def loadObs(self,stackLabel): timestampList = self.params[stackLabel+'Sequence'] run = self.params['run'] sunsetDate = self.params[stackLabel+'SunsetDate'] utcDate = self.params[stackLabel+'UtcDate'] intTime = self.params[stackLabel+'IntTime'] wvlLowerCutoff = self.params[stackLabel+'WvlLowerCutoff'] wvlUpperCutoff = self.params[stackLabel+'WvlUpperCutoff'] calTimestamp = self.params[stackLabel+'WvlTimestamp'] print stackLabel,calTimestamp wvlSolnFileName = FileName(run=run,date=sunsetDate,tstamp=calTimestamp).calSoln() wvlCalFileName = FileName(run=run,date=self.params[stackLabel+'WvlSunsetDate'],tstamp=calTimestamp).cal() flatSolnFileName = FileName(run=run,date=self.params[stackLabel+'FlatCalSunsetDate'],tstamp=self.params[stackLabel+'FlatCalTimestamp']).flatSoln() obsFileNames = [FileName(run=run,date=sunsetDate,tstamp=timestamp).obs() for timestamp in timestampList] obList = [ObsFile(obsFn) for obsFn in obsFileNames] for ob in obList: ob.loadWvlCalFile(wvlSolnFileName) ob.loadFlatCalFile(flatSolnFileName) self.stackObsFileLists[stackLabel] = obList cal = ObsFile(wvlCalFileName) cal.loadWvlCalFile(wvlSolnFileName) cal.loadFlatCalFile(flatSolnFileName) self.stackWvlCals[stackLabel] = cal
def findv1(self): populationMax=2000 ySum = np.zeros(populationMax) frameSum = 'none' seq5 = self.s['seq5'].split() for seq in seq5: print "seq=",seq outfileName = "cosmicTimeList-"+seq+".pkl" if not os.path.exists(outfileName): fn = FileName(self.s['run'], self.s['sundownDate'], self.s['obsDate']+"-"+str(seq)) cosmic = Cosmic(fn, beginTime=self.s['beginTime'], endTime=self.s['endTime'], loggingLevel = logging.INFO) fc = cosmic.findCosmics(stride=int(self.s['stride']), threshold=int(self.s['threshold']), populationMax=populationMax, nSigma=float(self.s['nSigma'])) outfile = open(outfileName, "wb") pickle.dump(fc['cosmicTimeList'],outfile) pickle.dump(fc['binContents'],outfile) outfile.close() cfn = "cosmicMask-%s.h5"%seq ObsFile.writeCosmicIntervalToFile(fc['interval'],1.0e6, cfn, self.s['beginTime'], self.s['endTime'], int(self.s['stride']), int(self.s['threshold']), float(self.s['nSigma']), populationMax) del cosmic
def testLoadBeammap(): ''' Test if a remapped beammap is actually remapped ''' #open an obs file from PAL2012,the sky file for hr9087 #we'll use the embedded beammap file, which has some misplaced pixels run = 'PAL2012' date = '20121210' obsTimestamp = '20121211-051650' obsFN = FileName(run=run,date=date,tstamp=obsTimestamp) obsFileName = obsFN.obs() obs = ObsFile(obsFileName) beammapFileName = obsFN.beammap() #load the PixelMap for PAL2012 to know which pixels should be remapped pixMap = remapPixels.PixelMap(obsFN.pixRemap()) pixMapSourceList,pixMapDestList = pixMap.getRemappedPix() #load the corrected beammap into the obs obs.loadBeammapFile(beammapFileName) #check that each pixel that should be moved is moved #by comparing the embedded beammap and the loaded corrected one for source,dest in zip(pixMapSourceList,pixMapDestList): assert obs.beamImage[dest] == obs.file.root.beammap.beamimage[source] obs.file.close()
