Beispiel #1
0
def go(parameter_list=[["a", 0.02, None], ["b", 0.2, None], ["c", -65, None],
                       ["d", 8, None]]):

    # Create the parameters
    parameters = un.Parameters(parameter_list)

    # Set all parameters to have a uniform distribution
    # within a 50% interval around their fixed value
    parameters.set_all_distributions(un.uniform(0.5))

    # Create a model from coffee_cup function and add labels
    model = un.Model(izhikevich, labels=["Time (ms)", "Voltage (mV)"])

    # Initialize features
    features = un.SpikingFeatures(features_to_run="all")

    # Perform the uncertainty quantification
    UQ = un.UncertaintyQuantification(model=model,
                                      parameters=parameters,
                                      features=features)
    data = UQ.quantify()
Beispiel #2
0
    data['conductivity']['medium'] = float(conductivity_medium)
    data['permittivity']['medium'] = float(permittivity_medium)
    data['permittivity']['dish'] = float(permittivity_dish)
    data['solver']['linear_solver'] = 'mumps'

    with open('parameters_griffin2011mesh.yml', 'w') as stream:
        yaml.dump(data, stream)

    model = Simulation('parameters_griffin2011mesh.yml')
    model.set_log_level("DEBUG")
    model.run()

    field = model.fenics_study.normEr(0.05, 0.05, 0.01101)
    print("Solved for conductivity of medium: ", data['conductivity']['medium'])
    print("Solved for permittivity of medium: ", data['permittivity']['medium'])
    print("Solved for conductivity of dish: ", data['conductivity']['dish'])
    print("Got field: ", field)

    return 1, field


parameters = {'conductivity_medium': cp.Uniform(1.0, 1.5),
              'permittivity_medium': cp.Uniform(60, 80),
              'permittivity_dish': cp.Uniform(2.5, 4.0)
              }

uq_model = un.Model(griffinmodel, labels=[r"Electric Field Strength [V/m]"])
UQ = un.UncertaintyQuantification(model=uq_model, parameters=parameters, CPUs=None)

data = UQ.quantify(seed=42, method="pc")
Beispiel #3
0
    time = np.linspace(0, 200, 150)  # Minutes
    T_0 = 95  # Celsius

    # The equation describing the model
    def f(T, time, kappa, T_env):
        return -kappa * (T - T_env)

    # Solving the equation by integration
    temperature = odeint(f, T_0, time, args=(kappa, T_env))[:, 0]

    # Return time and model output
    return time, temperature


# Create a model from the coffee_cup function and add labels
model = un.Model(run=coffee_cup, labels=["Time (min)", "Temperature (C)"])

# Create the distributions
kappa_dist = cp.Uniform(0.025, 0.075)
T_env_dist = cp.Uniform(15, 25)

# Define the parameter dictionary
parameters = {"kappa": kappa_dist, "T_env": T_env_dist}

# Set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model, parameters=parameters)

# Perform the uncertainty quantification using
# polynomial chaos with point collocation (by default)
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)
Beispiel #4
0
import uncertainpy as un
import chaospy as cp
import numpy as np

from valderrama import valderrama

reruns = 50

exact_mc = 200000
mc_evaluations = [10, 100, 200, 300, 400, 500, 1000, 1500, 2000, 10000]
polynomial_orders_3 = np.arange(1, 8)
polynomial_orders_11 = np.arange(1, 5)

# Few parameters
model = un.Model(run=valderrama,
                 labels=["Time (ms)", "Membrane potential (mV)"])

# Define a parameter list
parameters = {"gbar_Na": 120, "gbar_K": 36, "gbar_L": 0.3}

# Create the parameters
parameters = un.Parameters(parameters)

# Set all parameters to have a uniform distribution
# within a 20% interval around their fixed value
parameters.set_all_distributions(un.uniform(0.2))

# Setup the uncertainty quantification
UQ = un.UncertaintyQuantification(model, parameters=parameters)

folder = "data/parameters_3/"
Beispiel #5
0
def main():
    
    # Read sensitivity analysis config file
    sens_config_file = sys.argv[-1]
    sens_config_dict = utility.load_json(sens_config_file)
    cell_id = sens_config_dict['Cell_id']
    cpu_count = sens_config_dict['cpu_count'] if 'cpu_count'\
            in sens_config_dict.keys() else mp.cpu_count()
    perisomatic_sa = sens_config_dict.get('run_peri_analysis',False)
    
