Beispiel #1
0
 def __init__(self,
              other_point_pen,
              max_err,
              reverse_direction=False,
              stats=None):
     BasePointToSegmentPen.__init__(self)
     if reverse_direction:
         self.pen = ReverseContourPointPen(other_point_pen)
     else:
         self.pen = other_point_pen
     self.max_err = max_err
     self.stats = stats
Beispiel #2
0
    def drawPoints(self, pointPen):
        if self.drawInner:
            reversePen = ReverseContourPointPen(pointPen)
            self.innerGlyph.drawPoints(CleanPointPen(reversePen))
        if self.drawOuter:
            self.outerGlyph.drawPoints(CleanPointPen(pointPen))

        if self.drawOriginal:
            if self.drawOuter:
                pointPen = ReverseContourPointPen(pointPen)
            self.originalGlyph.drawPoints(CleanPointPen(pointPen))

        for glyphName, transform in self.components:
            pointPen.addComponent(glyphName, transform)
    def drawPoints(self, pointPen):
        if self.drawInner:
            reversePen = ReverseContourPointPen(pointPen)
            self.innerGlyph.drawPoints(CleanPointPen(reversePen))
        if self.drawOuter:
            self.outerGlyph.drawPoints(CleanPointPen(pointPen))

        if self.drawOriginal:
            if self.drawOuter:
                pointPen = ReverseContourPointPen(pointPen)
            self.originalGlyph.drawPoints(CleanPointPen(pointPen))

        for glyphName, transform in self.components:
            pointPen.addComponent(glyphName, transform)
Beispiel #4
0
    def reverse(self):
        """
        Reverse the direction of the contour. It's important to note
        that the actual points stored in this object will be completely
        repalced by new points.

        This will post *Contour.WindingDirectionChanged*,
        *Contour.PointsChanged* and *Contour.Changed* notifications.
        """
        from ufoLib.pointPen import ReverseContourPointPen
        oldDirection = self.clockwise
        # put the current points in another contour
        otherContour = self.__class__(glyph=None, pointClass=self.pointClass)
        # draw the points in this contour through
        # the reversing pen.
        reversePen = ReverseContourPointPen(otherContour)
        self.drawPoints(reversePen)
        # clear the points in this contour
        self._clear(postNotification=False)
        # set the points back into this contour
        self._points = otherContour._points
        # post a notification
        self.postNotification("Contour.WindingDirectionChanged",
                              data=dict(oldValue=oldDirection,
                                        newValue=self.clockwise))
        self.postNotification("Contour.PointsChanged")
        self.dirty = True
def test_reverse_point_pen(contour, expected):
    try:
        from ufoLib.pointPen import (ReverseContourPointPen, PointToSegmentPen,
                                     SegmentToPointPen)
    except ImportError:
        pytest.skip("ufoLib not installed")

    recpen = RecordingPen()
    pt2seg = PointToSegmentPen(recpen, outputImpliedClosingLine=True)
    revpen = ReverseContourPointPen(pt2seg)
    seg2pt = SegmentToPointPen(revpen)
    for operator, operands in contour:
        getattr(seg2pt, operator)(*operands)

    # for closed contours that have a lineTo following the moveTo,
    # and whose points don't overlap, our current implementation diverges
    # from the ReverseContourPointPen as wrapped by ufoLib's pen converters.
    # In the latter case, an extra lineTo is added because of
    # outputImpliedClosingLine=True. This is redundant but not incorrect,
    # as the number of points is the same in both.
    if (contour and contour[-1][0] == "closePath" and contour[1][0] == "lineTo"
            and contour[1][1] != contour[0][1]):
        expected = expected[:-1] + [("lineTo", contour[0][1])] + expected[-1:]

    assert recpen.value == expected
Beispiel #6
0
def test_reverse_point_pen(contour, expected):
    try:
        from ufoLib.pointPen import (ReverseContourPointPen, PointToSegmentPen,
                                     SegmentToPointPen)
    except ImportError:
        pytest.skip("ufoLib not installed")