def main(): np.set_printoptions(threshold=np.nan) testPixelRow = 24 testPixelCol = 17 #obs_20120919-131142.h5,obs_20120919-131346.h5 #create a cal file from a twilight flat cal = FlatCal('../../params/flatCal.dict') #open another twilight flat as an observation and apply a wavelength cal and the new flat cal # run='LICK2012' # obsFileName = FileName(run=run,date='20120918',tstamp='20120919-131142').flat() # flatCalFileName = FileName(run=run,date='20120918',tstamp='20120919-131448').flatSoln() # wvlCalFileName = FileName(run=run,date='20120916',tstamp='20120917-072537').calSoln() run = 'PAL2012' obsFileName = FileName(run=run,date='20121211',tstamp='20121212-140003').obs() flatCalFileName = FileName(run=run,date='20121210',tstamp='').flatSoln() wvlCalFileName = FileName(run=run,date='20121210',tstamp='20121211-133056').calSoln() flatCalPath = os.path.dirname(flatCalFileName) ob = ObsFile(obsFileName)#('obs_20120919-131142.h5') ob.loadWvlCalFile(wvlCalFileName)#('calsol_20120917-072537.h5') ob.loadFlatCalFile(flatCalFileName)#('flatsol_20120919-131142.h5') #plot some uncalibrated and calibrated spectra for one pixel fig = plt.figure() ax = fig.add_subplot(211) ax2 = fig.add_subplot(212) print ob.getPixelCount(testPixelRow,testPixelCol) #flatSpectrum,wvlBinEdges = ob.getPixelSpectrum(testPixelRow,testPixelCol,weighted=False) spectrum,wvlBinEdges = ob.getPixelSpectrum(testPixelRow,testPixelCol,wvlStart=cal.wvlStart,wvlStop=cal.wvlStop,wvlBinWidth=cal.wvlBinWidth,weighted=False,firstSec=0,integrationTime=-1) weightedSpectrum,wvlBinEdges = ob.getPixelSpectrum(testPixelRow,testPixelCol,weighted=True) #flatSpectrum,wvlBinEdges = cal.flatFile.getPixelSpectrum(testPixelRow,testPixelCol,wvlStart=cal.wvlStart,wvlStop=cal.wvlStop,wvlBinWidth=cal.wvlBinWidth,weighted=False,firstSec=0,integrationTime=-1) flatSpectrum = cal.spectra[testPixelRow,testPixelCol] x = wvlBinEdges[0:-1] ax.plot(x,cal.wvlMedians,label='median spectrum',alpha=.5) ax2.plot(x,cal.flatFactors[testPixelRow,testPixelCol,:],label='pixel weights',alpha=.5) ax2.set_title('flat weights for pixel %d,%d'%(testPixelRow,testPixelCol)) ax.plot(x,spectrum+20,label='unweighted spectrum for pixel %d,%d'%(testPixelRow,testPixelCol),alpha=.5) ax.plot(x,weightedSpectrum+10,label='weighted %d,%d'%(testPixelRow,testPixelCol),alpha=.5) ax.plot(x,flatSpectrum+30,label='flatFile %d,%d'%(testPixelRow,testPixelCol),alpha=.5) ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.3),fancybox=True,ncol=3) plt.show() #display a time-flattened image of the twilight flat as it is and after using itself as it's flat cal #cal.flatFile.loadFlatCalFile(flatCalFileName)#('flatsol_20120919-131142.h5') #cal.flatFile.displaySec(weighted=True,integrationTime=-1) #ob.displaySec(integrationTime=-1) #ob.displaySec(weighted=True,integrationTime=-1) for idx in range(0,100,20): factors10 = cal.flatFactors[:,:,idx] plt.matshow(factors10,vmax=np.mean(factors10)+1.5*np.std(factors10)) plt.title('Flat weights at %d'%cal.wvlBinEdges[idx]) plt.colorbar() plt.savefig('plots/factors%d.png'%idx) plt.show()
def centroidObs(obsPath,centroidPath,centroidRa,centroidDec,haOffset,xGuess,yGuess,hotPath,flatPath): obs = ObsFile(obsPath) print obsPath,obs.getFromHeader('exptime'),obs if not os.path.exists(hotPath): hp.findHotPixels(obsFile=obs,outputFileName=hotPath) obs.loadHotPixCalFile(hotPath,switchOnMask=False) obs.loadBestWvlCalFile() obs.loadFlatCalFile(flatPath) obs.setWvlCutoffs(3000,8000) cc.centroidCalc(obs,centroidRa,centroidDec,guessTime=300,integrationTime=30,secondMaxCountsForDisplay=2000,HA_offset=haOffset,xyapprox=[xGuess,yGuess],outputFileName=centroidPath) print 'done centroid',centroidPath del obs
