# In[ ]:

import os.path
from scipy.io import loadmat

mat = os.path.join('..', 't_tide_v1.3beta', 't_constituents.mat')
con_info = loadmat(mat, squeeze_me=True)
con_info = con_info['const']  # I am ignore shallow water and sat constants!


# In[ ]:

from utide import _ut_constants_fname
from utide.utilities import loadmatbunch

con_info = loadmatbunch(_ut_constants_fname)['const']


# In[ ]:

# Find the indices of the tidal constituents.

k = 0
ind_nc, ind_ttide = [], []

const_name = [e.strip() for e in con_info['name'].tolist()]

for name in consts:
    try:
        if name == 'STEADY':
            indx = const_name.index('Z0')
Beispiel #2
0
print('Size of boundary: ', len(bnd))
seg_types = [0] * len(bnd)
adcirc.order_boundary(bnd, seg_types)

adcirc.update(
    os.path.join(data_files_dir, 'vdatum', 'vdatum_fl_sab_adcirc54.nc'))

names = []
const = adcirc.Dataset.variables['tidenames'][:]
for name in const:
    names.append(''.join(name.tolist()).strip())

from utide import _ut_constants_fname
from utide.utilities import loadmatbunch

con_info = loadmatbunch(_ut_constants_fname)['const']

k = 0
ind_nc, ind_ttide = [], []

const_name = [e.strip() for e in con_info['name'].tolist()]

consts = ['STEADY', 'M2', 'S2', 'N2', 'K1', 'O1', 'P1', 'M4', 'M6']
for name in consts:
    try:
        if name == 'STEADY':
            indx = const_name.index('Z0')
        else:
            indx = const_name.index(name)
        k += 1
        ind_ttide.append(indx)
Beispiel #3
0
    def get_tidal_vectors(self,
                          layer,
                          time,
                          bbox,
                          vector_scale=None,
                          vector_step=None):

        vector_scale = vector_scale or 1
        vector_step = vector_step or 1

        with netCDF4.Dataset(self.topology_file) as nc:
            data_obj = nc.variables[layer.access_name]
            data_location = getattr(data_obj, 'location', 'node')
            mesh_name = data_obj.mesh

            ug = UGrid.from_nc_dataset(nc, mesh_name=mesh_name)
            coords = np.empty(0)
            if data_location == 'node':
                coords = ug.nodes
            elif data_location == 'face':
                coords = ug.face_coordinates
            elif data_location == 'edge':
                coords = ug.edge_coordinates

            lon = coords[:, 0]
            lat = coords[:, 1]

            padding_factor = calc_safety_factor(vector_scale)
            padding = calc_lon_lat_padding(lon, lat,
                                           padding_factor) * vector_step
            spatial_idx = data_handler.ugrid_lat_lon_subset_idx(
                lon, lat, bbox=bbox, padding=padding)

            tnames = nc.get_variables_by_attributes(
                standard_name='tide_constituent')[0]
            tfreqs = nc.get_variables_by_attributes(
                standard_name='tide_frequency')[0]

            from utide import _ut_constants_fname
            from utide.utilities import loadmatbunch
            con_info = loadmatbunch(_ut_constants_fname)['const']

            # Get names from the utide constant file
            utide_const_names = [e.strip() for e in con_info['name'].tolist()]

            # netCDF4-python is returning ugly arrays of bytes...
            names = []
            for n in tnames[:]:
                z = ''.join([x.decode('utf-8') for x in n.tolist()
                             if x]).strip()
                names.append(z)

            if 'STEADY' in names:
                names[names.index('STEADY')] = 'Z0'
            extract_names = list(
                set(utide_const_names).intersection(set(names)))

            ntides = data_obj.shape[data_obj.dimensions.index('ntides')]
            extract_mask = np.zeros(shape=(ntides, ), dtype=bool)
            for n in extract_names:
                extract_mask[names.index(n)] = True

            if not spatial_idx.any() or not extract_mask.any():
                e = np.ma.empty(0)
                return e, e, e, e

            ua = nc.variables['u'][extract_mask, spatial_idx]
            va = nc.variables['v'][extract_mask, spatial_idx]
            up = nc.variables['u_phase'][extract_mask, spatial_idx]
            vp = nc.variables['v_phase'][extract_mask, spatial_idx]
            freqs = tfreqs[extract_mask]

            omega = freqs * 3600  # Convert from radians/s to radians/hour.

            from utide.harmonics import FUV
            from matplotlib.dates import date2num
            v, u, f = FUV(
                t=np.array([date2num(time) + 366.1667]),
                tref=np.array([0]),
                lind=np.array(
                    [utide_const_names.index(x) for x in extract_names]),
                lat=
                55,  # Reference latitude for 3rd order satellites (degrees) (55 is fine always)
                ngflgs=[0, 0, 0,
                        0])  # [NodsatLint NodsatNone GwchLint GwchNone]

            s = calendar.timegm(time.timetuple()) / 60 / 60.
            v, u, f = map(np.squeeze, (v, u, f))
            v = v * 2 * np.pi  # Convert phase in radians.
            u = u * 2 * np.pi  # Convert phase in radians.

