)
            score_list.append(templist)

            rank = []
            pred = []
            for i in range(len(score_list)):
                if len(label_order[i]) == 1:
                    if label_order[i][0] < len(score_list[i]):
                        true_score = score_list[i][label_order[i][0]]
                        score_list[i].sort(reverse=True)
                        for j in range(len(score_list[i])):
                            if score_list[i][j] == true_score:
                                rank.append(1 / (j + 1))
                    else:
                        rank.append(0)

                else:
                    true_rank = len(score_list[i])
                    for k in range(len(label_order[i])):
                        if label_order[i][k] < len(score_list[i]):
                            true_score = score_list[i][label_order[i][k]]
                            temp = sorted(score_list[i], reverse=True)
                            for j in range(len(temp)):
                                if temp[j] == true_score:
                                    if j < true_rank:
                                        true_rank = j
                    if true_rank < len(score_list[i]):
                        rank.append(1 / (true_rank + 1))
                    else:
                        rank.append(0)
            MRR = sum(rank) / len(rank)
            print(MRR)
            return MRR

    # Training phase.
    print("Start training.")
    trainset = read_dataset(args.train_path)
    random.shuffle(trainset)
    instances_num = len(trainset)
    batch_size = args.batch_size

    input_ids = torch.LongTensor([example[0] for example in trainset])
    label_ids = torch.LongTensor([example[1] for example in trainset])
    mask_ids = torch.LongTensor([example[2] for example in trainset])

    train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    print("Batch size: ", batch_size)
    print("The number of training instances:", instances_num)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.0
    }]
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup,
                         t_total=train_steps)

    total_loss = 0.
    result = 0.0
    best_result = 0.0

    for epoch in range(1, args.epochs_num + 1):
        model.train()
        for i, (input_ids_batch, label_ids_batch, mask_ids_batch) in enumerate(
                batch_loader(batch_size, input_ids, label_ids, mask_ids)):
            model.zero_grad()

            input_ids_batch = input_ids_batch.to(device)
            label_ids_batch = label_ids_batch.to(device)
            mask_ids_batch = mask_ids_batch.to(device)

            loss, _ = model(input_ids_batch, label_ids_batch, mask_ids_batch)
            if torch.cuda.device_count() > 1:
                loss = torch.mean(loss)
            total_loss += loss.item()
            if (i + 1) % args.report_steps == 0:
                print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".
                      format(epoch, i + 1, total_loss / args.report_steps))
                total_loss = 0.
            loss.backward()
            optimizer.step()
        result = evaluate(args, False)
        if result > best_result:
            best_result = result
            save_model(model, args.output_model_path)
        else:
            continue

    # Evaluation phase.
    if args.test_path is not None:
        print("Test set evaluation.")
        model = load_model(model, args.output_model_path)
        evaluate(args, True)
Beispiel #6
0
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    # Path options.
    parser.add_argument("--pretrained_model_path",
                        default=None,
                        type=str,
                        help="Path of the pretrained model.")
    parser.add_argument("--output_model_path",
                        default="./models/QA_model.bin",
                        type=str,
                        help="Path of the output model.")
    parser.add_argument("--vocab_path",
                        default="./models/google_vocab.txt",
                        type=str,
                        help="Path of the vocabulary file.")
    parser.add_argument("--train_path",
                        type=str,
                        required=True,
                        help="Path of the trainset.")
    parser.add_argument("--dev_path",
                        type=str,
                        required=True,
                        help="Path of the devset.")
    parser.add_argument("--test_path", type=str, help="Path of the testset.")
    parser.add_argument("--config_path",
                        default="./models/google_config.json",
                        type=str,
                        help="Path of the config file.")

    # Model options.
    parser.add_argument("--batch_size",
                        type=int,
                        default=64,
                        help="Batch size.")
    parser.add_argument("--seq_length",
                        type=int,
                        default=100,
                        help="Sequence length.")
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help=
        "When splitting up a long document into chunks, how much stride to take between chunks."
    )
    parser.add_argument("--embedding",
                        choices=["bert", "word"],
                        default="bert",
                        help="Emebdding type.")
    parser.add_argument("--encoder", choices=["bert", "lstm", "gru", \
                                                   "cnn", "gatedcnn", "attn", \
                                                   "rcnn", "crnn", "gpt"], \
                                                   default="bert", help="Encoder type.")
    parser.add_argument("--bidirectional",
                        action="store_true",
                        help="Specific to recurrent model.")

    # Subword options.
    parser.add_argument("--subword_type",
                        choices=["none", "char"],
                        default="none",
                        help="Subword feature type.")
    parser.add_argument("--sub_vocab_path",
                        type=str,
                        default="models/sub_vocab.txt",
                        help="Path of the subword vocabulary file.")
    parser.add_argument("--subencoder",
                        choices=["avg", "lstm", "gru", "cnn"],
                        default="avg",
                        help="Subencoder type.")
    parser.add_argument("--sub_layers_num",
                        type=int,
                        default=2,
                        help="The number of subencoder layers.")

    # Tokenizer options.
    parser.add_argument(
        "--tokenizer",
        choices=["bert", "char", "space"],
        default="char",
        help="Specify the tokenizer."
        "Original Google BERT uses bert tokenizer on Chinese corpus."
        "Char tokenizer segments sentences into characters."
        "Space tokenizer segments sentences into words according to space.")

    # Optimizer options.
    parser.add_argument("--learning_rate",
                        type=float,
                        default=3e-5,
                        help="Learning rate.")
    parser.add_argument("--warmup",
                        type=float,
                        default=0.1,
                        help="Warm up value.")

    # Training options.
    parser.add_argument("--dropout", type=float, default=0.5, help="Dropout.")
    parser.add_argument("--epochs_num",
                        type=int,
                        default=3,
                        help="Number of epochs.")
    parser.add_argument("--report_steps",
                        type=int,
                        default=100,
                        help="Specific steps to print prompt.")
    parser.add_argument("--seed", type=int, default=7, help="Random seed.")

    args = parser.parse_args()

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    set_seed(args.seed)

    # Load vocabulary.
    vocab = Vocab()
    vocab.load(args.vocab_path)
    args.vocab = vocab

    args.target = "bert"
    bert_model = build_model(args)
    # Load or initialize parameters.
    if args.pretrained_model_path is not None:
        # Initialize with pretrained model.
        bert_model.load_state_dict(torch.load(args.pretrained_model_path),
                                   strict=False)
    else:
        # Initialize with normal distribution.
        for n, p in list(bert_model.named_parameters()):
            if 'gamma' not in n and 'beta' not in n:
                p.data.normal_(0, 0.02)

    # Build QA model.
    model = BertQuestionAnswering(args, bert_model)

    # For simplicity, we use DataParallel wrapper to use multiple GPUs.
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if torch.cuda.device_count() > 1:
        print("{} GPUs are available. Let's use them.".format(
            torch.cuda.device_count()))
        model = nn.DataParallel(model)

    model = model.to(device)

    # Dataset loader.
    def batch_loader(batch_size, input_ids, mask_ids, start_positions,
                     end_positions):
        instances_num = input_ids.size()[0]
        for i in range(instances_num // batch_size):
            input_ids_batch = input_ids[i * batch_size:(i + 1) * batch_size, :]
            mask_ids_batch = mask_ids[i * batch_size:(i + 1) * batch_size, :]
            start_positions_batch = start_positions[i * batch_size:(i + 1) *
                                                    batch_size]
            end_positions_batch = end_positions[i * batch_size:(i + 1) *
                                                batch_size]
            yield input_ids_batch, mask_ids_batch, start_positions_batch, end_positions_batch
        if instances_num > instances_num // batch_size * batch_size:
            input_ids_batch = input_ids[instances_num // batch_size *
                                        batch_size:, :]
            mask_ids_batch = mask_ids[instances_num // batch_size *
                                      batch_size:, :]
            start_positions_batch = start_positions[instances_num //
                                                    batch_size * batch_size:]
            end_positions_batch = end_positions[instances_num // batch_size *
                                                batch_size:]
            yield input_ids_batch, mask_ids_batch, start_positions_batch, end_positions_batch

    # Build tokenizer.
    tokenizer = globals()[args.tokenizer.capitalize() + "Tokenizer"](args)

    # Read examples.
    def read_examples(path):
        examples = []
        with open(path, 'r', encoding='utf-8') as fp:
            all_dict = json.loads(fp.read())
            v1 = all_dict["data"]
            for i in range(len(v1)):
                data_dict = v1[i]
                v2 = data_dict["paragraphs"]

                for j in range(len(v2)):
                    para_dict = v2[j]
                    context = para_dict["context"]
                    v3 = para_dict["qas"]

                    for m in range(len(v3)):
                        qas_dict = v3[m]
                        question = qas_dict["question"]
                        question_id = qas_dict["id"]
                        v4 = qas_dict["answers"]

                        answers = []
                        start_positions = []
                        end_positions = []

                        for n in range(len(v4)):
                            ans_dict = v4[n]
                            answer = ans_dict["text"]
                            start_position = ans_dict["answer_start"]
                            end_position = start_position + len(answer)

                            answers.append(answer)
                            start_positions.append(start_position)
                            end_positions.append(end_position)

                        examples.append(
                            (context, question, question_id, start_positions,
                             end_positions, answers))

        return examples

    def convert_examples_to_dataset(examples, args):
        dataset = []
        print("The number of questions in the dataset", len(examples))
        for i in range(len(examples)):
            context = examples[i][0]
            question = examples[i][1]
            q_len = len(question)
            question_id = examples[i][2]

            start_positions_true = examples[i][3][0]  #待修改
            end_positions_true = examples[i][4][0]

            answers = examples[i][5]
            max_context_length = args.seq_length - q_len - 3
            # divide the context to some spans
            _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
                "DocSpan", ["start", "length"])
            doc_spans = []
            start_offset = 0
            while start_offset < len(context):
                length = len(context) - start_offset
                if length > max_context_length:
                    length = max_context_length
                doc_spans.append(_DocSpan(start=start_offset, length=length))
                if start_offset + length == len(context):
                    break
                start_offset += min(length, args.doc_stride)

            for (doc_span_index, doc_span) in enumerate(doc_spans):
                doc_span_start = doc_span.start
                span_context = context[doc_span_start:doc_span_start +
                                       doc_span.length]
                # convert the start or end position to real position in tokens
                start_positions = start_positions_true - doc_span_start + q_len + 2
                end_positions = end_positions_true - doc_span_start + q_len + 2
                # the answers of some question are not in the doc_span, we ignore them.
                if start_positions < q_len + 2 or start_positions > doc_span.length + q_len + 2 or end_positions < q_len + 2 or end_positions > doc_span.length + q_len + 2:
                    continue

                tokens_a = [vocab.get(t) for t in tokenizer.tokenize(question)]
                tokens_a = [CLS_ID] + tokens_a + [SEP_ID]
                tokens_b = [
                    vocab.get(t) for t in tokenizer.tokenize(span_context)
                ]
                tokens_b = tokens_b + [SEP_ID]
                tokens = tokens_a + tokens_b
                mask = [1] * len(tokens_a) + [2] * len(tokens_b)

                while len(tokens) < args.seq_length:
                    tokens.append(0)
                    mask.append(0)

                dataset.append(
                    (tokens, mask, start_positions, end_positions, answers,
                     question_id, q_len, doc_span_index, doc_span_start))
        return dataset

    # Evaluation function.
    def evaluate(args, is_test):
        # some calculation functions
        def mixed_segmentation(in_str, rm_punc=False):
            in_str = str(in_str).lower().strip()
            segs_out = []
            temp_str = ""
            sp_char = [
                '-', ':', '_', '*', '^', '/', '\\', '~', '`', '+', '=', ',',
                '。', ':', '?', '!', '“', '”', ';', '’', '《', '》', '……', '·',
                '、', '「', '」', '(', ')', '-', '~', '『', '』'
            ]
            for char in in_str:
                if rm_punc and char in sp_char:
                    continue
                if re.search(r'[\u4e00-\u9fa5]', char) or char in sp_char:
                    if temp_str != "":
                        ss = nltk.word_tokenize(temp_str)
                        segs_out.extend(ss)
                        temp_str = ""
                    segs_out.append(char)
                else:
                    temp_str += char