def makemovie1(self): run = self.s['run'] sundownDate = self.s['sundownDate'] obsDate = self.s['obsDate'] stride = int(self.s['stride']) seq5 = self.s['seq5'].split() for seq in seq5: inFile = open("cosmicTimeList-%s.pkl"%(seq),"rb") cosmicTimeList = pickle.load(inFile) binContents = pickle.load(inFile) cfn = "cosmicMask-%s.h5"%seq intervals = ObsFile.readCosmicIntervalFromFile(cfn) for interval in intervals: print "interval=",interval fn = FileName(run, sundownDate,obsDate+"-"+seq) obsFile = ObsFile(fn.obs()) obsFile.loadTimeAdjustmentFile(fn.timeAdjustments()) i0=interval[0] i1=interval[1] intervalTime = i1-i0 dt = intervalTime/2 beginTime = max(0,i0-0.000200) endTime = beginTime + 0.001 integrationTime = endTime-beginTime nBins = int(np.round(obsFile.ticksPerSec*(endTime-beginTime)+1)) timeHgValues = np.zeros(nBins, dtype=np.int64) ymax = sys.float_info.max/100.0 for iRow in range(obsFile.nRow): for iCol in range(obsFile.nCol): gtpl = obsFile.getTimedPacketList(iRow,iCol, beginTime,integrationTime) ts = (gtpl['timestamps'] - beginTime)*obsFile.ticksPerSec ts64 = np.round(ts).astype(np.uint64) tsBinner.tsBinner(ts64, timeHgValues) plt.clf() plt.plot(timeHgValues, label="data") x0 = (i0-beginTime)*obsFile.ticksPerSec x1 = (i1-beginTime)*obsFile.ticksPerSec plt.fill_between((x0,x1),(0,0), (ymax,ymax), alpha=0.2, color='red') plt.yscale("symlog",linthreshy=0.9) plt.xlim(0,1000) plt.ylim(-0.1,300) tick0 = int(np.round(i0*obsFile.ticksPerSec)) plotfn = "cp-%05d-%s-%s-%s-%09d"%(timeHgValues.sum(),run,obsDate,seq,tick0) plt.title(plotfn) plt.legend() plt.savefig(plotfn+".png") plt.xlabel("nSigma=%d stride=%d threshold=%d"%(int(self.s['nSigma']),int(self.s['stride']),int(self.s['threshold']))) print "plotfn=",plotfn os.system("convert -delay 0 `ls -r cp*png` cp.gif")
def centroidObs(obsPath,centroidPath,centroidRa,centroidDec,haOffset,xGuess,yGuess,savePath,tstamp): obs = ObsFile(obsPath) # if not os.path.exists(hotPath): # hp.findHotPixels(obsFile=obs,outputFileName=hotPath) obs.loadAllCals() # obs.loadHotPixCalFile(hotPath,switchOnMask=True) # obs.loadBestWvlCalFile() # obs.loadFlatCalFile(flatPath) obs.setWvlCutoffs(3000,11000) obs.loadCentroidListFile(centroidPath) ctrdFile = obs.centroidListFile sliceTimes = ctrdFile.root.centroidlist.times.read() xPositions = ctrdFile.root.centroidlist.xPositions.read() yPositions = ctrdFile.root.centroidlist.yPositions.read() intTime = sliceTimes[1]-sliceTimes[0] for iTime,time in enumerate(sliceTimes): x = xPositions[iTime] y = yPositions[iTime] title='centroid_{}_{}s'.format(tstamp,time) imgDict = obs.getPixelCountImage(firstSec=time,integrationTime=intTime,weighted=True) imgPath=os.path.join(savePath,title+'.png') pop = PopUp(showMe=False) pop.plotArray(imgDict['image'],title=title) pop.axes.plot(x,y,color='g',marker='d') pop.fig.savefig(imgPath) print 'saved to',imgPath del obs