            U = (f * ua.T *
                 np.cos(v + s * omega + u - up.T * np.pi / 180)).sum(axis=1)
            V = (f * va.T *
                 np.cos(v + s * omega + u - vp.T * np.pi / 180)).sum(axis=1)

            return U, V, lon[spatial_idx], lat[spatial_idx]
Beispiel #4
0
    def get_tidal_vectors(self, layer, time, bbox, vector_scale=None, vector_step=None):

        vector_scale = vector_scale or 1
        vector_step = vector_step or 1

        with netCDF4.Dataset(self.topology_file) as nc:
            data_obj = nc.variables[layer.access_name]
            data_location = getattr(data_obj, 'location', 'node')
            mesh_name = data_obj.mesh

            ug = UGrid.from_nc_dataset(nc, mesh_name=mesh_name)
            coords = np.empty(0)
            if data_location == 'node':
                coords = ug.nodes
            elif data_location == 'face':
                coords = ug.face_coordinates
            elif data_location == 'edge':
                coords = ug.edge_coordinates

            lon = coords[:, 0]
            lat = coords[:, 1]

            padding_factor = calc_safety_factor(vector_scale)
            padding = calc_lon_lat_padding(lon, lat, padding_factor) * vector_step
            spatial_idx = data_handler.ugrid_lat_lon_subset_idx(lon, lat,
                                                                bbox=bbox,
                                                                padding=padding)

            tnames = nc.get_variables_by_attributes(standard_name='tide_constituent')[0]
            tfreqs = nc.get_variables_by_attributes(standard_name='tide_frequency')[0]

            from utide import _ut_constants_fname
            from utide.utilities import loadmatbunch
            con_info = loadmatbunch(_ut_constants_fname)['const']

            # Get names from the utide constant file
            utide_const_names = [ e.strip() for e in con_info['name'].tolist() ]

            # netCDF4-python is returning ugly arrays of bytes...
            names = []
            for n in tnames[:]:
                z = ''.join([ x.decode('utf-8') for x in n.tolist() if x ]).strip()
                names.append(z)

            if 'STEADY' in names:
                names[names.index('STEADY')] = 'Z0'
            extract_names = list(set(utide_const_names).intersection(set(names)))

            ntides = data_obj.shape[data_obj.dimensions.index('ntides')]
            extract_mask = np.zeros(shape=(ntides,), dtype=bool)
            for n in extract_names:
                extract_mask[names.index(n)] = True

            if not spatial_idx.any() or not extract_mask.any():
                e = np.ma.empty(0)
                return e, e, e, e

            ua = nc.variables['u'][extract_mask, spatial_idx]
            va = nc.variables['v'][extract_mask, spatial_idx]
            up = nc.variables['u_phase'][extract_mask, spatial_idx]
            vp = nc.variables['v_phase'][extract_mask, spatial_idx]
            freqs = tfreqs[extract_mask]

            omega = freqs * 3600  # Convert from radians/s to radians/hour.

            from utide.harmonics import FUV
            from matplotlib.dates import date2num
            v, u, f = FUV(t=np.array([date2num(time) + 366.1667]),
                          tref=np.array([0]),
                          lind=np.array([ utide_const_names.index(x) for x in extract_names ]),
                          lat=55,  # Reference latitude for 3rd order satellites (degrees) (55 is fine always)
                          ngflgs=[0, 0, 0, 0])  # [NodsatLint NodsatNone GwchLint GwchNone]

            s = calendar.timegm(time.timetuple()) / 60 / 60.
            v, u, f = map(np.squeeze, (v, u, f))
            v = v * 2 * np.pi  # Convert phase in radians.
            u = u * 2 * np.pi  # Convert phase in radians.

            U = (f * ua.T * np.cos(v + s * omega + u - up.T * np.pi / 180)).sum(axis=1)
            V = (f * va.T * np.cos(v + s * omega + u - vp.T * np.pi / 180)).sum(axis=1)

            return U, V, lon[spatial_idx], lat[spatial_idx]