            #handling last part
            if temp_str != "":
                ss = nltk.word_tokenize(temp_str)
                segs_out.extend(ss)

            return segs_out

        # remove punctuation
        def remove_punctuation(in_str):
            in_str = str(in_str).lower().strip()
            sp_char = [
                '-', ':', '_', '*', '^', '/', '\\', '~', '`', '+', '=', ',',
                '。', ':', '?', '!', '“', '”', ';', '’', '《', '》', '……', '·',
                '、', '「', '」', '(', ')', '-', '~', '『', '』'
            ]
            out_segs = []
            for char in in_str:
                if char in sp_char:
                    continue
                else:
                    out_segs.append(char)
            return ''.join(out_segs)

        # find longest common string
        def find_lcs(s1, s2):
            m = [[0 for i in range(len(s2) + 1)] for j in range(len(s1) + 1)]
            mmax = 0
            p = 0
            for i in range(len(s1)):
                for j in range(len(s2)):
                    if s1[i] == s2[j]:
                        m[i + 1][j + 1] = m[i][j] + 1
                        if m[i + 1][j + 1] > mmax:
                            mmax = m[i + 1][j + 1]
                            p = i + 1
            return s1[p - mmax:p], mmax

        def calc_f1_score(answers, prediction):
            f1_scores = []
            for i in range(len(answers)):
                ans = answers[i]
                ans_segs = mixed_segmentation(ans, rm_punc=True)
                prediction_segs = mixed_segmentation(prediction, rm_punc=True)
                lcs, lcs_len = find_lcs(ans_segs, prediction_segs)
                if lcs_len == 0:
                    f1_scores.append(0)
                else:
                    precision = 1.0 * lcs_len / len(prediction_segs)
                    recall = 1.0 * lcs_len / len(ans_segs)
                    f1 = (2 * precision * recall) / (precision + recall)
                    f1_scores.append(f1)
            return max(f1_scores)

        def calc_em_score(answers, prediction):
            em = 0
            for i in range(len(answers)):
                ans = answers[i]
                ans_ = remove_punctuation(ans)
                prediction_ = remove_punctuation(prediction)
                if ans_ == prediction_:
                    em = 1
                    break
            return em

        def is_max_score(score_list):
            score_max = -100
            index_max = 0
            best_start_prediction = 0
            best_end_prediction = 0
            for i in range(len(score_list)):
                if score_max <= score_list[i][3]:
                    score_max = score_list[i][3]
                    index_max = score_list[i][0]
                    best_start_prediction = score_list[i][1]
                    best_end_prediction = score_list[i][2]
            return index_max, best_start_prediction, best_end_prediction

        if is_test:
            examples = read_examples(args.test_path)
            dataset = convert_examples_to_dataset(examples, args)

        else:
            examples = read_examples(args.dev_path)
            dataset = convert_examples_to_dataset(examples, args)

        input_ids = torch.LongTensor([sample[0] for sample in dataset])
        mask_ids = torch.LongTensor([sample[1] for sample in dataset])
        start_positions = torch.LongTensor([sample[2] for sample in dataset])
        end_positions = torch.LongTensor([sample[3] for sample in dataset])

        batch_size = args.batch_size
        instances_num = input_ids.size()[0]

        if is_test:
            print("The number of evaluation instances: ", instances_num)
        model.eval()
        start_logits_all = []
        end_logits_all = []
        start_pred_all = []
        end_pred_all = []
        for i, (input_ids_batch, mask_ids_batch, start_positions_batch,
                end_positions_batch) in enumerate(
                    batch_loader(batch_size, input_ids, mask_ids,
                                 start_positions, end_positions)):
            model.zero_grad()
            input_ids_batch = input_ids_batch.to(device)
            mask_ids_batch = mask_ids_batch.to(device)
            start_positions_batch = start_positions_batch.to(device)
            end_positions_batch = end_positions_batch.to(device)

            with torch.no_grad():
                loss, start_logits, end_logits = model(input_ids_batch,
                                                       mask_ids_batch,
                                                       start_positions_batch,
                                                       end_positions_batch)

            start_logits = nn.Softmax(dim=1)(start_logits)
            end_logits = nn.Softmax(dim=1)(end_logits)

            start_pred = torch.argmax(start_logits, dim=1)
            end_pred = torch.argmax(end_logits, dim=1)

            start_pred = start_pred.cpu().numpy().tolist()
            end_pred = end_pred.cpu().numpy().tolist()

            start_logits = start_logits.cpu().numpy().tolist()
            end_logits = end_logits.cpu().numpy().tolist()

            start_logits_max = []
            end_logits_max = []
            for j in range(len(start_pred)):
                start_logits_max.append(start_logits[j][start_pred[j]])
                end_logits_max.append(end_logits[j][end_pred[j]])

            start_logits_all += start_logits_max
            end_logits_all += end_logits_max
            start_pred_all += start_pred
            end_pred_all += end_pred

        assert len(start_pred_all) == len(dataset)
        assert len(start_logits_all) == len(dataset)

        # couster by question id and chose the best answer in doc_spans
        order = -1
        pred_list = []
        templist = []
        for i in range(len(dataset)):
            qid = dataset[i][5]
            q_len = dataset[i][6]
            span_index = dataset[i][7]
            doc_span_start = dataset[i][8]

            score1 = float(start_logits_all[i])
            score2 = float(end_logits_all[i])
            score = (score1 + score2) / 2

            pre_start_pred = start_pred_all[i] + doc_span_start - q_len - 2
            pre_end_pred = end_pred_all[i] + doc_span_start - q_len - 2

            if qid == order:
                templist.append(
                    (span_index, pre_start_pred, pre_end_pred, score))
            else:
                order = qid
                if i > 0:
                    span_index_max, best_start_prediction, best_end_prediction = is_max_score(
                        templist)
                    pred_list.append((span_index_max, best_start_prediction,
                                      best_end_prediction))
                templist = []
                templist.append(
                    (span_index, pre_start_pred, pre_end_pred, score))
        span_index_max, best_start_prediction, best_end_prediction = is_max_score(
            templist)
        pred_list.append(
            (span_index_max, best_start_prediction, best_end_prediction))

        assert len(pred_list) == len(examples)

        #strat pred
        f1 = 0
        em = 0
        total_count = len(examples)
        skip_count = 0
        for i in range(len(examples)):
            question_id = examples[i][2]
            answers = examples[i][5]
            span_index = pred_list[i][0]
            start_prediction = pred_list[i][1]
            end_prediction = pred_list[i][2]

            #error prediction
            if end_prediction <= start_prediction:
                skip_count += 1
                continue

            prediction = examples[i][0][start_prediction:end_prediction]

            f1 += calc_f1_score(answers, prediction)
            em += calc_em_score(answers, prediction)

        f1_score = 100.0 * f1 / total_count
        em_score = 100.0 * em / total_count
        avg = (f1_score + em_score) * 0.5
        print("Avg: {:.4f},F1:{:.4f},EM:{:.4f},Total:{},Skip:{}".format(
            avg, f1_score, em_score, total_count, skip_count))
        return avg

    # Training phase
    print("Start training.")
    batch_size = args.batch_size
    print("Batch size: ", batch_size)
    examples = read_examples(args.train_path)
    trainset = convert_examples_to_dataset(examples, args)
    random.shuffle(trainset)
    instances_num = len(trainset)

    input_ids = torch.LongTensor([sample[0] for sample in trainset])
    mask_ids = torch.LongTensor([sample[1] for sample in trainset])
    start_positions = torch.LongTensor([sample[2] for sample in trainset])
    end_positions = torch.LongTensor([sample[3] for sample in trainset])

    train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    print("The number of training instances:", instances_num)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.0
    }]
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup,
                         t_total=train_steps)

    total_loss = 0.
    result = 0.0
    best_result = 0.0

    for epoch in range(1, args.epochs_num + 1):
        model.train()

        for i, (input_ids_batch, mask_ids_batch, start_positions_batch,
                end_positions_batch) in enumerate(
                    batch_loader(batch_size, input_ids, mask_ids,
                                 start_positions, end_positions)):
            model.zero_grad()
            input_ids_batch = input_ids_batch.to(device)
            mask_ids_batch = mask_ids_batch.to(device)
            start_positions_batch = start_positions_batch.to(device)
            end_positions_batch = end_positions_batch.to(device)

            loss, _, _ = model(input_ids_batch, mask_ids_batch,
                               start_positions_batch, end_positions_batch)
            if torch.cuda.device_count() > 1:
                loss = torch.mean(loss)
            total_loss += loss.item()
            if (i + 1) % args.report_steps == 0:
                print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".
                      format(epoch, i + 1, total_loss / args.report_steps))
                total_loss = 0.
            loss.backward()
            optimizer.step()
        result = evaluate(args, False)
        if result > best_result:
            best_result = result
            save_model(model, args.output_model_path)
        else:
            continue

    # Evaluation phase.
    if args.test_path is not None:
        print("Test set evaluation.")
        model = load_model(model, args.output_model_path)
        evaluate(args, True)
Beispiel #7
0
        "Char tokenizer segments sentences into characters."
        "Word tokenizer supports online word segmentation based on jieba segmentor."
        "Space tokenizer segments sentences into words according to space.")

    args = parser.parse_args()

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    # Load Vocabulary
    vocab = Vocab()
    vocab.load(args.vocab_path)
    args.vocab = vocab

    # Build bert model.
    model = build_model(args)

    # Load pretrained model.
    pretrained_model_dict = torch.load(args.pretrained_model_path)
    model.load_state_dict(pretrained_model_dict, strict=False)

    model = GenerateModel(args, model)

    # Build tokenizer.
    tokenizer = globals()[args.tokenizer.capitalize() + "Tokenizer"](args)

    with open(args.input_path, mode="r", encoding="utf-8") as f:
        line = f.readline().strip()
        src = [vocab.get(t) for t in tokenizer.tokenize(line.strip())]
        seg = [1] * len(src)
        start_length = len(src)
Beispiel #8
0
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    # Path options.
    parser.add_argument("--pretrained_model_path",
                        default=None,
                        type=str,
                        help="Path of the pretrained model.")
    parser.add_argument("--output_model_path",
                        default="./models/tagger_model.bin",
                        type=str,
                        help="Path of the output model.")
    parser.add_argument("--vocab_path",
                        default="./models/google_vocab.txt",
                        type=str,
                        help="Path of the vocabulary file.")
    parser.add_argument("--train_path",
                        type=str,
                        required=True,
                        help="Path of the trainset.")
    parser.add_argument("--dev_path",
                        type=str,
                        required=True,
                        help="Path of the devset.")
    parser.add_argument("--test_path",
                        type=str,
                        required=True,
                        help="Path of the testset.")
    parser.add_argument("--config_path",
                        default="./models/google_config.json",
                        type=str,
                        help="Path of the config file.")

    # Model options
    parser.add_argument("--batch_size",
                        type=int,
                        default=32,
                        help="Batch_size.")
    parser.add_argument("--seq_length",
                        default=128,
                        type=int,
                        help="Sequence length.")
    parser.add_argument("--encoder", choices=["bert", "lstm", "gru", \
                                                   "cnn", "gatedcnn", "attn", \
                                                   "rcnn", "crnn", "gpt", "bilstm"], \
                                                   default="bert", help="Encoder type.")
    parser.add_argument("--bidirectional",
                        action="store_true",
                        help="Specific to recurrent model.")

    # Subword options.
    parser.add_argument("--subword_type",
                        choices=["none", "char"],
                        default="none",
                        help="Subword feature type.")
    parser.add_argument("--sub_vocab_path",
                        type=str,
                        default="models/sub_vocab.txt",
                        help="Path of the subword vocabulary file.")
    parser.add_argument("--subencoder",
                        choices=["avg", "lstm", "gru", "cnn"],
                        default="avg",
                        help="Subencoder type.")
    parser.add_argument("--sub_layers_num",
                        type=int,
                        default=2,
                        help="The number of subencoder layers.")