    recpen = RecordingPen()
    pt2seg = PointToSegmentPen(recpen)
    revpen = ReverseContourPointPen(pt2seg)
    seg2pt = SegmentToPointPen(revpen)
    for operator, operands in contour:
        getattr(seg2pt, operator)(*operands)
    assert recpen.value == expected
def convert(glyph, maxDistance, minLength, useArcLength):
    originalNumPoints = 0
    nbPoints = 0
    conts = []
    for contour in glyph:
        conts.append([])
        cmds = conts[-1]
        p0 = getFirstOnPoint(contour)
        nseg = len(contour)
        for s in range(nseg):
            seg = contour[s]
            if seg.type == 'line':
                originalNumPoints += 1
                p1 = seg.points[0]
                cmds.append((lineto, p1))
                nbPoints += 1
                p0 = p1
            elif seg.type == 'qcurve':
                #print("Should not have quadratic segment in here. Skipping.",)
                p0 = seg.points[-1]
            elif seg.type == 'curve':
                originalNumPoints += 3
                p1, p2, p3 = seg.points
                pt0 = Point(p0.x, p0.y)
                pt1 = Point(p1.x, p1.y)
                pt2 = Point(p2.x, p2.y)
                pt3 = Point(p3.x, p3.y)
                qsegs = []
                inputCubic = (pt0, pt1, pt2, pt3)
                for cubic in splitCubicOnInflection(inputCubic, minLength):
                    qsegs = qsegs + adaptiveSmoothCubicSplit(
                        cubic, maxDistance, minLength, useArcLength)
                nbQSegMinusOne = len(qsegs) - 1
                smooth = True
                for i, qseg in enumerate(qsegs):
                    # We have to split the quad segment because Robofont does not (seem to) support
                    # ON-OFF-ON quadratic bezier curves. If ever Robofont can handle this,
                    # then it would suffice to write something like:
                    #	(a0, a1, a2) = qseg
                    #	cmds.append((curveto, (a1, a2)))

                    if i == nbQSegMinusOne: smooth = seg.smooth
                    q1, q2 = qseg
                    cmds.append((curveto, (q1[1], q2[1], q2[2], smooth)))
                    #ql, qr = splitQuadratic(0.5, qseg)
                    #cmds.append((curveto, (ql[1], qr[1], qr[2], smooth)))
                    nbPoints += 3
                p0 = p3
            else:
                #print("Unknown segment type: "+seg.type+". Skipping.",)
                p0 = seg.points[-1]
    glyph.clearContours()
    glyph.preferredSegmentStyle = 'qcurve'
    pen = ReverseContourPointPen(glyph.getPointPen())
    for cmds in conts:
        if cmds == []: continue
        pen.beginPath()
        for action, args in cmds:
            action(pen, args)
        pen.endPath()
    # Now, we make sure that each contour starts with a ON control point
    for contour in glyph:
        contour.setStartSegment(0)
    glyph.changed()
    return originalNumPoints, nbPoints
Beispiel #8
0
 def __init__(self, other_pen):
     adapter_point_pen = PointToSegmentPen(other_pen)
     reverse_point_pen = ReverseContourPointPen(adapter_point_pen)
     SegmentToPointPen.__init__(self, reverse_point_pen)
Beispiel #9
0
class Cu2QuPointPen(BasePointToSegmentPen):
    """ A filter pen to convert cubic bezier curves to quadratic b-splines
    using the RoboFab PointPen protocol.

    other_point_pen: another PointPen used to draw the transformed outline.
    max_err: maximum approximation error in font units.
    reverse_direction: reverse the winding direction of all contours.
    stats: a dictionary counting the point numbers of quadratic segments.
    """
    def __init__(self,
                 other_point_pen,
                 max_err,
                 reverse_direction=False,
                 stats=None):
        BasePointToSegmentPen.__init__(self)
        if reverse_direction:
            self.pen = ReverseContourPointPen(other_point_pen)
        else:
            self.pen = other_point_pen
        self.max_err = max_err
        self.stats = stats