    # Parameters to vary (All-active) 
    select_aa_param_path = sens_config_dict['select_aa_param_path'] # knobs
    
    # Parameters to vary (Perisomatic) 
    if perisomatic_sa:
        select_peri_param_path = sens_config_dict['select_peri_param_path'] # knobs
    
    select_feature_path = sens_config_dict['select_feature_path'] # knobs
    param_mod_range = sens_config_dict.get('param_mod_range',.1) # knobs
    mechanism_path = sens_config_dict['mechanism']
    
    # config files with all the paths for Bluepyopt sim    
    lr = lims.LimsReader()
    morph_path = lr.get_swc_path_from_lims(int(cell_id))
    
    model_base_path='/allen/aibs/mat/ateam_shared/' \
                         'Mouse_Model_Fit_Metrics/{}'.format(cell_id)
                         
    opt_config_file = os.path.join(model_base_path,'config_file.json')
    if not os.path.exists(opt_config_file):
        opt_config = {
                "morphology": "",
                "parameters": "config/{}/parameters.json".format(cell_id),
                "mechanism": "config/{}/mechanism.json".format(cell_id),
                "protocols": "config/{}/protocols.json".format(cell_id),
                "all_protocols": "config/{}/all_protocols.json".format(cell_id),
                "features": "config/{}/features.json".format(cell_id),
                "peri_parameters": "config/{}/peri_parameters.json".format(cell_id),
                "peri_mechanism": "config/{}/peri_mechanism.json".format(cell_id)
                }
        opt_config_file = os.path.join(os.getcwd(),'config_file.json')
        utility.save_json(opt_config_file,opt_config)
    
    # optimized parameters around which select parameters are varied
    optim_param_path_aa = '/allen/aibs/mat/ateam_shared/Mouse_Model_Fit_Metrics/'\
    '{cell_id}/fitted_params/optim_param_unformatted_{cell_id}.json'.\
                    format(cell_id = cell_id)
    if not os.path.exists(optim_param_path_aa):
        optim_param_path_aa = '/allen/aibs/mat/ateam_shared/Mouse_Model_Fit_Metrics/'\
            '{cell_id}/fitted_params/optim_param_{cell_id}_bpopt.json'.\
                    format(cell_id = cell_id)
    
    SA_obj_aa = SA_helper(optim_param_path_aa,select_aa_param_path,param_mod_range,
                       opt_config_file)
    
    _,protocol_path,mech_path,feature_path,\
        param_bound_path = SA_obj_aa.load_config(model_base_path)
        
    # Make sure to get the parameter bounds big enough for BluePyOpt sim
    sens_param_bound_write_path_aa = "param_sensitivity_aa.json"
    optim_param_aa = SA_obj_aa.create_sa_bound(param_bound_path,
                                         sens_param_bound_write_path_aa)    
    param_dict_uc_aa = SA_obj_aa.create_sens_param_dict()
    parameters_aa ={key:optim_param_aa[val] for key,val in param_dict_uc_aa.items()}
    eval_handler_aa = Bpopt_Evaluator(protocol_path, feature_path,
                                   morph_path, sens_param_bound_write_path_aa,
                                   mech_path,
                                   ephys_dir=None,
                                   timed_evaluation = False)
    evaluator_aa = eval_handler_aa.create_evaluator()
    opt_aa = bpopt.optimisations.DEAPOptimisation(evaluator=evaluator_aa)
    
    
    stim_protocols = utility.load_json(protocol_path)
    stim_protocols = {key:val for key,val in stim_protocols.items() \
                      if 'LongDC' in key}
    stim_dict = {key:val['stimuli'][0]['amp'] \
                     for key,val in stim_protocols.items()}
    sorted_stim_tuple= sorted(stim_dict.items(), key=operator.itemgetter(1))
    
    stim_name= sorted_stim_tuple[-1][0] # knobs (the max amp)
    
    # Copy compiled modfiles
    if not os.path.isdir('x86_64'):
        raise Exception('Compiled modfiles do not exist')
    
    efel_features = utility.load_json(select_feature_path)
    un_features = un.EfelFeatures(features_to_run=efel_features)
    
    un_parameters_aa = un.Parameters(parameters_aa)
    un_parameters_aa.set_all_distributions(un.uniform(param_mod_range))
    un_model_aa = un.Model(run=nrnsim_bpopt, interpolate=True,
                 labels=["Time (ms)", "Membrane potential (mV)"],
                 opt=opt_aa,stim_protocols =stim_protocols,
                 param_dict_uc = param_dict_uc_aa,
                 stim_name=stim_name,
                 optim_param=optim_param_aa)
    
    
    # Perform the uncertainty quantification
    UQ_aa = un.UncertaintyQuantification(un_model_aa,
                                      parameters=un_parameters_aa,
                                      features=un_features)    
    data_folder = 'sensitivity_data'
    sa_filename_aa = 'sa_allactive_%s.h5'%cell_id
    sa_filename_aa_csv = 'sa_allactive_%s.csv'%cell_id
    sa_data_path_aa = os.path.join(data_folder,sa_filename_aa)
    sa_aa_csv_path = os.path.join(data_folder,sa_filename_aa_csv)
    