    # Optimizer options.
    parser.add_argument("--learning_rate",
                        type=float,
                        default=2e-5,
                        help="Learning rate.")
    parser.add_argument("--warmup",
                        type=float,
                        default=0.1,
                        help="Warm up value.")

    # Training options.
    parser.add_argument("--dropout", type=float, default=0.1, help="Dropout.")
    parser.add_argument("--epochs_num",
                        type=int,
                        default=3,
                        help="Number of epochs.")
    parser.add_argument("--report_steps",
                        type=int,
                        default=100,
                        help="Specific steps to print prompt.")
    parser.add_argument("--seed", type=int, default=7, help="Random seed.")

    args = parser.parse_args()

    # Load the hyperparameters of the config file.
    args = load_hyperparam(args)

    set_seed(args.seed)

    # Find tagging labels.
    labels_map = {"NULL": 0, "O": 1}  # ID for padding and non-entity.
    with open(args.train_path, mode="r", encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            if line_id == 0:
                continue
            line = line.strip().split()
            if len(line) != 2:
                continue
            if line[1] not in labels_map:
                labels_map[line[1]] = len(labels_map)

    print("Labels: ", labels_map)
    print("Label Num: ", len(labels_map))
    args.labels_num = len(labels_map)

    # Create the bad pairs
    args.bad_pairs = []
    args.good_pairs = []
    for key1, value1 in labels_map.items():
        key1 = key1.strip().split('-')
        if len(key1) < 1 or len(key1) > 2:
            print("Error label: ", key1)
            exit()
        for key2, value2 in labels_map.items():
            key2 = key2.strip().split('-')
            if len(key2) == 1:
                continue
            if len(key1) == 1 and len(key2) == 2:
                if key2[0] == 'I':
                    args.bad_pairs.append([value1, value2])
                continue
            # p(B-X -> I-Y) = 0
            if key1[1] != key2[1] and key1[0] == 'B' and key2[0] == 'I':
                args.bad_pairs.append([value1, value2])
            # p(I-X -> I-Y) = 0
            if key1[1] != key2[1] and key1[0] == 'I' and key2[0] == 'I':
                args.bad_pairs.append([value1, value2])
            # p(B-X -> I-X) = 10
            if key1[1] == key2[1] and key1[0] == 'B' and key2[0] == 'I':
                args.good_pairs.append([value1, value2])

    print("Bad pairs: ", args.bad_pairs)
    print("Good pairs: ", args.good_pairs)

    # Load vocabulary.
    vocab = Vocab()
    vocab.load(args.vocab_path)
    args.vocab = vocab

    # Build bert model.
    # A pseudo target is added.
    args.target = "bert"
    model = build_model(args)

    # Load or initialize parameters.
    if args.pretrained_model_path is not None:
        # Initialize with pretrained model.
        model.load_state_dict(torch.load(args.pretrained_model_path),
                              strict=False)
    else:
        # Initialize with normal distribution.
        for n, p in list(model.named_parameters()):
            if 'gamma' not in n and 'beta' not in n:
                p.data.normal_(0, 0.02)

    # Some other parameters
    args.lstm_hidden = args.hidden_size
    args.lstm_layers = 2
    args.lstm_dropout = 0.1
    if torch.cuda.is_available():
        args.use_cuda = True

    # Build sequence labeling model.
    model = CCKSTagger(args, model)

    # For simplicity, we use DataParallel wrapper to use multiple GPUs.
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if torch.cuda.device_count() > 1:
        print("{} GPUs are available. Let's use them.".format(
            torch.cuda.device_count()))
        model = nn.DataParallel(model)
        model = model.module

    model = model.to(device)

    # Datset loader.
    def batch_loader(batch_size, input_ids, label_ids, mask_ids):
        instances_num = input_ids.size()[0]
        for i in range(instances_num // batch_size):
            input_ids_batch = input_ids[i * batch_size:(i + 1) * batch_size, :]
            label_ids_batch = label_ids[i * batch_size:(i + 1) * batch_size, :]
            mask_ids_batch = mask_ids[i * batch_size:(i + 1) * batch_size, :]
            yield input_ids_batch, label_ids_batch, mask_ids_batch
        if instances_num > instances_num // batch_size * batch_size:
            input_ids_batch = input_ids[instances_num // batch_size *
                                        batch_size:, :]
            label_ids_batch = label_ids[instances_num // batch_size *
                                        batch_size:, :]
            mask_ids_batch = mask_ids[instances_num // batch_size *
                                      batch_size:, :]
            yield input_ids_batch, label_ids_batch, mask_ids_batch

    # Read dataset.
    def read_dataset(path):
        dataset = []
        with open(path, mode="r", encoding="utf-8") as f:
            tokens, labels = [], []
            for line_id, line in enumerate(f):
                if line_id == 0:
                    continue
                line = line.strip().split()
                if len(line) != 2:
                    if len(labels) == 0:
                        continue
                    assert len(tokens) == len(labels)
                    tokens = [vocab.get(t) for t in tokens]
                    labels = [labels_map[l] for l in labels]
                    mask = [1] * len(tokens)
                    if len(tokens) > args.seq_length:
                        tokens = tokens[:args.seq_length]
                        labels = labels[:args.seq_length]
                        mask = mask[:args.seq_length]
                    while len(tokens) < args.seq_length:
                        tokens.append(0)
                        labels.append(0)
                        mask.append(0)
                    dataset.append([tokens, labels, mask])

                    tokens, labels = [], []
                    continue
                tokens.append(line[0])
                labels.append(line[1])

        return dataset

    # Evaluation function.
    def evaluate(args, is_test):
        if is_test:
            dataset = read_dataset(args.test_path)
        else:
            dataset = read_dataset(args.dev_path)

        input_ids = torch.LongTensor([sample[0] for sample in dataset])
        label_ids = torch.LongTensor([sample[1] for sample in dataset])
        mask_ids = torch.LongTensor([sample[2] for sample in dataset])

        instances_num = input_ids.size(0)
        batch_size = args.batch_size

        if is_test:
            print("Batch size: ", batch_size)
            print("The number of test instances:", instances_num)

        correct = 0
        gold_entities_num = 0
        pred_entities_num = 0

        confusion = torch.zeros(len(labels_map),
                                len(labels_map),
                                dtype=torch.long)

        model.eval()

        for i, (input_ids_batch, label_ids_batch, mask_ids_batch) in enumerate(
                batch_loader(batch_size, input_ids, label_ids, mask_ids)):
            input_ids_batch = input_ids_batch.to(device)
            label_ids_batch = label_ids_batch.to(device)
            mask_ids_batch = mask_ids_batch.to(device)
            # loss, _, pred, gold = model(input_ids_batch, label_ids_batch, mask_ids_batch)
            feats = model(input_ids_batch, label_ids_batch, mask_ids_batch)
            path_score, best_path = model.crf(feats, mask_ids_batch.byte())
            pred = best_path.contiguous().view(-1)
            gold = label_ids_batch.contiguous().view(-1)
            """ if i == 0:
                print('pred', pred)
                print('gold', gold) """

            # Gold.
            for j in range(gold.size()[0]):
                if (j > 0 and gold[j - 1].item() <= 1
                        and gold[j].item() > 1) or (j == 0
                                                    and gold[j].item() > 1):
                    gold_entities_num += 1

            # Predict.
            for j in range(pred.size()[0]):
                if (j > 0 and pred[j - 1].item() <= 1 and pred[j].item() > 1
                        and gold[j].item() != 0) or (j == 0
                                                     and pred[j].item() > 1):
                    pred_entities_num += 1

            pred_entities_pos = []
            gold_entities_pos = []
            start, end = 0, 0

            # Correct.
            for j in range(gold.size()[0]):
                if (j > 0 and gold[j - 1].item() <= 1
                        and gold[j].item() > 1) or (j == 0
                                                    and gold[j].item() > 1):
                    start = j
                    for k in range(j, gold.size()[0]):
                        if gold[k].item() <= 1:
                            end = k - 1
                            break
                    else:
                        end = gold.size()[0] - 1
                    gold_entities_pos.append((start, end))

            # Predict.
            for j in range(pred.size()[0]):
                if (j > 0 and pred[j - 1].item() <= 1
                        and pred[j].item() > 1) or (j == 0
                                                    and pred[j].item() > 1):
                    start = j
                    for k in range(j, pred.size()[0]):
                        if pred[k].item() <= 1:
                            end = k - 1
                            break
                    else:
                        end = pred.size()[0] - 1
                    pred_entities_pos.append((start, end))

            for entity in pred_entities_pos:
                if entity not in gold_entities_pos:
                    continue
                for j in range(entity[0], entity[1] + 1):
                    if gold[j].item() != pred[j].item():
                        break
                else:
                    correct += 1

        print("Report precision, recall, and f1:")
        p = correct / pred_entities_num
        r = correct / gold_entities_num
        f1 = 2 * p * r / (p + r)
        print("{:.3f}, {:.3f}, {:.3f}".format(p, r, f1))

        return f1

    # Training phase.
    print("Start training.")
    instances = read_dataset(args.train_path)

    input_ids = torch.LongTensor([ins[0] for ins in instances])
    label_ids = torch.LongTensor([ins[1] for ins in instances])
    mask_ids = torch.LongTensor([ins[2] for ins in instances])

    instances_num = input_ids.size(0)
    batch_size = args.batch_size
    train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    print("Batch size: ", batch_size)
    print("The number of training instances:", instances_num)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.0
    }]
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup,
                         t_total=train_steps)

    total_loss = 0.
    f1 = 0.0
    best_f1 = 0.0

    for epoch in range(1, args.epochs_num + 1):
        model.train()
        for i, (input_ids_batch, label_ids_batch, mask_ids_batch) in enumerate(
                batch_loader(batch_size, input_ids, label_ids, mask_ids)):
            model.zero_grad()

            input_ids_batch = input_ids_batch.to(device)
            label_ids_batch = label_ids_batch.to(device)
            mask_ids_batch = mask_ids_batch.to(device)
            """ loss, _, _, _ = model(input_ids_batch, label_ids_batch, mask_ids_batch)
            if torch.cuda.device_count() > 1:
                loss = torch.mean(loss)
            total_loss += loss.item()
            if (i + 1) % args.report_steps == 0:
                print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i+1, total_loss / args.report_steps))
                total_loss = 0. """
            """ print("mask1:", mask_ids_batch)
            print("label1:", label_ids_batch) """
            feats = model(input_ids_batch, label_ids_batch, mask_ids_batch)
            """ print("feats:", feats) """
            loss = model.loss(feats, mask_ids_batch, label_ids_batch)
            if (i + 1) % args.report_steps == 0:
                print("Epoch id: {}, Training steps: {}, Loss: {:.3f}".format(
                    epoch, i + 1, loss))

            loss.backward()
            optimizer.step()

        f1 = evaluate(args, False)
        if f1 > best_f1:
            best_f1 = f1
            save_model(model, args.output_model_path)
        #else:
        #    break

    # Evaluation phase.
    print("Start evaluation.")
    """ if torch.cuda.device_count() > 1:
        model.module.load_state_dict(torch.load(args.output_model_path))
    else:
        model.load_state_dict(torch.load(args.output_model_path)) """
    model.load_state_dict(torch.load(args.output_model_path))

    evaluate(args, True)
    """
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    # Path options.
    parser.add_argument("--pretrained_model_path",
                        default=None,
                        type=str,
                        help="Path of the pretrained model.")
    parser.add_argument("--output_model_path",
                        default="./models/classifier_model.bin",
                        type=str,
                        help="Path of the output model.")
    parser.add_argument("--vocab_path",
                        default="./models/google_vocab.txt",
                        type=str,
                        help="Path of the vocabulary file.")
    parser.add_argument("--train_path",
                        type=str,
                        required=True,
                        help="Path of the trainset.")
    parser.add_argument("--dev_path",
                        type=str,
                        required=True,
                        help="Path of the devset.")
    parser.add_argument("--test_path",
                        type=str,
                        required=True,
                        help="Path of the testset.")
    parser.add_argument("--config_path",
                        default="./models/google_config.json",
                        type=str,
                        help="Path of the config file.")