    def _flushContour(self, segments):
        assert len(segments) >= 1
        closed = segments[0][0] != "move"
        new_segments = []
        prev_points = segments[-1][1]
        prev_on_curve = prev_points[-1][0]
        for segment_type, points in segments:
            if segment_type == 'curve':
                for sub_points in self._split_super_bezier_segments(points):
                    on_curve, smooth, name, kwargs = sub_points[-1]
                    bcp1, bcp2 = sub_points[0][0], sub_points[1][0]
                    cubic = [prev_on_curve, bcp1, bcp2, on_curve]
                    quad = curve_to_quadratic(cubic, self.max_err)
                    if self.stats is not None:
                        n = str(len(quad))
                        self.stats[n] = self.stats.get(n, 0) + 1
                    new_points = [(pt, False, None, {}) for pt in quad[1:-1]]
                    new_points.append((on_curve, smooth, name, kwargs))
                    new_segments.append(["qcurve", new_points])
                    prev_on_curve = sub_points[-1][0]
            else:
                new_segments.append([segment_type, points])
                prev_on_curve = points[-1][0]
        if closed:
            # the BasePointToSegmentPen.endPath method that calls _flushContour
            # rotates the point list of closed contours so that they end with
            # the first on-curve point. We restore the original starting point.
            new_segments = new_segments[-1:] + new_segments[:-1]
        self._drawPoints(new_segments)

    def _split_super_bezier_segments(self, points):
        sub_segments = []
        # n is the number of control points
        n = len(points) - 1
        if n == 2:
            # a simple bezier curve segment
            sub_segments.append(points)
        elif n > 2:
            # a "super" bezier; decompose it
            on_curve, smooth, name, kwargs = points[-1]
            num_sub_segments = n - 1
            for i, sub_points in enumerate(
                    decomposeSuperBezierSegment([pt
                                                 for pt, _, _, _ in points])):
                new_segment = []
                for point in sub_points[:-1]:
                    new_segment.append((point, False, None, {}))
                if i == (num_sub_segments - 1):
                    # the last on-curve keeps its original attributes
                    new_segment.append((on_curve, smooth, name, kwargs))
                else:
                    # on-curves of sub-segments are always "smooth"
                    new_segment.append((sub_points[-1], True, None, {}))
                sub_segments.append(new_segment)
        else:
            raise AssertionError("expected 2 control points, found: %d" % n)
        return sub_segments

    def _drawPoints(self, segments):
        pen = self.pen
        pen.beginPath()
        last_offcurves = []
        for i, (segment_type, points) in enumerate(segments):
            if segment_type in ("move", "line"):
                assert len(points) == 1, (
                    "illegal line segment point count: %d" % len(points))
                pt, smooth, name, kwargs = points[0]
                pen.addPoint(pt, segment_type, smooth, name, **kwargs)
            elif segment_type == "qcurve":
                assert len(points) >= 2, (
                    "illegal qcurve segment point count: %d" % len(points))
                offcurves = points[:-1]
                if offcurves:
                    if i == 0:
                        # any off-curve points preceding the first on-curve
                        # will be appended at the end of the contour
                        last_offcurves = offcurves
                    else:
                        for (pt, smooth, name, kwargs) in offcurves:
                            pen.addPoint(pt, None, smooth, name, **kwargs)
                pt, smooth, name, kwargs = points[-1]
                pen.addPoint(pt, segment_type, smooth, name, **kwargs)
            else:
                # 'curve' segments must have been converted to 'qcurve' by now
                raise AssertionError("unexpected segment type: %r" %
                                     segment_type)
        for (pt, smooth, name, kwargs) in last_offcurves:
            pen.addPoint(pt, None, smooth, name, **kwargs)
        pen.endPath()

    def addComponent(self, baseGlyphName, transformation):
        assert self.currentPath is None
        self.pen.addComponent(baseGlyphName, transformation)
    def drawShapeWithRectInGlyph(self, shape, rect, glyph):
        # draw the shape into the glyph
        # tell the glyph something is going to happen (undo is going to be prepared)
        glyph.prepareUndo("Drawing Shapes")

        # get the pen to draw with
        pen = glyph.getPointPen()
        if glyph.preferredSegmentType == "qcurve" and not self.shouldReverse:
            pen = ReverseContourPointPen(pen)
        elif self.shouldReverse:
            pen = ReverseContourPointPen(pen)

        x, y, w, h = rect

        # draw with the pen a rect in the glyph
        if shape == "rect":
            pen.beginPath()
            pen.addPoint(_roundPoint(x, y), "line")
            pen.addPoint(_roundPoint(x + w, y), "line")
            pen.addPoint(_roundPoint(x + w, y + h), "line")
            pen.addPoint(_roundPoint(x, y + h), "line")

            pen.endPath()

