def initialize_parameters(default_model='uno_default_model.txt'): # Build benchmark object unoBmk = benchmark.BenchmarkUno(benchmark.file_path, default_model, 'keras', prog='uno_baseline', desc='Build neural network based models to predict tumor response to single and paired drugs.') # Initialize parameters gParameters = finalize_parameters(unoBmk) # benchmark.logger.info('Params: {}'.format(gParameters)) return gParameters
def initialize_parameters(): # Build benchmark object #mymodel_common = candle.Benchmark(file_path,os.getenv("DEFAULT_PARAMS_FILE"),'keras',prog='myprog',desc='My model') unoBmk = benchmark.BenchmarkUno( benchmark.file_path, os.getenv("DEFAULT_PARAMS_FILE"), 'keras', prog='uno_baseline', desc= 'Build neural network based models to predict tumor response to single and paired drugs.' ) # Initialize parameters hyperparams = candle.initialize_parameters(unoBmk) #benchmark.logger.info('Params: {}'.format(hyperparams)) return hyperparams