    # Model options.
    parser.add_argument("--batch_size",
                        type=int,
                        default=32,
                        help="Batch size.")
    parser.add_argument("--seq_length",
                        type=int,
                        default=256,
                        help="Sequence length.")
    parser.add_argument("--encoder", choices=["bert", "lstm", "gru", \
                                                   "cnn", "gatedcnn", "attn", \
                                                   "rcnn", "crnn", "gpt", "bilstm"], \
                                                   default="bert", help="Encoder type.")
    parser.add_argument("--bidirectional",
                        action="store_true",
                        help="Specific to recurrent model.")
    parser.add_argument("--pooling",
                        choices=["mean", "max", "first", "last"],
                        default="first",
                        help="Pooling type.")

    # Subword options.
    parser.add_argument("--subword_type",
                        choices=["none", "char"],
                        default="none",
                        help="Subword feature type.")
    parser.add_argument("--sub_vocab_path",
                        type=str,
                        default="models/sub_vocab.txt",
                        help="Path of the subword vocabulary file.")
    parser.add_argument("--subencoder",
                        choices=["avg", "lstm", "gru", "cnn"],
                        default="avg",
                        help="Subencoder type.")
    parser.add_argument("--sub_layers_num",
                        type=int,
                        default=2,
                        help="The number of subencoder layers.")

    # Tokenizer options.
    parser.add_argument(
        "--tokenizer",
        choices=["bert", "char", "word", "space"],
        default="bert",
        help="Specify the tokenizer."
        "Original Google BERT uses bert tokenizer on Chinese corpus."
        "Char tokenizer segments sentences into characters."
        "Word tokenizer supports online word segmentation based on jieba segmentor."
        "Space tokenizer segments sentences into words according to space.")

    # Optimizer options.
    parser.add_argument("--learning_rate",
                        type=float,
                        default=2e-5,
                        help="Learning rate.")
    parser.add_argument("--warmup",
                        type=float,
                        default=0.1,
                        help="Warm up value.")

    # Training options.
    parser.add_argument("--dropout", type=float, default=0.5, help="Dropout.")
    parser.add_argument("--epochs_num",
                        type=int,
                        default=5,
                        help="Number of epochs.")
    parser.add_argument("--report_steps",
                        type=int,
                        default=100,
                        help="Specific steps to print prompt.")
    parser.add_argument("--seed", type=int, default=7, help="Random seed.")

    # Evaluation options.
    parser.add_argument("--mean_reciprocal_rank",
                        action="store_true",
                        help="Evaluation metrics for DBQA dataset.")

    # kg
    parser.add_argument("--kg_name", required=True, help="KG name or path")
    parser.add_argument("--workers_num",
                        type=int,
                        default=1,
                        help="number of process for loading dataset")
    parser.add_argument("--no_vm",
                        action="store_true",
                        help="Disable the visible_matrix")

    args = parser.parse_args()

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    set_seed(args.seed)

    # Count the number of labels.
    labels_set = set()
    columns = {}
    with open(args.train_path, mode="r", encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            try:
                line = line.strip().split("\t")
                if line_id == 0:
                    for i, column_name in enumerate(line):
                        columns[column_name] = i
                    continue
                label = int(line[columns["label"]])
                labels_set.add(label)
            except:
                pass
    args.labels_num = len(labels_set)

    # Load vocabulary.
    vocab = Vocab()
    vocab.load(args.vocab_path)
    args.vocab = vocab

    # Build bert model.
    # A pseudo target is added.
    args.target = "bert"
    model = build_model(args)

    # Load or initialize parameters.
    if args.pretrained_model_path is not None:
        # Initialize with pretrained model.
        model.load_state_dict(torch.load(args.pretrained_model_path),
                              strict=False)
    else:
        # Initialize with normal distribution.
        for n, p in list(model.named_parameters()):
            if 'gamma' not in n and 'beta' not in n:
                p.data.normal_(0, 0.02)

    # Build classification model.
    model = BertClassifier(args, model)

    # For simplicity, we use DataParallel wrapper to use multiple GPUs.
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if torch.cuda.device_count() > 1:
        print("{} GPUs are available. Let's use them.".format(
            torch.cuda.device_count()))
        model = nn.DataParallel(model)

    model = model.to(device)

    # Datset loader.
    def batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vms):
        instances_num = input_ids.size()[0]
        for i in range(instances_num // batch_size):
            input_ids_batch = input_ids[i * batch_size:(i + 1) * batch_size, :]
            label_ids_batch = label_ids[i * batch_size:(i + 1) * batch_size]
            mask_ids_batch = mask_ids[i * batch_size:(i + 1) * batch_size, :]
            pos_ids_batch = pos_ids[i * batch_size:(i + 1) * batch_size, :]
            vms_batch = vms[i * batch_size:(i + 1) * batch_size]
            yield input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch
        if instances_num > instances_num // batch_size * batch_size:
            input_ids_batch = input_ids[instances_num // batch_size *
                                        batch_size:, :]
            label_ids_batch = label_ids[instances_num // batch_size *
                                        batch_size:]
            mask_ids_batch = mask_ids[instances_num // batch_size *
                                      batch_size:, :]
            pos_ids_batch = pos_ids[instances_num // batch_size *
                                    batch_size:, :]
            vms_batch = vms[instances_num // batch_size * batch_size:]

            yield input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch

    # Build knowledge graph.
    if args.kg_name == 'none':
        spo_files = []
    else:
        spo_files = [args.kg_name]
    kg = KnowledgeGraph(spo_files=spo_files, predicate=True)

    def read_dataset(path, workers_num=1):

        print("Loading sentences from {}".format(path))
        sentences = []
        with open(path, mode='r', encoding="utf-8") as f:
            for line_id, line in enumerate(f):
                if line_id == 0:
                    continue
                sentences.append(line)
        sentence_num = len(sentences)

        print(
            "There are {} sentence in total. We use {} processes to inject knowledge into sentences."
            .format(sentence_num, workers_num))

        if workers_num > 1:
            params = []
            sentence_per_block = int(sentence_num / workers_num) + 1
            for i in range(workers_num):
                params.append((i, sentences[i * sentence_per_block:(i + 1) *
                                            sentence_per_block], columns, kg,
                               vocab, args))
            pool = Pool(workers_num)
            res = pool.map(add_knowledge_worker, params)
            pool.close()
            pool.join()
            dataset = [sample for block in res for sample in block]
        else:
            params = (0, sentences, columns, kg, vocab, args)
            dataset = add_knowledge_worker(params)

        return dataset

    # Evaluation function.
    def evaluate(args, is_test, metrics='Acc'):
        if is_test:
            dataset = read_dataset(args.test_path,
                                   workers_num=args.workers_num)
        else:
            dataset = read_dataset(args.dev_path, workers_num=args.workers_num)

        input_ids = torch.LongTensor([sample[0] for sample in dataset])
        label_ids = torch.LongTensor([sample[1] for sample in dataset])
        mask_ids = torch.LongTensor([sample[2] for sample in dataset])
        pos_ids = torch.LongTensor([example[3] for example in dataset])
        vms = [example[4] for example in dataset]

        batch_size = args.batch_size
        instances_num = input_ids.size()[0]
        if is_test:
            print("The number of evaluation instances: ", instances_num)

        correct = 0
        # Confusion matrix.
        confusion = torch.zeros(args.labels_num,
                                args.labels_num,
                                dtype=torch.long)

        model.eval()

        if not args.mean_reciprocal_rank:
            for i, (input_ids_batch, label_ids_batch, mask_ids_batch,
                    pos_ids_batch, vms_batch) in enumerate(
                        batch_loader(batch_size, input_ids, label_ids,
                                     mask_ids, pos_ids, vms)):

                # vms_batch = vms_batch.long()
                vms_batch = torch.LongTensor(vms_batch)

                input_ids_batch = input_ids_batch.to(device)
                label_ids_batch = label_ids_batch.to(device)
                mask_ids_batch = mask_ids_batch.to(device)
                pos_ids_batch = pos_ids_batch.to(device)
                vms_batch = vms_batch.to(device)

                with torch.no_grad():
                    try:
                        loss, logits = model(input_ids_batch, label_ids_batch,
                                             mask_ids_batch, pos_ids_batch,
                                             vms_batch)
                    except:
                        print(input_ids_batch)
                        print(input_ids_batch.size())
                        print(vms_batch)
                        print(vms_batch.size())

                logits = nn.Softmax(dim=1)(logits)
                pred = torch.argmax(logits, dim=1)
                gold = label_ids_batch
                for j in range(pred.size()[0]):
                    confusion[pred[j], gold[j]] += 1
                correct += torch.sum(pred == gold).item()

            if is_test:
                print("Confusion matrix:")
                print(confusion)
                print("Report precision, recall, and f1:")

            # for i in range(confusion.size()[0]):
            #     p = confusion[i,i].item()/confusion[i,:].sum().item()
            #     r = confusion[i,i].item()/confusion[:,i].sum().item()
            #     f1 = 2*p*r / (p+r)
            #     if i == 1:
            #         label_1_f1 = f1
            #     print("Label {}: {:.3f}, {:.3f}, {:.3f}".format(i,p,r,f1))
            print("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(
                correct / len(dataset), correct, len(dataset)))
            if metrics == 'Acc':
                return correct / len(dataset)
            elif metrics == 'f1':
                return label_1_f1
            else:
                return correct / len(dataset)
        else:
            for i, (input_ids_batch, label_ids_batch, mask_ids_batch,
                    pos_ids_batch, vms_batch) in enumerate(
                        batch_loader(batch_size, input_ids, label_ids,
                                     mask_ids, pos_ids, vms)):

                vms_batch = torch.LongTensor(vms_batch)

                input_ids_batch = input_ids_batch.to(device)
                label_ids_batch = label_ids_batch.to(device)
                mask_ids_batch = mask_ids_batch.to(device)
                pos_ids_batch = pos_ids_batch.to(device)
                vms_batch = vms_batch.to(device)

                with torch.no_grad():
                    loss, logits = model(input_ids_batch, label_ids_batch,
                                         mask_ids_batch, pos_ids_batch,
                                         vms_batch)
                logits = nn.Softmax(dim=1)(logits)
                if i == 0:
                    logits_all = logits
                if i >= 1:
                    logits_all = torch.cat((logits_all, logits), 0)

            order = -1
            gold = []
            for i in range(len(dataset)):
                qid = dataset[i][-1]
                label = dataset[i][1]
                if qid == order:
                    j += 1
                    if label == 1:
                        gold.append((qid, j))
                else:
                    order = qid
                    j = 0
                    if label == 1:
                        gold.append((qid, j))

            label_order = []
            order = -1
            for i in range(len(gold)):
                if gold[i][0] == order:
                    templist.append(gold[i][1])
                elif gold[i][0] != order:
                    order = gold[i][0]
                    if i > 0:
                        label_order.append(templist)
                    templist = []
                    templist.append(gold[i][1])
            label_order.append(templist)

            order = -1
            score_list = []
            for i in range(len(logits_all)):
                score = float(logits_all[i][1])
                qid = int(dataset[i][-1])
                if qid == order:
                    templist.append(score)
                else:
                    order = qid
                    if i > 0:
                        score_list.append(templist)
                    templist = []
                    templist.append(score)
            score_list.append(templist)

            rank = []
            pred = []
            print(len(score_list))
            print(len(label_order))
            for i in range(len(score_list)):
                if len(label_order[i]) == 1:
                    if label_order[i][0] < len(score_list[i]):
                        true_score = score_list[i][label_order[i][0]]
                        score_list[i].sort(reverse=True)
                        for j in range(len(score_list[i])):
                            if score_list[i][j] == true_score:
                                rank.append(1 / (j + 1))
                    else:
                        rank.append(0)

                else:
                    true_rank = len(score_list[i])
                    for k in range(len(label_order[i])):
                        if label_order[i][k] < len(score_list[i]):
                            true_score = score_list[i][label_order[i][k]]
                            temp = sorted(score_list[i], reverse=True)
                            for j in range(len(temp)):
                                if temp[j] == true_score:
                                    if j < true_rank:
                                        true_rank = j
                    if true_rank < len(score_list[i]):
                        rank.append(1 / (true_rank + 1))
                    else:
                        rank.append(0)
            MRR = sum(rank) / len(rank)
            print("MRR", MRR)
            return MRR

