Beispiel #1
0
def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
    ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
               keepdims=keepdims)

    if isinstance(ret, mu.ndarray):
        ret = um.sqrt(ret, out=ret)
    else:
        ret = um.sqrt(ret)

    return ret
Beispiel #2
0
def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
    ret = _var(a,
               axis=axis,
               dtype=dtype,
               out=out,
               ddof=ddof,
               keepdims=keepdims)

    if isinstance(ret, mu.ndarray):
        ret = um.sqrt(ret, out=ret)
    else:
        ret = um.sqrt(ret)

    return ret
Beispiel #3
0
    print '*' * 80
    print 'Example of a three part assembly'
    x1 = N(24, 1)
    x2 = N(37, 4)
    x3 = Exp(2)  # Exp(mu=0.5) is the same
    Z = (x1 * x2**2) / (15 * (1.5 + x3))
    Z.describe()

    print '*' * 80
    print 'Example of volumetric gas flow through orifice meter'
    H = N(64, 0.5)
    M = N(16, 0.1)
    P = N(361, 2)
    t = N(165, 0.5)
    C = 38.4
    Q = C * umath.sqrt((520 * H * P) / (M * (t + 460)))
    Q.describe()

    print '*' * 80
    print 'Example of manufacturing tolerance stackup'
    # for a gamma distribution we need the following conversions:
    # shape = mean**2/var
    # scale = var/mean
    mn = 1.5
    vr = 0.25
    k = mn**2 / vr
    theta = vr / mn
    x = Gamma(k, theta)
    y = Gamma(k, theta)
    z = Gamma(k, theta)
    w = x + y + z
Beispiel #4
0
# Temperature units
# internal unit: K

K = 1                       # Kelvin

# Pressure units
# internal unit: kJ/mol/nm**3

Pa = J/m**3                 # Pascal
bar = 1.e5*Pa               # bar
atm = 101325*Pa             # atmosphere

# Constants

h = 6.626176e-34*J*s
hbar = h/(2.*pi)
k_B = 1.3806513e-23*J/K
eps0 = 1./(4.e-7*pi)*A**2*m/J/c**2

me = 0.51099906*mega*eV/c**2

electrostatic_energy = 1/(4.*pi*eps0)

# CHARMM time unit
akma_time = umath.sqrt(Ang**2/(kcal/mol))

# "Atomic" units
Bohr = 4.*pi*eps0*hbar**2/(me*e**2)
Hartree = hbar**2/(me*Bohr**2)
Beispiel #5
0
def point_distances(vec1, vec2):
   return umath.sqrt((vec2.real-vec1.real)**2.0 +
                     (vec2.imag-vec1.imag)**2.0)
Beispiel #6
0
    print '*'*80
    print 'Example of a three part assembly'
    x1 = N(24, 1)
    x2 = N(37, 4)
    x3 = Exp(2)  # Exp(mu=0.5) is the same
    Z = (x1*x2**2)/(15*(1.5 + x3))
    Z.describe()
    
    print '*'*80
    print 'Example of volumetric gas flow through orifice meter'
    H = N(64, 0.5)
    M = N(16, 0.1)
    P = N(361, 2)
    t = N(165, 0.5)
    C = 38.4
    Q = C*umath.sqrt((520*H*P)/(M*(t + 460)))
    Q.describe()

    print '*'*80
    print 'Example of manufacturing tolerance stackup'
    # for a gamma distribution we need the following conversions:
    # shape = mean**2/var
    # scale = var/mean
    mn = 1.5
    vr = 0.25
    k = mn**2/vr
    theta = vr/mn
    x = Gamma(k, theta)
    y = Gamma(k, theta)
    z = Gamma(k, theta)
    w = x + y + z
Beispiel #7
0
def point_distances(vec1, vec2):
    return umath.sqrt((vec2.real - vec1.real)**2.0 +
                      (vec2.imag - vec1.imag)**2.0)