def openImage(self): timestampList = [self.params['obsUtcDate']+'-'+ts for ts in self.params['obsSequence']] run = self.params['run'] sunsetDate = self.params['obsSunsetDate'] utcDate = self.params['obsUtcDate'] self.intTime = self.params['intTime'] wvlLowerCutoff = self.params['wvlLowerCutoff'] wvlUpperCutoff = self.params['wvlUpperCutoff'] calTimestamp = self.params['wvlTimestamp'] wfn = FileName(run=run,date=sunsetDate,tstamp=calTimestamp).calSoln() calfn = FileName(run=run,date=self.params['wvlSunsetDate'],tstamp=calTimestamp).cal() ffn = FileName(run=run,date=self.params['flatCalSunsetDate'],tstamp='').flatSoln() obsFns = [FileName(run=run,date=sunsetDate,tstamp=timestamp).obs() for timestamp in timestampList] self.obList = [ObsFile(obsFn) for obsFn in obsFns] for ob in self.obList: print 'Loading ',ob.fullFileName ob.loadWvlCalFile(wfn) ob.loadFlatCalFile(ffn) self.cal = ObsFile(calfn) self.cal.loadWvlCalFile(wfn) self.cal.loadFlatCalFile(ffn) self.loadSpectra()
def __init__(self, fn, beginTime=0, endTime='exptime', nBinsPerSec=10, flashMergeTime=1.0, applyCosmicMask = False, loggingLevel=logging.CRITICAL, loggingHandler=logging.StreamHandler()): """ Opens fileName in MKID_RAW_PATH, sets roachList endTime is exclusive """ self.logger = logging.getLogger("cosmic") self.logger.setLevel(loggingLevel) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') loggingHandler.setFormatter(formatter) self.logger.addHandler(loggingHandler) self.logger.info("Cosmic: begin init for obsFile=%s"%fn.obs()) self.fn = fn self.fileName = fn.obs(); self.file = ObsFile(self.fileName) # apply Matt's time fix timeAdjustments = self.fn.timeAdjustments() if os.path.exists(timeAdjustments): self.file.loadTimeAdjustmentFile(timeAdjustments) # apply Julian's time masks timeMaskFile = self.fn.timeMask(); if os.path.exists(timeMaskFile): self.file.loadHotPixCalFile(timeMaskFile,switchOnMask=True) # apply standard mask if applyCosmicMask: self.file.loadStandardCosmicMask() self._setRoachList() self._setAllSecs() self.exptime = self.file.getFromHeader('exptime') if endTime =='exptime': self.endTime = float(self.exptime) else: self.endTime = float(endTime) if ( (self.endTime > self.exptime) or (endTime < 0)): raise RuntimeError("bad endTime: endTime=%s exptime=%s" % \ (str(endTime),str(self.exptime))) self.beginTime = float(beginTime) self.timeHgs = "none" self.nBinsPerSec = nBinsPerSec self.flashMergeTime = flashMergeTime self.times = \ np.arange(self.beginTime, self.endTime, 1.0/self.nBinsPerSec) # for measuring flashes, indexed by roach name self.rMean = {} # mean from meanclip self.rSigma = {} # sigma from meanclip self.rNSurvived = {} # number of survivors from meanclip self.rNormed = {} # (value-mean)/sigma self.flashInterval = {} self.logger.info("Cosmic: end init: beginTime=%s endTime=%s"%(str(self.beginTime),str(self.endTime)))
def timePL(tstamp,obsPath,centroidPath): obs = ObsFile(obsPath) obs.loadAllCals() obs.setWvlCutoffs(3000,11000) obs.loadCentroidListFile(centroidPath) writePhotonList(obs,photListDescription=PulsarPhotonList,checkForExisting=False) del obs
def main(): objectName = "hz21" fileNum=0 energyBinWidth = 0.1 #make bins for 3000 to 13000 wvlStart = 3000 wvlStop = 13000 wvlBinEdges = ObsFile.makeWvlBins(energyBinWidth,wvlStart,wvlStop) nWvlBins = len(wvlBinEdges)-1 binWidths = np.empty(nWvlBins) print "Showing bin widths for %i bins"%(nWvlBins) for i in xrange(nWvlBins): binWidths[i] = wvlBinEdges[i+1]-wvlBinEdges[i] print binWidths nVirtPixX=250 nVirtPixY=250 cube = np.zeros((nVirtPixX,nVirtPixY,nWvlBins),dtype=float) for n in xrange(nWvlBins): print "Making image for wvls %i to %i"%(wvlBinEdges[n], wvlBinEdges[n+1]) virtualImage, imageStack, medImage = makeImageStack(fileNames='photons_*.h5', dir=os.getenv('MKID_PROC_PATH', default="/Scratch")+'/photonLists/20131209', detImage=False, saveFileName='stackedImage.pkl', wvlMin=wvlBinEdges[n], wvlMax=wvlBinEdges[n+1], doWeighted=True, medCombine=False, vPlateScale=0.2, nPixRA=nVirtPixX,nPixDec=nVirtPixY) print virtualImage print virtualImage.image print np.shape(virtualImage.image) cube[:,:,n] = virtualImage.image #calculate midpoints of wvl bins for plotting wvls = np.empty((nWvlBins),dtype=float) for n in xrange(nWvlBins): binsize=wvlBinEdges[n+1]-wvlBinEdges[n] wvls[n] = (wvlBinEdges[n]+(binsize/2.0)) print "wvls ",wvls #reshape cube for makeMovie movieCube = np.zeros((nWvlBins,np.shape(cube)[0],np.shape(cube)[1]),dtype=float) for i in xrange(nWvlBins): movieCube[i,:,:] = cube[:,:,i] #show individual frames as they are made to debug #plt.matshow(movieCube[i],vmin = 0, vmax = 100) #plt.show() print "movieCube shape ", np.shape(movieCube) print "wvls shape ", np.shape(wvls) #print cube #print "--------------------------" #print movieCube np.savez('%s_raw_%s.npz'%(objectName,fileNum),stack=movieCube,wvls=wvls) utils.makeMovie(movieCube,frameTitles=wvls,cbar=True,outName='%s_pl_raw_%s.gif'%(objectName,fileNum), normMin=0, normMax=1000) '''
def centroidObs(obsPath,centroidPath,centroidRa,centroidDec,haOffset,xGuess,yGuess): obs = ObsFile(obsPath) print obsPath,obs.getFromHeader('exptime'),obs obs.loadAllCals() # obs.loadBestWvlCalFile() # obs.loadFlatCalFile(flatPath) obs.setWvlCutoffs(3000,11000) # if not os.path.exists(hotPath): # hp.findHotPixels(obsFile=obs,outputFileName=hotPath,display=True,fwhm=2.,boxSize=5, nSigmaHot=4.0,) # obs.loadHotPixCalFile(hotPath,switchOnMask=True) cc.centroidCalc(obs,centroidRa,centroidDec,guessTime=300,integrationTime=30,secondMaxCountsForDisplay=2000,HA_offset=haOffset,xyapprox=[xGuess,yGuess],outputFileName=centroidPath,usePsfFit=True,radiusOfSearch=8) print 'done centroid',centroidPath del obs
def main(): """ params = [] paramfile = sys.argv[1] f = open(paramfile,'r') for line in f: params.append(line) f.close() datadir = params[0].split('=')[1].strip() flatdir = params[1].split('=')[1].strip() fluxdir = params[2].split('=')[1].strip() wvldir = params[3].split('=')[1].strip() obsfile = params[4].split('=')[1].strip() skyfile = params[5].split('=')[1].strip() flatfile = params[6].split('=')[1].strip() fluxfile = params[7].split('=')[1].strip() wvlfile = params[8].split('=')[1].strip() objectName = params[9].split('=')[1].strip() fluxCalObject = params[10].split('=')[1].strip() obsFileName = os.path.join(datadir, obsfile) skyFileName = os.path.join(datadir, skyfile) wvlCalFileName = os.path.join(wvldir, wvlfile) flatCalFileName = os.path.join(flatdir, flatfile) fluxCalFileName = os.path.join(fluxdir, fluxfile) """ if len(sys.argv) > 2: fileNum = str(sys.argv[2]) else: fileNum = "0" # science object parameter file params = [] paramfile = sys.argv[1] f = open(paramfile, "r") for line in f: params.append(line) f.close() datadir = params[0].split("=")[1].strip() flatdir = params[1].split("=")[1].strip() wvldir = params[2].split("=")[1].strip() obsfile = params[3].split("=")[1].strip() skyfile = params[4].split("=")[1].strip() flatfile = params[5].split("=")[1].strip() wvlfile = params[6].split("=")[1].strip() objectName = params[9].split("=")[1].strip() # wvldir = "/Scratch/waveCalSolnFiles/oldbox_numbers/20121205" # objectName = "crabNight1" if len(params) > 10: xpix = int(params[10].split("=")[1].strip()) ypix = int(params[11].split("=")[1].strip()) apertureRadius = int(params[12].split("=")[1].strip()) startTime = int(params[13].split("=")[1].strip()) intTime = int(params[14].split("=")[1].strip()) obsFileName = os.path.join(datadir, obsfile) skyFileName = os.path.join(datadir, skyfile) wvlCalFileName = os.path.join(wvldir, wvlfile) flatCalFileName = os.path.join(flatdir, flatfile) obs = ObsFile(obsFileName) # obs.loadWvlCalFile(wvlCalFileName) obs.loadBestWvlCalFile() obs.loadFlatCalFile(flatCalFileName) print "analyzing file %s" % (obsFileName) print "loaded data file and calibrations\n---------------------\n" nRow = obs.nRow nCol = obs.nCol obsTime = obs.getFromHeader("exptime") # wvlBinEdges,obsSpectra = loadSpectra(obs,nCol,nRow) # nWvlBins=len(wvlBinEdges)-1 # print np.shape(obsSpectra) # print nRow # print nCol # print nWvlBins # Apply Hot pixel masking before getting dead time correction # HotPixFile = getTimeMaskFileName(obsFileName) HotPixFile = FileName(obsFile=obs).timeMask() print "making hot pixel file ", HotPixFile if not os.path.exists(HotPixFile): # check if hot pix file already exists hp.findHotPixels(inputFileName=obsFileName, outputFileName=HotPixFile) print "Flux file pixel mask saved to %s" % (HotPixFile) obs.loadHotPixCalFile(HotPixFile) print "Hot pixel mask loaded %s" % (HotPixFile) # GET RAW PIXEL COUNT IMAGE TO CALCULATE CORRECTION FACTORS print "Making raw cube to get dead time correction" cubeDict = obs.getSpectralCube(firstSec=startTime, integrationTime=intTime, weighted=False) cube = np.array(cubeDict["cube"], dtype=np.double) wvlBinEdges = cubeDict["wvlBinEdges"] effIntTime = cubeDict["effIntTime"] print "median effective integration time = ", np.median(effIntTime) nWvlBins = len(wvlBinEdges) - 1 print "cube shape ", np.shape(cube) print "effIntTime shape ", np.shape(effIntTime) # add third dimension to effIntTime for broadcasting effIntTime = np.reshape(effIntTime, np.shape(effIntTime) + (1,)) # put cube into counts/s in each pixel cube /= effIntTime # CALCULATE DEADTIME CORRECTION # NEED TOTAL COUNTS PER SECOND FOR EACH PIXEL TO DO PROPERLY # ASSUMES SAME CORRECTION FACTOR APPLIED FOR EACH WAVELENGTH, MEANING NO WL DEPENDANCE ON DEAD TIME EFFECT DTCorr = np.zeros((np.shape(cube)[0], np.shape(cube)[1]), dtype=float) for f in range(0, np.shape(cube)[2]): print cube[:, :, f] print "-----------------------" DTCorr += cube[:, :, f] print DTCorr print "\n=====================\n" # Correct for 100 us dead time DTCorrNew = DTCorr / (1 - DTCorr * 100e-6) CorrFactors = DTCorrNew / DTCorr # This is what the frames need to be multiplied by to get their true values print "Dead time correction factors = " print CorrFactors # REMAKE CUBE WITH FLAT WEIGHTS AND APPLY DEAD TIME CORRECTION AS WELL print "Making Weighted cube" # load/generate hot pixel mask file # HotPixFile = getTimeMaskFileName(obsFileName) HotPixFile = FileName(obsFile=obs).timeMask() if not os.path.exists(HotPixFile): # check if hot pix file already exists hp.findHotPixels(inputFileName=obsFileName, outputFileName=HotPixFile) print "Flux file pixel mask saved to %s" % (HotPixFile) obs.loadHotPixCalFile(HotPixFile) print "Hot pixel mask loaded %s" % (HotPixFile) cubeDict = obs.getSpectralCube(firstSec=startTime, integrationTime=intTime, weighted=True, fluxWeighted=False) # cubeDict = obs.getSpectralCube(firstSec=startTime, integrationTime=intTime, weighted=True, fluxWeighted=True) cube = np.array(cubeDict["cube"], dtype=np.double) wvlBinEdges = cubeDict["wvlBinEdges"] effIntTime = cubeDict["effIntTime"] print "median effective integration time = ", np.median(effIntTime) nWvlBins = len(wvlBinEdges) - 1 print "cube shape ", np.shape(cube) print "effIntTime shape ", np.shape(effIntTime) # add third dimension to effIntTime for broadcasting effIntTime = np.reshape(effIntTime, np.shape(effIntTime) + (1,)) # put cube into counts/s in each pixel cube /= effIntTime # add third dimension to CorrFactors for broadcasting CorrFactors = np.reshape(CorrFactors, np.shape(CorrFactors) + (1,)) # apply dead time correction factors cube *= CorrFactors # calculate midpoints of wvl bins for plotting wvls = np.empty((nWvlBins), dtype=float) for n in xrange(nWvlBins): binsize = wvlBinEdges[n + 1] - wvlBinEdges[n] wvls[n] = wvlBinEdges[n] + (binsize / 2.0) print "wvls ", wvls # reshape cube for makeMovie movieCube = np.zeros((nWvlBins, np.shape(cube)[0], np.shape(cube)[1]), dtype=float) for i in xrange(nWvlBins): movieCube[i, :, :] = cube[:, :, i] # show individual frames as they are made to debug # plt.matshow(movieCube[i],vmin = 0, vmax = 100) # plt.show() print "movieCube shape ", np.shape(movieCube) print "wvls shape ", np.shape(wvls) # print cube # print "--------------------------" # print movieCube outdir = "/home/srmeeker/scratch/standards/" np.savez(outdir + "%s_raw_%s.npz" % (objectName, fileNum), stack=movieCube, wvls=wvls) utils.makeMovie( movieCube, frameTitles=wvls, cbar=True, outName=outdir + "%s_raw_%s.gif" % (objectName, fileNum), normMin=0, normMax=50, ) """
def main(): run = 'PAL2014' year = '2014' initialPath = '/Scratch' packetMasterLogDir = '/LABTEST/PacketMasterLogs/' initialPath = os.path.join(initialPath,run) outPath = FileName(run=run,mkidDataDir='/Scratch/').timeAdjustments() outFile = tables.openFile(outPath,'w') timeAdjustGroup = outFile.createGroup('/','timeAdjust','Times to add to timestamps') firmwareDelayTable = outFile.createTable(timeAdjustGroup,'firmwareDelay',firmwareDelayDescription,'Times to add to all timestamps taken with a firmware bof') newFirmwareEntry = firmwareDelayTable.row newFirmwareEntry['firmwareName']='chan_svf_2014_Aug_06_1839.bof' newFirmwareEntry['firmwareDelay']=-41e-6 #s, subtract 41 us from timestamps newFirmwareEntry.append() firmwareDelayTable.flush() firmwareDelayTable.close() roachDelayTable = outFile.createTable(timeAdjustGroup,'roachDelays',roachDelaysDescription,'Times to add to each roach\'s timestamps') for sunsetDatePath in sorted(glob.glob(os.path.join(initialPath,year+'*'))): sunsetDate = os.path.basename(sunsetDatePath) for fullObsPath in sorted(glob.glob(os.path.join(sunsetDatePath,'obs*.h5'))): obsFileName = os.path.basename(fullObsPath) obsTStamp = obsFileName.split('.')