    # Training phase.
    print("Start training.")
    trainset = read_dataset(args.train_path, workers_num=args.workers_num)

    print("Shuffling dataset")
    random.shuffle(trainset)
    instances_num = len(trainset)
    batch_size = args.batch_size

    print("Trans data to tensor.")
    print("input_ids")
    input_ids = torch.LongTensor([example[0] for example in trainset])

    print("label_ids")
    label_ids = torch.LongTensor([example[1] for example in trainset])

    print("mask_ids")
    mask_ids = torch.LongTensor([example[2] for example in trainset])

    print("pos_ids")
    pos_ids = torch.LongTensor([example[3] for example in trainset])

    print("vms")
    vms = [example[4] for example in trainset]

    train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    print("Batch size: ", batch_size)
    print("The number of training instances:", instances_num)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.0
    }]
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup,
                         t_total=train_steps)

    total_loss = 0.
    result = 0.0
    best_result = 0.0

    for epoch in range(1, args.epochs_num + 1):
        model.train()
        for i, (input_ids_batch, label_ids_batch, mask_ids_batch,
                pos_ids_batch, vms_batch) in enumerate(
                    batch_loader(batch_size, input_ids, label_ids, mask_ids,
                                 pos_ids, vms)):
            model.zero_grad()

            vms_batch = torch.LongTensor(vms_batch)

            input_ids_batch = input_ids_batch.to(device)
            label_ids_batch = label_ids_batch.to(device)
            mask_ids_batch = mask_ids_batch.to(device)
            pos_ids_batch = pos_ids_batch.to(device)
            vms_batch = vms_batch.to(device)

            loss, _ = model(input_ids_batch,
                            label_ids_batch,
                            mask_ids_batch,
                            pos=pos_ids_batch,
                            vm=vms_batch)
            if torch.cuda.device_count() > 1:
                loss = torch.mean(loss)
            total_loss += loss.item()
            if (i + 1) % args.report_steps == 0:
                print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".
                      format(epoch, i + 1, total_loss / args.report_steps))
                sys.stdout.flush()
                total_loss = 0.
            loss.backward()
            optimizer.step()

        print("Start evaluation on dev dataset.")
        result = evaluate(args, False)
        if result > best_result:
            best_result = result
            save_model(model, args.output_model_path)
        else:
            continue

        print("Start evaluation on test dataset.")
        evaluate(args, True)

    # Evaluation phase.
    print("Final evaluation on the test dataset.")
    #model save
    if torch.cuda.device_count() > 1:
        model.module.load_state_dict(torch.load(args.output_model_path))
    else:
        model.load_state_dict(torch.load(args.output_model_path))
    evaluate(args, True)
Beispiel #10
0
def main():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    # Path options.
    parser.add_argument("--pretrained_model_path", default=None, type=str,
                        help="Path of the pretrained model.")
    parser.add_argument("--output_path", default="./models/tagger_model.bin", type=str,
                        help="Path of the output model.")
    parser.add_argument("--vocab_path", default="./models/google_vocab.txt", type=str,
                        help="Path of the vocabulary file.")
    parser.add_argument("--train_path", type=str, required=True,
                        help="Path of the trainset.")
    parser.add_argument("--dev_path", type=str, required=True,
                        help="Path of the devset.")
    parser.add_argument("--test_path", type=str, required=True,
                        help="Path of the testset.")
    parser.add_argument("--config_path", default="./models/google_config.json", type=str,
                        help="Path of the config file.")

    # Model options.
    parser.add_argument("--batch_size", type=int, default=16,
                        help="Batch_size.")
    parser.add_argument("--seq_length", default=128, type=int,
                        help="Sequence length.")
    parser.add_argument("--encoder", choices=["bert", "lstm", "gru", \
                                                   "cnn", "gatedcnn", "attn", \
                                                   "rcnn", "crnn", "gpt", "bilstm"], \
                                                   default="bert", help="Encoder type.")
    parser.add_argument("--bidirectional", action="store_true", help="Specific to recurrent model.")
    
    # Subword options.
    parser.add_argument("--subword_type", choices=["none", "char"], default="none",
                        help="Subword feature type.")
    parser.add_argument("--sub_vocab_path", type=str, default="models/sub_vocab.txt",
                        help="Path of the subword vocabulary file.")
    parser.add_argument("--subencoder", choices=["avg", "lstm", "gru", "cnn"], default="avg",
                        help="Subencoder type.")
    parser.add_argument("--sub_layers_num", type=int, default=2, help="The number of subencoder layers.")

    # Optimizer options.
    parser.add_argument("--learning_rate", type=float, default=2e-5,
                        help="Learning rate.")
    parser.add_argument("--warmup", type=float, default=0.1,
                        help="Warm up value.")

    # Training options.
    parser.add_argument("--dropout", type=float, default=0.1,
                        help="Dropout.")
    parser.add_argument("--epochs_num", type=int, default=5,
                        help="Number of epochs.")
    parser.add_argument("--report_steps", type=int, default=100,
                        help="Specific steps to print prompt.")
    parser.add_argument("--seed", type=int, default=7,
                        help="Random seed.")

    # kg
    parser.add_argument("--kg_name", required=True, help="KG name or path")
    parser.add_argument("--log_file",help='记录log信息')
    parser.add_argument('--task_name',default=None,type=str)
    parser.add_argument("--mode",default='regular',type=str)
    parser.add_argument('--run_time',default=None,type=str)
    parser.add_argument("--commit_id",default=None,type=str)
    parser.add_argument("--fold_nb",default=0,type=str)
    parser.add_argument("--tensorboard_dir",default=None)

    parser.add_argument("--need_birnn",default=False,type=bool)
    parser.add_argument("--rnn_dim",default=128,type=int)
    parser.add_argument("--model_name",default='bert',type=str)
    parser.add_argument("--pku_model_name",default='default',type=str)
    parser.add_argument("--has_token",default=False)

    parser.add_argument("--do_train",default=False,type=bool)
    parser.add_argument("--do_test",default=True,type=bool)

    args = parser.parse_args()
    args.run_time = datetime.datetime.today().strftime('%Y-%m-%d_%H-%M-%S')

    # Load the hyperparameters of the config file.
    args = load_hyperparam(args)

    set_seed(args.seed)

    s = Save_Log(args)
    logger = init_logger(args.log_file)

    print(args)
    logger.info(args)

    os.makedirs(args.output_path,exist_ok=True)
    writer = SummaryWriter(logdir=os.path.join(args.tensorboard_dir, "eval",'{}_{}_{}_{}'.format(args.task_name,args.fold_nb,args.run_time,args.commit_id)), comment="Linear")

    labels_map = {"[PAD]": 0, "[ENT]": 1}
    begin_ids = []

    # Find tagging labels
    with open(args.train_path, mode="r", encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            if line_id == 0:
                continue
            labels = line.strip().split("\t")[1].split()
            for l in labels:
                if l not in labels_map:
                    if l.startswith("B") or l.startswith("S"):
                        begin_ids.append(len(labels_map))
                    labels_map[l] = len(labels_map)
    
    print("Labels: ", labels_map)
    logger.info(labels_map)
    args.labels_num = len(labels_map)
    id2label = {labels_map[key]:key for key in labels_map}
    print("id2label:",id2label)
    logger.info(id2label)
    # Load vocabulary.
    vocab = Vocab()
    vocab.load(args.vocab_path)
    args.vocab = vocab

    # Build knowledge graph.
    if args.kg_name == 'none':
        spo_files = []
    else:
        spo_files = [args.kg_name]
    kg = KnowledgeGraph(spo_files=spo_files,pku_model_name= args.pku_model_name,predicate=False)

    # Build bert model.
    # A pseudo target is added.
    args.target = "bert"
    model = build_model(args)

    # Load or initialize parameters.
    if args.pretrained_model_path is not None:
        # Initialize with pretrained model.
        model.load_state_dict(torch.load(args.pretrained_model_path), strict=False)  
    else:
        # Initialize with normal distribution.
        for n, p in list(model.named_parameters()):
            if 'gamma' not in n and 'beta' not in n:
                p.data.normal_(0, 0.02)
    
    # Build sequence labeling model.
    if(args.model_name=='bert'):
    # model = BertTagger_with_LSTMCRF(args, model)
        model = BertTagger(args, model)
    elif(args.model_name == 'bertcrf'):
        model = BertTagger_with_LSTMCRF(args, model)
    logger.info(model)
    # print("model:",model)

    # print("model bert Tagger:",model)
    # For simplicity, we use DataParallel wrapper to use multiple GPUs.
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if torch.cuda.device_count() > 1:
        print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
        model = nn.DataParallel(model)

    model = model.to(device)
    args.device = device

    # Datset loader.
    def batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vm_ids, tag_ids):
        instances_num = input_ids.size()[0]
        for i in range(instances_num // batch_size):
            input_ids_batch = input_ids[i*batch_size: (i+1)*batch_size, :]
            label_ids_batch = label_ids[i*batch_size: (i+1)*batch_size, :]
            mask_ids_batch = mask_ids[i*batch_size: (i+1)*batch_size, :]
            pos_ids_batch = pos_ids[i*batch_size: (i+1)*batch_size, :]
            vm_ids_batch = vm_ids[i*batch_size: (i+1)*batch_size, :, :]
            tag_ids_batch = tag_ids[i*batch_size: (i+1)*batch_size, :]
            yield input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vm_ids_batch, tag_ids_batch
        if instances_num > instances_num // batch_size * batch_size:
            input_ids_batch = input_ids[instances_num//batch_size*batch_size:, :]
            label_ids_batch = label_ids[instances_num//batch_size*batch_size:, :]
            mask_ids_batch = mask_ids[instances_num//batch_size*batch_size:, :]
            pos_ids_batch = pos_ids[instances_num//batch_size*batch_size:, :]
            vm_ids_batch = vm_ids[instances_num//batch_size*batch_size:, :, :]
            tag_ids_batch = tag_ids[instances_num//batch_size*batch_size:, :]
            yield input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vm_ids_batch, tag_ids_batch