        # draw with the pen an oval in the glyph
        elif shape == "oval":

            hw = w / 2.
            hh = h / 2.

            r = .55
            segmentType = glyph.preferredSegmentType
            if glyph.preferredSegmentType == "qcurve":
                r = .42

            pen.beginPath()
            pen.addPoint(_roundPoint(x + hw, y), segmentType, True)
            pen.addPoint(_roundPoint(x + hw + hw * r, y))
            pen.addPoint(_roundPoint(x + w, y + hh - hh * r))

            pen.addPoint(_roundPoint(x + w, y + hh), segmentType, True)
            pen.addPoint(_roundPoint(x + w, y + hh + hh * r))
            pen.addPoint(_roundPoint(x + hw + hw * r, y + h))

            pen.addPoint(_roundPoint(x + hw, y + h), segmentType, True)
            pen.addPoint(_roundPoint(x + hw - hw * r, y + h))
            pen.addPoint(_roundPoint(x, y + hh + hh * r))

            pen.addPoint(_roundPoint(x, y + hh), segmentType, True)
            pen.addPoint(_roundPoint(x, y + hh - hh * r))
            pen.addPoint(_roundPoint(x + hw - hw * r, y))

            pen.endPath()

        # tell the glyph you are done with your actions so it can handle the undo properly
        glyph.performUndo()
        glyph.changed()
def convert(glyph, maxDistance, minLength, useArcLength):
	originalNumPoints = 0
	nbPoints = 0
	conts = []
	for contour in glyph:
		conts.append([])
		cmds = conts[-1]
		p0 = getFirstOnPoint(contour)
		nseg = len(contour)
		for s in range(nseg):
			seg = contour[s]
			if seg.type == 'line':
				originalNumPoints += 1
				p1 = seg.points[0]
				cmds.append((lineto, p1))
				nbPoints += 1
				p0 = p1
			elif seg.type == 'qcurve':
				#print("Should not have quadratic segment in here. Skipping.",)
				p0 = seg.points[-1]
			elif seg.type == 'curve':
				originalNumPoints += 3
				p1, p2, p3 = seg.points
				pt0 = Point(p0.x, p0.y)
				pt1 = Point(p1.x, p1.y)
				pt2 = Point(p2.x, p2.y)
				pt3 = Point(p3.x, p3.y)
				qsegs = []
				inputCubic = (pt0, pt1, pt2, pt3)
				for cubic in splitCubicOnInflection(inputCubic, minLength):
					qsegs = qsegs + adaptiveSmoothCubicSplit(cubic, maxDistance, minLength, useArcLength)
				nbQSegMinusOne = len(qsegs) - 1
				smooth = True
				for i, qseg in enumerate(qsegs):
					# We have to split the quad segment because Robofont does not (seem to) support
					# ON-OFF-ON quadratic bezier curves. If ever Robofont can handle this,
					# then it would suffice to write something like:
					#	(a0, a1, a2) = qseg
					#	cmds.append((curveto, (a1, a2)))

					if i == nbQSegMinusOne: smooth = seg.smooth
					q1, q2 = qseg
					cmds.append((curveto, (q1[1], q2[1], q2[2], smooth)))
					#ql, qr = splitQuadratic(0.5, qseg)
					#cmds.append((curveto, (ql[1], qr[1], qr[2], smooth)))
					nbPoints += 3
				p0 = p3
			else:
				#print("Unknown segment type: "+seg.type+". Skipping.",)
				p0 = seg.points[-1]
	glyph.clearContours()
	glyph.preferredSegmentStyle = 'qcurve'
	pen = ReverseContourPointPen(glyph.getPointPen())
	for cmds in conts:
		if cmds == []: continue
		pen.beginPath()
		for action, args in cmds:
			action(pen, args)
		pen.endPath()
	# Now, we make sure that each contour starts with a ON control point
	for contour in glyph:
		contour.setStartSegment(0)
	glyph.changed()
	return originalNumPoints, nbPoints