    UQ_aa.quantify(seed=0,CPUs=cpu_count,data_folder=data_folder,
                   filename= sa_filename_aa)
    _ = SA_obj_aa.save_analysis_data(sa_data_path_aa,
                                filepath=sa_aa_csv_path)
        
    cell_data_aa =  un.Data(sa_data_path_aa)
    SA_obj_aa.plot_sobol_analysis(cell_data_aa,analysis_path = \
                          'figures/sa_analysis_aa_%s.pdf'%cell_id,
                          palette='Set1')
    
    # Perisomatic model
    
    if perisomatic_sa:
    
        try:
            optim_param_path_peri = None
            SA_obj_peri = SA_helper(optim_param_path_peri,select_peri_param_path,param_mod_range,
                                   opt_config_file)
            _,_,mech_path_peri,_,\
                    param_bound_path_peri = SA_obj_peri.load_config(model_base_path,
                                                                perisomatic=True)
            
            sens_param_bound_write_path_peri = "param_sensitivity_peri.json"
            optim_param_peri = SA_obj_peri.create_sa_bound_peri(param_bound_path_peri,
                                                     sens_param_bound_write_path_peri)
            
            param_dict_uc_peri = SA_obj_peri.create_sens_param_dict()
            parameters_peri ={key:optim_param_peri[val] for key,val in param_dict_uc_peri.items()}
            eval_handler_peri = Bpopt_Evaluator(protocol_path, feature_path,
                                               morph_path, sens_param_bound_write_path_peri,
                                               mech_path_peri,
                                               ephys_dir=None,
                                               timed_evaluation = False)
            evaluator_peri = eval_handler_peri.create_evaluator()
            opt_peri = bpopt.optimisations.DEAPOptimisation(evaluator=evaluator_peri)
            un_parameters_peri= un.Parameters(parameters_peri)
            un_parameters_peri.set_all_distributions(un.uniform(param_mod_range))
            un_model_peri = un.Model(run=nrnsim_bpopt, interpolate=True,
                             labels=["Time (ms)", "Membrane potential (mV)"],
                             opt=opt_peri,stim_protocols =stim_protocols,
                             param_dict_uc = param_dict_uc_peri,
                             stim_name=stim_name,
                             optim_param=optim_param_peri)
            UQ_peri = un.UncertaintyQuantification(un_model_peri,
                                                  parameters=un_parameters_peri,
                                                  features=un_features)
            sa_filename_peri = 'sa_perisomatic_%s.h5'%cell_id
            sa_filename_peri_csv = 'sa_perisomatic_%s.csv'%cell_id
            sa_data_path_peri = os.path.join(data_folder,sa_filename_peri)
            sa_peri_csv_path = os.path.join(data_folder,sa_filename_peri_csv)
            
            UQ_peri.quantify(seed=0,CPUs=cpu_count,data_folder=data_folder,
                           filename= sa_filename_peri)
            _ = SA_obj_peri.save_analysis_data(sa_data_path_peri,
                                            filepath=sa_peri_csv_path)
            cell_data_peri =  un.Data(sa_data_path_peri)    
            SA_obj_peri.plot_sobol_analysis(cell_data_peri,analysis_path = \
                                      'figures/sa_analysis_peri_%s.pdf'%cell_id,
                                      palette='Set2')
        except Exception as e:
            print(e)
Beispiel #6
0
    time = np.linspace(0, 200, 150)            # Minutes
    T_0 = 95                                   # Celsius

    # The equation describing the model
    def f(T, time, alpha, kappa_hat, T_env):
        return -alpha*kappa_hat*(T - T_env)

    # Solving the equation by integration.
    temperature = odeint(f, T_0, time, args=(alpha, kappa_hat, T_env))[:, 0]

    # Return time and model results
    return time, temperature


# Create a model from the coffee_cup_dependent function and add labels
model = un.Model(coffee_cup_dependent, labels=["Time (s)", "Temperature (C)"])

# Create the distributions
T_env_dist = cp.Uniform(15, 25)
alpha_dist = cp.Uniform(0.5, 1.5)
kappa_hat_dist = cp.Uniform(0.025, 0.075)/alpha_dist

# Define the parameters dictionary
parameters = {"alpha": alpha_dist,
              "kappa_hat": kappa_hat_dist,
              "T_env": T_env_dist}

# We can use the parameters dictionary directly
# when we set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model, parameters=parameters)