    # Read dataset.
    def read_dataset(path):
        dataset = []
        with open(path, mode="r", encoding="utf-8") as f:
            f.readline()
            tokens, labels = [], []
            for line_id, line in enumerate(f):
                tokens, labels = line.strip().split("\t")
                # print("token:",tokens)
                # print("label:",labels)
                # print("len tokens:",len(tokens.split(' ')),"len labels:",len(labels.split(' ')))
                text = ''.join(tokens.split(" "))
                # print("len text:",len(text))
                tokens, pos, vm, tag = kg.add_knowledge_with_vm([text], add_pad=True, max_length=args.seq_length)
                tokens = tokens[0]
                # print("len2 text:",len(tokens),"len label:",len(labels))

                pos = pos[0]
                vm = vm[0].astype("bool")
                tag = tag[0]

                tokens = [vocab.get(t) for t in tokens]
                labels = [labels_map[l] for l in labels.split(" ")]
                # print("len3 text:",len(tokens),"len label:",len(labels))

                mask = [1] * len(tokens)
                # print('tokens:',tokens)
                # print("label:",labels)
                # assert len(tokens) == len(labels),(len(tokens),len(labels))

                new_labels = []
                j = 0
                for i in range(len(tokens)):
                    if tag[i] == 0 and tokens[i] != PAD_ID:
                        new_labels.append(labels[j])
                        j += 1
                    elif tag[i] == 1 and tokens[i] != PAD_ID:  # 是添加的实体
                        new_labels.append(labels_map['[ENT]'])
                    else:
                        new_labels.append(labels_map[PAD_TOKEN])

                dataset.append([tokens, new_labels, mask, pos, vm, tag])
        
        return dataset

    # Evaluation function.
    def evaluate(args,epoch, is_test):
        f1 = 0
        if is_test:
            dataset = read_dataset(args.test_path)
        else:
            dataset = read_dataset(args.dev_path)

        input_ids = torch.LongTensor([sample[0] for sample in dataset])
        label_ids = torch.LongTensor([sample[1] for sample in dataset])
        mask_ids = torch.LongTensor([sample[2] for sample in dataset])
        pos_ids = torch.LongTensor([sample[3] for sample in dataset])
        vm_ids = torch.BoolTensor([sample[4] for sample in dataset])
        tag_ids = torch.LongTensor([sample[5] for sample in dataset])

        instances_num = input_ids.size(0)
        batch_size = args.batch_size

        if is_test:
            print("Batch size: ", batch_size)
            print("The number of test instances:", instances_num)
 
        correct = 0
        gold_entities_num = 0
        pred_entities_num = 0

        by_type_correct = {}
        by_type_gold_nb = {}
        by_type_pred_nb = {}

        confusion = torch.zeros(len(labels_map), len(labels_map), dtype=torch.long)

        pred_labels = []
        gold_labels = []
        origin_tokens = []

        model.eval()

        for i, (input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vm_ids_batch, tag_ids_batch) in enumerate(batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vm_ids, tag_ids)):

            input_ids_batch = input_ids_batch.to(device)
            label_ids_batch = label_ids_batch.to(device)
            mask_ids_batch = mask_ids_batch.to(device)
            pos_ids_batch = pos_ids_batch.to(device)
            tag_ids_batch = tag_ids_batch.to(device)
            vm_ids_batch = vm_ids_batch.long().to(device)
            # print("batch size:",batch_size)
            loss, _, pred, gold = model(input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vm_ids_batch)
            # print(pred.size(),gold.size())
            # print("pred:",pred)
            # print("gold:",gold)

            """
            pred: tensor([2, 2, 2,  ..., 2, 2, 2], device='cuda:0')
            gold: tensor([2, 2, 2,  ..., 0, 0, 0], device='cuda:0')

            """
            # print("input id batch:",input_ids_batch.size())
            for input_ids in input_ids_batch:
                for id in input_ids:
                    origin_tokens.append(vocab.i2w[id])
            for p,g in zip(pred,gold):

                pred_labels.append(id2label[int(p)] )
                gold_labels.append(id2label[int(g)])

            # pred_labels.append(pred)

            # gold_labels.append(gold)
            # print("pred label",pred_labels)
            # print("gold label:",gold_labels)

            for j in range(gold.size()[0]):
                if gold[j].item() in begin_ids:
                    gold_entities_num += 1
                    if(gold[j].item() not in by_type_gold_nb):
                        by_type_gold_nb[gold[j].item()] = 1
                    else:
                        by_type_gold_nb[gold[j].item()] += 1

 
            for j in range(pred.size()[0]):
                if pred[j].item() in begin_ids and gold[j].item() != labels_map["[PAD]"]:
                    pred_entities_num += 1
                    if (pred[j].item() not in by_type_pred_nb):
                        by_type_pred_nb[pred[j].item()] = 1
                    else:
                        by_type_pred_nb[pred[j].item()] += 1

            pred_entities_pos = []
            gold_entities_pos = []
            start, end = 0, 0

            for j in range(gold.size()[0]):
                if gold[j].item() in begin_ids:
                    start = j
                    type = gold[j].item()
                    # print("gold j item:",gold[j].item())

                    for k in range(j+1, gold.size()[0]):
                        
                        if gold[k].item() == labels_map['[ENT]']:
                            continue

                        if gold[k].item() == labels_map["[PAD]"] or gold[k].item() == labels_map["O"] or gold[k].item() in begin_ids:
                            end = k - 1
                            break
                    else:
                        end = gold.size()[0] - 1
                    gold_entities_pos.append((start, end,type))
            
            for j in range(pred.size()[0]):
                if pred[j].item() in begin_ids and gold[j].item() != labels_map["[PAD]"] and gold[j].item() != labels_map["[ENT]"]:
                    start = j
                    type = pred[j].item()
                    for k in range(j+1, pred.size()[0]):

                        if gold[k].item() == labels_map['[ENT]']:
                            continue

                        if pred[k].item() == labels_map["[PAD]"] or pred[k].item() == labels_map["O"] or pred[k].item() in begin_ids:
                            end = k - 1
                            break
                    else:
                        end = pred.size()[0] - 1
                    pred_entities_pos.append((start, end,type))

            for entity in pred_entities_pos:
                if entity not in gold_entities_pos:
                    continue
                else: 
                    correct += 1
                    if(entity[2] not in by_type_correct):
                        by_type_correct[entity[2]] = 1
                    else:
                        by_type_correct[entity[2]] += 1



        if(not is_test):

            print("Report precision, recall, and f1:")
            logger.info("Report precision, recall, and f1:")
            p = correct / pred_entities_num
            r = correct / gold_entities_num
            f1 = 2 * p * r / (p + r)
            logger.info("{:.3f}, {:.3f}, {:.3f}".format(p, r, f1))
            print("{:.3f}, {:.3f}, {:.3f}".format(p, r, f1))
            writer.add_scalar("Eval/precision", p, epoch)
            writer.add_scalar("Eval/recall", r, epoch)
            writer.add_scalar("Eval/f1_score", f1, epoch)

            for type in by_type_correct:
                p = by_type_correct[type] / by_type_pred_nb[type]
                r = by_type_correct[type] / by_type_gold_nb[type]
                f1 = 2 * p * r / (p + r)
                print("{}:{:.3f}, {:.3f}, {:.3f}".format(id2label[type][2:], p, r, f1))
                logger.info("{}:{:.3f}, {:.3f}, {:.3f}".format(id2label[type][2:], p, r, f1))
                writer.add_scalar("Eval/precision_{}".format(id2label[type][2:]), p, epoch)
                writer.add_scalar("Eval/recall_{}".format(id2label[type][2:]), r, epoch)
                writer.add_scalar("Eval/f1_score_{}".format(id2label[type][2:]), f1, epoch)

        with open(os.path.join(args.output_path,'pred_label_test1_{}.txt').format(is_test),'w',encoding='utf-8') as file:
            print("!!!!!!!! saving in ",os.path.join(args.output_path,'pred_label_test1_{}.txt'))
            i = 0
            while i < len(pred_labels):
                len_ = args.seq_length
                if('[PAD]' in origin_tokens[i:i+args.seq_length]):
                    len_ = origin_tokens[i:i+args.seq_length].index('[PAD]')
                file.write(' '.join(origin_tokens[i:i+len_]))
                # print("pred:",pred_labels[i:i+len_])
                file.write('\t'+' '.join(pred_labels[i:i+len_]))
                file.write('\t'+' '.join(gold_labels[i:i+len_])+'\n')

                i += args.seq_length

        return f1

    # Training phase.
    print("args train test:",args.do_train,args.do_test)
    if(args.do_train):
        print("Start training.")
        logger.info("Start training.")
        instances = read_dataset(args.train_path)

        input_ids = torch.LongTensor([ins[0] for ins in instances])
        label_ids = torch.LongTensor([ins[1] for ins in instances])
        mask_ids = torch.LongTensor([ins[2] for ins in instances])
        pos_ids = torch.LongTensor([ins[3] for ins in instances])
        vm_ids = torch.BoolTensor([ins[4] for ins in instances])
        tag_ids = torch.LongTensor([ins[5] for ins in instances])

        instances_num = input_ids.size(0)
        batch_size = args.batch_size
        train_steps = int(instances_num * args.epochs_num / batch_size) + 1

        logger.info("Batch size: {}".format(batch_size))
        print("Batch size: ", batch_size)
        print("The number of training instances:", instances_num)
        logger.info("The number of training instances:{}".format(instances_num))

        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'gamma', 'beta']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
             'weight_decay_rate': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
        ]
        optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup,
                             t_total=train_steps)

        total_loss = 0.
        f1 = 0.0
        best_f1 = 0.0
        total_step = 0
        for epoch in range(1, args.epochs_num + 1):
            print("Epoch ", epoch)
            model.train()
            for i, (
            input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vm_ids_batch, tag_ids_batch) in enumerate(
                    batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vm_ids, tag_ids)):
                model.zero_grad()
                total_step += 1
                input_ids_batch = input_ids_batch.to(device)
                label_ids_batch = label_ids_batch.to(device)
                mask_ids_batch = mask_ids_batch.to(device)
                pos_ids_batch = pos_ids_batch.to(device)
                tag_ids_batch = tag_ids_batch.to(device)
                vm_ids_batch = vm_ids_batch.long().to(device)

                loss, _, _, _ = model(input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vm_ids_batch)
                if torch.cuda.device_count() > 1:
                    loss = torch.mean(loss)
                total_loss += loss.item()
                if (i + 1) % args.report_steps == 0:
                    logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1,
                                                                                            total_loss / args.report_steps))

                    writer.add_scalar("Train/loss", total_loss / args.report_steps, total_step)

                    total_loss = 0.

                loss.backward()
                optimizer.step()

            # Evaluation phase.
            print("Start evaluate on dev dataset.")
            logger.info("Start evaluate on dev dataset.")
            f1 = evaluate(args, epoch, False)
            # print("Start evaluation on test dataset.")
            # evaluate(args, True)

            if f1 > best_f1:
                best_f1 = f1
                save_model(model, os.path.join(args.output_path, '{}.bin').format(args.task_name))
            else:
                continue

    if(args.do_test):
        # Evaluation phase.
        print("Final evaluation on test dataset.")
        logger.info("Final evaluation on test dataset.")
        if torch.cuda.device_count() > 1:
            model.module.load_state_dict(torch.load(os.path.join(args.output_path, "{}.bin".format(args.task_name))))
        else:
            model.load_state_dict(torch.load(os.path.join(args.output_path, "{}.bin".format(args.task_name))))

        evaluate(args, args.epochs_num, True)

        print("============over=================={}".format(args.fold_nb))
Beispiel #11
0
def main():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    # Path options.
    parser.add_argument("--pretrained_model_path", default=None, type=str,
                        help="Path of the pretrained model.")
    parser.add_argument("--output_model_path", default="./models/classifier_model.bin", type=str,
                        help="Path of the output model.")
    parser.add_argument("--vocab_path", default="./models/google_vocab.txt", type=str,
                        help="Path of the vocabulary file.")
    parser.add_argument("--train_path", type=str, required=True,
                        help="Path of the trainset.")
    parser.add_argument("--dev_path", type=str, required=True,
                        help="Path of the devset.") 
    parser.add_argument("--test_path", type=str, required=True,
                        help="Path of the testset.")
    parser.add_argument("--config_path", default="./models/google_config.json", type=str,
                        help="Path of the config file.")
    # parser.add_argument("--BM25_path", type=str, required=True,
    #                     help="Path of the BM25.")
    # parser.add_argument("--BM25Type_path", type=str, required=True,
    #                     help="Path of the BM25Type_path.")
    # parser.add_argument("--BM25_test_path", type=str, required=True,
    #                     help="Path of the BM25Test_path.")
    # parser.add_argument("--Stopword_path", type=str, required=True,
    #                     help="Path of the Stopword.")

    # Model options.
    parser.add_argument("--batch_size", type=int, default=32,
                        help="Batch size.")
    parser.add_argument("--seq_length", type=int, default=256,
                        help="Sequence length.")
    parser.add_argument("--encoder", choices=["bert", "lstm", "gru", \
                                                   "cnn", "gatedcnn", "attn", \
                                                   "rcnn", "crnn", "gpt", "bilstm"], \
                                                   default="bert", help="Encoder type.")
    parser.add_argument("--bidirectional", action="store_true", help="Specific to recurrent model.")
    parser.add_argument("--pooling", choices=["mean", "max", "first", "last"], default="first",
                        help="Pooling type.")

