Beispiel #1
0
def check_classification_synthetic(presort, loss):
    # Test GradientBoostingClassifier on synthetic dataset used by
    # Hastie et al. in ESLII Example 12.7.
    X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1)

    X_train, X_test = X[:2000], X[2000:]
    y_train, y_test = y[:2000], y[2000:]

    gbrt = GradientBoostingClassifier(n_estimators=100,
                                      min_samples_split=2,
                                      max_depth=1,
                                      loss=loss,
                                      learning_rate=1.0,
                                      random_state=0)
    gbrt.fit(X_train, y_train)
    error_rate = (1.0 - gbrt.score(X_test, y_test))
    assert_less(error_rate, 0.09)

    gbrt = GradientBoostingClassifier(n_estimators=200,
                                      min_samples_split=2,
                                      max_depth=1,
                                      loss=loss,
                                      learning_rate=1.0,
                                      subsample=0.5,
                                      random_state=0,
                                      presort=presort)
    gbrt.fit(X_train, y_train)
    error_rate = (1.0 - gbrt.score(X_test, y_test))
    assert_less(error_rate, 0.08)
Beispiel #2
0
def test_non_uniform_weights_toy_edge_case_clf():
    X = [[1, 0], [1, 0], [1, 0], [0, 1]]
    y = [0, 0, 1, 0]
    # ignore the first 2 training samples by setting their weight to 0
    sample_weight = [0, 0, 1, 1]
    for loss in ('deviance', 'exponential'):
        gb = GradientBoostingClassifier(n_estimators=5)
        gb.fit(X, y, sample_weight=sample_weight)
        assert_array_equal(gb.predict([[1, 0]]), [1])
Beispiel #3
0
def test_check_inputs():
    # Test input checks (shape and type of X and y).
    clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
    assert_raises(ValueError, clf.fit, X, y + [0, 1])

    clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
    assert_raises(ValueError,
                  clf.fit,
                  X,
                  y,
                  sample_weight=([1] * len(y)) + [0, 1])
Beispiel #4
0
def test_loss_function():
    assert_raises(ValueError, GradientBoostingClassifier(loss='ls').fit, X, y)
    assert_raises(ValueError, GradientBoostingClassifier(loss='lad').fit, X, y)
    assert_raises(ValueError,
                  GradientBoostingClassifier(loss='quantile').fit, X, y)
    assert_raises(ValueError,
                  GradientBoostingClassifier(loss='huber').fit, X, y)
    assert_raises(ValueError,
                  GradientBoostingRegressor(loss='deviance').fit, X, y)
    assert_raises(ValueError,
                  GradientBoostingRegressor(loss='exponential').fit, X, y)
Beispiel #5
0
def test_check_inputs_predict():
    # X has wrong shape
    clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
    clf.fit(X, y)

    x = np.array([1.0, 2.0])[:, np.newaxis]
    assert_raises(ValueError, clf.predict, x)

    x = np.array([[]])
    assert_raises(ValueError, clf.predict, x)

    x = np.array([1.0, 2.0, 3.0])[:, np.newaxis]
    assert_raises(ValueError, clf.predict, x)

    clf = GradientBoostingRegressor(n_estimators=100, random_state=1)
    clf.fit(X, rng.rand(len(X)))

    x = np.array([1.0, 2.0])[:, np.newaxis]
    assert_raises(ValueError, clf.predict, x)

    x = np.array([[]])
    assert_raises(ValueError, clf.predict, x)

    x = np.array([1.0, 2.0, 3.0])[:, np.newaxis]
    assert_raises(ValueError, clf.predict, x)
Beispiel #6
0
def test_friedman_mse_in_graphviz():
    clf = DecisionTreeRegressor(criterion="friedman_mse", random_state=0)
    clf.fit(X, y)
    dot_data = StringIO()
    export_graphviz(clf, out_file=dot_data)

    clf = GradientBoostingClassifier(n_estimators=2, random_state=0)
    clf.fit(X, y)
    for estimator in clf.estimators_:
        export_graphviz(estimator[0], out_file=dot_data)

    for finding in finditer("\[.*?samples.*?\]", dot_data.getvalue()):
        assert_in("friedman_mse", finding.group())
Beispiel #7
0
def test_warm_start_wo_nestimators_change():
    # Test if warm_start does nothing if n_estimators is not changed.
    # Regression test for #3513.
    clf = GradientBoostingClassifier(n_estimators=10, warm_start=True)
    clf.fit([[0, 1], [2, 3]], [0, 1])
    assert_equal(clf.estimators_.shape[0], 10)
    clf.fit([[0, 1], [2, 3]], [0, 1])
    assert_equal(clf.estimators_.shape[0], 10)
Beispiel #8
0
def check_iris(presort, subsample, sample_weight):
    # Check consistency on dataset iris.
    clf = GradientBoostingClassifier(n_estimators=100,
                                     loss='deviance',
                                     random_state=1,
                                     subsample=subsample,
                                     presort=presort)
    clf.fit(iris.data, iris.target, sample_weight=sample_weight)
    score = clf.score(iris.data, iris.target)
    assert_greater(score, 0.9)

    leaves = clf.apply(iris.data)
    assert_equal(leaves.shape, (150, 100, 3))
Beispiel #9
0
def test_probability_log():
    # Predict probabilities.
    clf = GradientBoostingClassifier(n_estimators=100, random_state=1)

    assert_raises(ValueError, clf.predict_proba, T)

    clf.fit(X, y)
    assert_array_equal(clf.predict(T), true_result)

    # check if probabilities are in [0, 1].
    y_proba = clf.predict_proba(T)
    assert_true(np.all(y_proba >= 0.0))
    assert_true(np.all(y_proba <= 1.0))

    # derive predictions from probabilities
    y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0)
    assert_array_equal(y_pred, true_result)
Beispiel #10
0
def test_probability_exponential():
    # Predict probabilities.
    clf = GradientBoostingClassifier(loss='exponential',
                                     n_estimators=100,
                                     random_state=1)

    assert_raises(ValueError, clf.predict_proba, T)

    clf.fit(X, y)
    assert_array_equal(clf.predict(T), true_result)

    # check if probabilities are in [0, 1].
    y_proba = clf.predict_proba(T)
    assert_true(np.all(y_proba >= 0.0))
    assert_true(np.all(y_proba <= 1.0))
    score = clf.decision_function(T).ravel()
    assert_array_almost_equal(y_proba[:, 1], 1.0 / (1.0 + np.exp(-2 * score)))

    # derive predictions from probabilities
    y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0)
    assert_array_equal(y_pred, true_result)