    # Subword options.
    parser.add_argument("--subword_type", choices=["none", "char"], default="none",
                        help="Subword feature type.")
    parser.add_argument("--sub_vocab_path", type=str, default="models/sub_vocab.txt",
                        help="Path of the subword vocabulary file.")
    parser.add_argument("--subencoder", choices=["avg", "lstm", "gru", "cnn"], default="avg",
                        help="Subencoder type.")
    parser.add_argument("--sub_layers_num", type=int, default=2, help="The number of subencoder layers.")

    # Tokenizer options.
    parser.add_argument("--tokenizer", choices=["bert", "char", "word", "space"], default="bert",
                        help="Specify the tokenizer." 
                             "Original Google BERT uses bert tokenizer on Chinese corpus."
                             "Char tokenizer segments sentences into characters."
                             "Word tokenizer supports online word segmentation based on jieba segmentor."
                             "Space tokenizer segments sentences into words according to space."
                             )

    # Optimizer options.
    parser.add_argument("--learning_rate", type=float, default=2e-5,
                        help="Learning rate.")
    parser.add_argument("--warmup", type=float, default=0.1,
                        help="Warm up value.")

    # Training options.
    parser.add_argument("--dropout", type=float, default=0.5,
                        help="Dropout.")
    parser.add_argument("--epochs_num", type=int, default=5,
                        help="Number of epochs.")
    parser.add_argument("--report_steps", type=int, default=100,
                        help="Specific steps to print prompt.")
    parser.add_argument("--seed", type=int, default=7,
                        help="Random seed.")

    # Evaluation options.
    parser.add_argument("--mean_reciprocal_rank", action="store_true", help="Evaluation metrics for DBQA dataset.")

    # kg
    parser.add_argument("--kg_name", required=False, help="KG name or path")
    parser.add_argument("--workers_num", type=int, default=1, help="number of process for loading dataset")
    parser.add_argument("--no_vm", action="store_true", help="Disable the visible_matrix")

    args = parser.parse_args()

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    set_seed(args.seed)

    # Count the number of labels.
    labels_set = set()
    columns = {}
    with open(args.train_path, mode="r", encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            try:
                line = line.strip().split("\t")
                if line_id == 0:
                    for i, column_name in enumerate(line):
                        columns[column_name] = i
                    continue
                label = int(line[columns["label"]])
                labels_set.add(label)
            except:
                pass

    args.labels_num = len(labels_set) 
    # Load vocabulary.
    vocab = Vocab()
    vocab.load(args.vocab_path)
    args.vocab = vocab

    # Build bert model.
    # A pseudo target is added.
    args.target = "bert"
    model = build_model(args)

    # Load or initialize parameters.
    if args.pretrained_model_path is not None:
        # Initialize with pretrained model.
        model.load_state_dict(torch.load(args.pretrained_model_path), strict=False)  
    else:
        # Initialize with normal distribution.
        for n, p in list(model.named_parameters()):
            if 'gamma' not in n and 'beta' not in n:
                p.data.normal_(0, 0.02)
    
    # Build classification model.
    model = BertClassifier(args, model)

    # For simplicity, we use DataParallel wrapper to use multiple GPUs.
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    if torch.cuda.device_count() > 1:
        print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
        model = nn.DataParallel(model)

    model = model.to(device)
    
    # Datset loader.
    def batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vms):
        instances_num = input_ids.size()[0]
        for i in range(instances_num // batch_size):
            input_ids_batch = input_ids[i*batch_size: (i+1)*batch_size, :]
            label_ids_batch = label_ids[i*batch_size: (i+1)*batch_size]
            mask_ids_batch = mask_ids[i*batch_size: (i+1)*batch_size, :]
            pos_ids_batch = pos_ids[i*batch_size: (i+1)*batch_size, :]
            vms_batch = vms[i*batch_size: (i+1)*batch_size]
            yield input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch
        if instances_num > instances_num // batch_size * batch_size:
            input_ids_batch = input_ids[instances_num//batch_size*batch_size:, :]
            label_ids_batch = label_ids[instances_num//batch_size*batch_size:]
            mask_ids_batch = mask_ids[instances_num//batch_size*batch_size:, :]
            pos_ids_batch = pos_ids[instances_num//batch_size*batch_size:, :]
            vms_batch = vms[instances_num//batch_size*batch_size:]

            yield input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch

    # Build knowledge graph.
    if args.kg_name == 'none':
        spo_files = []
    else:
        spo_files = [args.kg_name]
    kg = KnowledgeGraph(spo_files=spo_files, predicate=True)

    def read_dataset(path, workers_num=1):

        print("Loading sentences from {}".format(path))
        sentences = []
        with open(path, mode='r', encoding="utf-8") as f:
            for line_id, line in enumerate(f):
                if line_id == 0:
                    continue
                sentences.append(line)
        sentence_num = len(sentences)

        print("There are {} sentence in total. We use {} processes to inject knowledge into sentences.".format(sentence_num, workers_num))
        if workers_num > 1:
            params = []
            sentence_per_block = int(sentence_num / workers_num) + 1
            for i in range(workers_num):
                params.append((i, sentences[i*sentence_per_block: (i+1)*sentence_per_block], columns, kg, vocab, args))
            pool = Pool(workers_num)
            res = pool.map(add_knowledge_worker, params)
            pool.close()
            pool.join()
            dataset = [sample for block in res for sample in block]
        else:
            params = (0, sentences, columns, kg, vocab, args)
            dataset = add_knowledge_worker(params)

        return dataset

    # Evaluation function.
    def evaluate(args, is_test, metrics='f1'):
        
        if is_test:
            dataset = read_dataset(args.test_path, workers_num=args.workers_num)
           
        else:
            dataset = read_dataset(args.dev_path, workers_num=args.workers_num)
        
       
        input_ids = torch.LongTensor([sample[0] for sample in dataset])
        label_ids = torch.LongTensor([sample[1] for sample in dataset])
        mask_ids = torch.LongTensor([sample[2] for sample in dataset])
        pos_ids = torch.LongTensor([example[3] for example in dataset])
        vms = [example[4] for example in dataset]

        batch_size = args.batch_size
        instances_num = input_ids.size()[0]
        if is_test:
            print("The number of evaluation instances: ", instances_num)

        correct = 0
        # Confusion matrix.
        confusion = torch.zeros(args.labels_num, args.labels_num, dtype=torch.long)

        model.eval()
       # BM25Rank,train_type_dict=BM25()

        # start=0
        # end=batch_size
        
        #if not args.mean_reciprocal_rank:
            
        if not args.mean_reciprocal_rank:
            print("計算F1")
            ls=[]
            data=[]
            ls_gold=[]
            ls_pred=[]
          
            for i, (input_ids_batch, label_ids_batch,  mask_ids_batch, pos_ids_batch, vms_batch) in enumerate(batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vms)):
               
                
                # RankResult=[]
                # BatachBM25=BM25Rank[start:end]
                # start=start+batch_size
                # end=start+batch_size
                # vms_batch = vms_batch.long()
                vms_batch = torch.LongTensor(vms_batch)

                input_ids_batch = input_ids_batch.to(device)
                label_ids_batch = label_ids_batch.to(device)
                mask_ids_batch = mask_ids_batch.to(device)
                pos_ids_batch = pos_ids_batch.to(device)
                vms_batch = vms_batch.to(device)
                ls.append(label_ids_batch)
                
                with torch.no_grad():
                    try:
                        loss, logits = model(input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch)
                    except:
                        print(input_ids_batch)
                        print(input_ids_batch.size())
                        print(vms_batch)
                        print(vms_batch.size())

                logits = nn.Softmax(dim=1)(logits)
                pred = torch.argmax(logits, dim=1)
               
                gold = label_ids_batch
                
                # for (l,B) in zip(logits,BatachBM25):
              
                    # sort_label=torch.sort(l,descending=True)
                    # sort_dict=dict()
                    # for (score,label) in zip(sort_label[0],sort_label[1]):
                        # label=int(label.cpu().numpy())
                        # score=float(score.cpu().numpy())
                        # sort_dict[label]=score
                    # print(sorted(B, key = lambda x : x[1]))
                    # print(max(sort_dict.values()))
                    # maximum=max(sort_dict.values())
                    # keys = [key for key, value in sort_dict.items() if value == maximum] 
                    # print(keys)
                    # sys.exit()
                    # ReRank= dict()
                    # TotalScore=0
                    # for b in B:
                        # TotalScore+=b[1]
                    
                    # for b in B:
                        # if(sort_dict[train_type_dict[b[0]]]>0.953):
                        #     ReRank[b[0]]=sort_dict[train_type_dict[b[0]]]  #b[1]+
                        # else:b[1]+sort_dict[train_type_dict[b[0]]]((b[1]/949.11)*100)+
                        # ReRank[b[0]]=sort_dict[train_type_dict[b[0]]]
        
                    # maximum = max(ReRank.values()) 
                    # keys = [key for key, value in ReRank.items() if value == maximum]
                    # result=train_type_dict[keys[0]]
                    # gold = label_ids_batch
                    # RankResult.append(result)
   
                # pred=torch.Tensor(RankResult).cuda()
                print("Pred")
                print(pred)
                # gold = label_ids_batch
                print("Gold")
                print(gold)
                for (p,g) in zip(pred.cpu().numpy(),gold.cpu().numpy()):
                    ls_gold.append(g)
                    ls_pred.append(int(p))
              
                # for j in range(pred.size()[0]):
                #     confusion[pred[j], gold[j]] += 1
                # correct += torch.sum(pred == gold).item()
            print(ls_gold)
            print(ls_pred)
            print("準確率")
            print(accuracy_score(ls_gold, ls_pred))
        
            f1 = f1_score(ls_gold,ls_pred, average='macro')
            p = precision_score(ls_gold, ls_pred, average='macro')
            r = recall_score(ls_gold, ls_pred, average='macro')
            print("F1 Score:")
            print(f1)
            print("Precision:")
            print(p)
            print("Recall:")
            print(r)
         
        else:
            print("計算MRR")
            rank_pos=[]
            for i, (input_ids_batch, label_ids_batch,  mask_ids_batch, pos_ids_batch, vms_batch) in enumerate(batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vms)):

                vms_batch = torch.LongTensor(vms_batch)

                input_ids_batch = input_ids_batch.to(device)
                label_ids_batch = label_ids_batch.to(device)
                mask_ids_batch = mask_ids_batch.to(device)
                pos_ids_batch = pos_ids_batch.to(device)
                vms_batch = vms_batch.to(device)

                with torch.no_grad():
                    loss, logits = model(input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch)
                logits = nn.Softmax(dim=1)(logits)
                
                for l,g in zip(logits,label_ids_batch):
                   
                    sort_label=torch.sort(l,descending=True)
                    for (idx,p) in enumerate(sort_label[1]):
                        if(p==g):
                            rank_pos.append(idx)
            MRR=0
            for score in rank_pos:
                MRR+=1/(score+1)
            print("MRR:",MRR/1035)
           
    
    def BM25_readfile():
        #讀取BM25的訓練資料(標準問句斷過詞)
        BM25_train_data=[]
        with open(args.BM25_path, 'r', encoding='utf-8') as f:
            for line in f.readlines():
            
                BM25_train_data.append(line.replace("\r", "").replace("\n", ""))
        #讀取stop word
        stopWords=[]
        with open(args.Stopword_path, 'r', encoding='UTF-8') as file:
            for data in file.readlines():
                data = data.strip()
                stopWords.append(data)
        return stopWords,BM25_train_data
    
    def BM25():
        stopWords,BM25_train_data=BM25_readfile()  
        count_l1_sim=0
        count_num_l1=0
        count_l0_sim=0
        count_num_l0=0
        correct=0
        predict=[]
        similarity_ls=[]
        for sentence in BM25_train_data[1:]:
            S1=sentence.strip().split('\t')[0]
            S2=sentence.strip().split('\t')[1]
            words1 = [w for w in S1.split() if w not in stopWords]
            S1=" ".join(words1)
            words2 = [w for w in S2.split() if w not in stopWords]
            S2=" ".join(words2)

            sim=similarity.ssim(S1,S2,model='bm25')
            similarity_ls.append(sim)
            if(sim<11):
                predict_label=0
                predict.append(predict_label)

            if(sim>11):
                predict_label=1
                predict.append(predict_label)
      
     
    # Evaluation phase.
    print("Final evaluation on the test dataset.")

    if torch.cuda.device_count() > 1:
        model.module.load_state_dict(torch.load(args.output_model_path))
    else:
        model.load_state_dict(torch.load(args.output_model_path))
    accuracy=evaluate(args, True,metrics='Acc')
  
    print("準確率:")
    print(accuracy)
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    # Path options.
    parser.add_argument("--pretrained_model_path",
                        default="model/google_model.bin",
                        type=str,
                        help="Path of the pretrained model.")
    parser.add_argument("--load_model",
                        default="pretrained_bert",
                        type=str,
                        help="Path of the load model.")
    parser.add_argument("--load_model_dir",
                        default="./model",
                        type=str,
                        help="Path of the load model.")
    parser.add_argument("--vocab_path",
                        default="./model/google_vocab.txt",
                        type=str,
                        help="Path of the vocabulary file.")
    parser.add_argument("--test_path",
                        type=str,
                        default="./data/test.tsv",
                        help="Path of the testset.")
    parser.add_argument("--config_path",
                        default="./model/google_config.json",
                        type=str,
                        help="Path of the config file.")

    # Model options.
    parser.add_argument("--batch_size",
                        type=int,
                        default=64,
                        help="Batch size.")
    parser.add_argument("--seq_length",
                        type=int,
                        default=256,
                        help="Sequence length.")
    parser.add_argument("--encoder", choices=["bert", "lstm", "gru", \
                                              "cnn", "gatedcnn", "attn", \
                                              "rcnn", "crnn", "gpt", "bilstm"], \
                        default="bert", help="Encoder type.")
    parser.add_argument("--bidirectional",
                        action="store_true",
                        help="Specific to recurrent model.")
    parser.add_argument("--pooling",
                        choices=["mean", "max", "first", "last"],
                        default="first",
                        help="Pooling type.")

    # Subword options.
    parser.add_argument("--subword_type",
                        choices=["none", "char"],
                        default="none",
                        help="Subword feature type.")
    parser.add_argument("--sub_vocab_path",
                        type=str,
                        default="model/sub_vocab.txt",
                        help="Path of the subword vocabulary file.")
    parser.add_argument("--subencoder",
                        choices=["avg", "lstm", "gru", "cnn"],
                        default="avg",
                        help="Subencoder type.")
    parser.add_argument("--sub_layers_num",
                        type=int,
                        default=2,
                        help="The number of subencoder layers.")

    # Tokenizer options.
    parser.add_argument(
        "--tokenizer",
        choices=["bert", "char", "space"],
        default="bert",
        help="Specify the tokenizer."
        "Original Google BERT uses bert tokenizer on Chinese corpus."
        "Char tokenizer segments sentences into characters."
        "Word tokenizer supports online word segmentation based on jieba segmentor."
        "Space tokenizer segments sentences into words according to space.")

    # Optimizer options.
    parser.add_argument("--learning_rate",
                        type=float,
                        default=2e-5,
                        help="Learning rate.")
    parser.add_argument("--warmup",
                        type=float,
                        default=0.1,
                        help="Warm up value.")

    parser.add_argument("--seed", type=int, default=7, help="Random seed.")

    # Evaluation options.
    parser.add_argument("--mean_reciprocal_rank",
                        action="store_true",
                        help="Evaluation metrics for DBQA dataset.")

    args = parser.parse_args()

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    set_seed(args.seed)

    args.labels_num = 183
    args.load_model_path = "%s/%s.bin" % (args.load_model_dir, args.load_model)
    output_dir = "./output/BERT/%s/" % args.load_model
    if not os.path.isdir(output_dir):
        os.makedirs(output_dir)
    args.output_path = output_dir + "test.txt"

    # Load vocabulary.
    vocab = Vocab()
    vocab.load(args.vocab_path)
    args.vocab = vocab

    # Build bert model.
    # A pseudo target is added.
    args.target = "bert"
    model = build_model(args)

    # Load or initialize parameters.
    if args.pretrained_model_path is not None:
        # Initialize with pretrained model.
        model.load_state_dict(torch.load(args.pretrained_model_path),
                              strict=False)
    else:
        # Initialize with normal distribution.
        for n, p in list(model.named_parameters()):
            if 'gamma' not in n and 'beta' not in n:
                p.data.normal_(0, 0.02)

    # Build classification model.
    model = BertClassifier(args, model)

    # For simplicity, we use DataParallel wrapper to use multiple GPUs.
    device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")

    checkpoint = torch.load(args.load_model_path, map_location=device)
    model.load_state_dict(checkpoint)
    model.eval()

    model = model.to(device)

    # Datset loader.
    def batch_loader(batch_size, input_ids, label_ids, mask_ids):
        instances_num = input_ids.size()[0]
        for i in range(instances_num // batch_size):
            input_ids_batch = input_ids[i * batch_size:(i + 1) * batch_size, :]
            label_ids_batch = label_ids[i * batch_size:(i + 1) * batch_size]
            mask_ids_batch = mask_ids[i * batch_size:(i + 1) * batch_size, :]
            yield input_ids_batch, label_ids_batch, mask_ids_batch
        if instances_num > instances_num // batch_size * batch_size:
            input_ids_batch = input_ids[instances_num // batch_size *
                                        batch_size:, :]
            label_ids_batch = label_ids[instances_num // batch_size *
                                        batch_size:]
            mask_ids_batch = mask_ids[instances_num // batch_size *
                                      batch_size:, :]
            yield input_ids_batch, label_ids_batch, mask_ids_batch

    # Build tokenizer.
    tokenizer = globals()[args.tokenizer.capitalize() + "Tokenizer"](args)

    # Read dataset.
    def read_dataset_law(path):
        dataset = []
        with open(path, mode="r", encoding="utf-8") as f:
            # lines = f.readlines()
            f = csv.reader(f, delimiter='\t')
            for line_id, line in enumerate(f):
                if line_id == 0:
                    continue
                try:
                    # line = line.strip().split('\t')
                    if len(line) == 3:
                        label = int(line[2])
                        text = line[1]
                        tokens = [
                            vocab.get(t) for t in tokenizer.tokenize(text)
                        ]
                        tokens = [CLS_ID] + tokens
                        mask = [1] * len(tokens)
                        if len(tokens) > args.seq_length:
                            tokens = tokens[:args.seq_length]
                            mask = mask[:args.seq_length]
                        while len(tokens) < args.seq_length:
                            tokens.append(0)
                            mask.append(0)
                        dataset.append((tokens, label, mask))
                    else:
                        pass

                except:
                    pass
        return dataset

    # Evaluation function.
    def evaluate(args):
        is_test = True
        dataset = read_dataset_law(args.test_path)

        input_ids = torch.LongTensor([sample[0] for sample in dataset])
        label_ids = torch.LongTensor([sample[1] for sample in dataset])
        mask_ids = torch.LongTensor([sample[2] for sample in dataset])

        batch_size = args.batch_size
        instances_num = input_ids.size()[0]
        print("The number of evaluation instances: ", instances_num)
        correct = 0
        # Confusion matrix.
        confusion = torch.zeros(args.labels_num,
                                args.labels_num,
                                dtype=torch.long)

        model.eval()
        ouf = open(args.output_path, "w")

        if not args.mean_reciprocal_rank:
            for i, (input_ids_batch, label_ids_batch,
                    mask_ids_batch) in enumerate(
                        batch_loader(batch_size, input_ids, label_ids,
                                     mask_ids)):
                input_ids_batch = input_ids_batch.to(device)
                label_ids_batch = label_ids_batch.to(device)
                mask_ids_batch = mask_ids_batch.to(device)
                with torch.no_grad():
                    loss, logits = model(input_ids_batch, label_ids_batch,
                                         mask_ids_batch)
                logits = nn.Softmax(dim=1)(logits)
                pred = torch.argmax(logits, dim=1)
                gold = label_ids_batch
                for j in range(pred.size()[0]):
                    confusion[pred[j], gold[j]] += 1
                    ouf.write(
                        str(pred[j].item()) + "," + str(gold[j].item()) + "\n")
                correct += torch.sum(pred == gold).item()

            if is_test:
                print("Confusion matrix:")
                print(confusion)
                print("Report precision, recall, and f1:")
            for i in range(confusion.size()[0]):
                if confusion[i, i].item() == 0:
                    p, r, f1 = 0.0, 0.0, 0.0
                else:
                    p = confusion[i, i].item() / confusion[i, :].sum().item()
                    r = confusion[i, i].item() / confusion[:, i].sum().item()
                    f1 = 2 * p * r / (p + r)
                if is_test:
                    print("Label {}: {:.3f}, {:.3f}, {:.3f}".format(
                        i, p, r, f1))
            print("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(
                correct / len(dataset), correct, len(dataset)))
            return correct / len(dataset)
        else:
            for i, (input_ids_batch, label_ids_batch,
                    mask_ids_batch) in enumerate(
                        batch_loader(batch_size, input_ids, label_ids,
                                     mask_ids)):
                input_ids_batch = input_ids_batch.to(device)
                label_ids_batch = label_ids_batch.to(device)
                mask_ids_batch = mask_ids_batch.to(device)
                with torch.no_grad():
                    loss, logits = model(input_ids_batch, label_ids_batch,
                                         mask_ids_batch)
                logits = nn.Softmax(dim=1)(logits)
                if i == 0:
                    logits_all = logits
                if i >= 1:
                    logits_all = torch.cat((logits_all, logits), 0)

            order = -1
            gold = []
            for i in range(len(dataset)):
                qid = dataset[i][3]
                label = dataset[i][1]
                if qid == order:
                    j += 1
                    if label == 1:
                        gold.append((qid, j))
                else:
                    order = qid
                    j = 0
                    if label == 1:
                        gold.append((qid, j))

            label_order = []
            order = -1
            for i in range(len(gold)):
                if gold[i][0] == order:
                    templist.append(gold[i][1])
                elif gold[i][0] != order:
                    order = gold[i][0]
                    if i > 0:
                        label_order.append(templist)
                    templist = []
                    templist.append(gold[i][1])
            label_order.append(templist)

            order = -1
            score_list = []
            for i in range(len(logits_all)):
                score = float(logits_all[i][1])
                qid = int(dataset[i][3])
                if qid == order:
                    templist.append(score)
                else:
                    order = qid
                    if i > 0:
                        score_list.append(templist)
                    templist = []
                    templist.append(score)
            score_list.append(templist)

            rank = []
            pred = []
            for i in range(len(score_list)):
                if len(label_order[i]) == 1:
                    if label_order[i][0] < len(score_list[i]):
                        true_score = score_list[i][label_order[i][0]]
                        score_list[i].sort(reverse=True)
                        for j in range(len(score_list[i])):
                            if score_list[i][j] == true_score:
                                rank.append(1 / (j + 1))
                    else:
                        rank.append(0)

                else:
                    true_rank = len(score_list[i])
                    for k in range(len(label_order[i])):
                        if label_order[i][k] < len(score_list[i]):
                            true_score = score_list[i][label_order[i][k]]
                            temp = sorted(score_list[i], reverse=True)
                            for j in range(len(temp)):
                                if temp[j] == true_score:
                                    if j < true_rank:
                                        true_rank = j
                    if true_rank < len(score_list[i]):
                        rank.append(1 / (true_rank + 1))
                    else:
                        rank.append(0)
            MRR = sum(rank) / len(rank)
            print(MRR)
            return MRR

    evaluate(args)