[0].split('_')[1] print obsFileName obsFN = FileName(run=run,date=sunsetDate,tstamp=obsTStamp,packetMasterLogDir=packetMasterLogDir) pmLogFileName = obsFN.packetMasterLog() try: ob = ObsFile(fullObsPath) except: print 'can\'t open file' continue try: if os.path.getsize(pmLogFileName) <= 0: continue except: print 'can\'t open Packet Master Log ',pmLogFileName continue try: f = open(pmLogFileName,'r') except: print 'can\'t open Packet Master Log ',pmLogFileName continue lastTstampLines = np.zeros(8) firstTstampLines = np.zeros(8) tstampLine = '' for line in f: if 'here' in line: #skip over large log files with debug info print 'skipping file with "here"' continue if line.split(' ')[0] == 'bundle': tstampLine = line break if tstampLine == '': print 'skipping file without "bundle"' #didn't find lines with 'bundle' in them continue f.seek(0) for line in f: if line.split(' ')[0] == 'bundle': try: at = float(line.split('at')[1].split()[0]) except: break lastTstampLine = at iRoach = int(line.split('roach')[1].split('took')[0].strip()) lastTstampLines[iRoach] = at if firstTstampLines[iRoach] == 0: firstTstampLines[iRoach] = at packetReceivedUnixTimestamp = float((tstampLine.split('took')[1].split('total')[0].strip())) firstPacketDelay = packetReceivedUnixTimestamp-int(ob.getFromHeader('unixtime')) roachSecDelays =np.array(np.floor(lastTstampLines+firstPacketDelay-ob.getFromHeader('exptime')),dtype=np.int) print 'roach delays',roachSecDelays if np.all(roachSecDelays >= 0): newEntry = roachDelayTable.row newEntry['obsFileName'] = os.path.basename(fullObsPath) newEntry['roachDelays'] = roachSecDelays newEntry.append() roachDelayTable.flush() else: print 'obs was aborted midway, delays cannot be calculated' roachDelayTable.close() outFile.close()
inCounts = [] for line in powermeter: if '#' in line: continue inCounts.append(float(line.strip())) inCounts = np.array(inCounts) pixToUse = [[0,26],[2,25],[2,27],[2,31],[2,34],[2,39],[3,17],[3,26],[3,32], [3,36],[4,26],[4,32],[5,32],[6,22],[6,29],[6,30],[7,25],[7,27],[7,28], [7,32],[7,37],[8,30],[10,32],[10,42],[11,30],[12,29],[12,31],[13,29],[13,31], [14,27],[14,32],[15,25],[15,26],[15,30],[15,31],[15,32],[16,23],[16,30], [17,23],[17,25],[17,26],[17,39],[18,24],[18,28],[19,23],[19,26],[19,28],[19,30]] cmap = matplotlib.cm.jet obsFileName = '/Scratch/linearityTestData/obs_20130612-003423.h5' obs = ObsFile(obsFileName) row,col=pixToUse[0] allResolutions = [] allModResolutions = [] allModResolutions2 = [] allCountRates = [] timeBinStarts = timeBinStarts[0:-3] for (row,col) in pixToUse[0:3]: firstSec=timeBinStarts[0] intTime=timeBinWidth resolutions = [] modResolutions = [] modResolutions2 = [] countRates = []
def findCosmics(self, stride=10, threshold=100, populationMax=2000, nSigma=5, writeCosmicMask=False, ppsStride=10000): """ Find cosmics ray suspects. Histogram the number of photons recorded at each timeStamp. When the number of photons in a group of stride timeStamps is greater than threshold in second iSec, add (iSec,timeStamp) to cosmicTimeLists. Also keep track of the histogram of the number of photons per stride timeStamps. return a dictionary of 'populationHg', 'cosmicTimeLists', 'binContents', 'timeHgValues', 'interval', 'frameSum', and 'pps' populationHg is a histogram of the number of photons in each time bin. This is a poisson distribution with a long tail due to cosmic events cosmicTimeLists is a numpy array of all the sequences that are suspects for cosmic rays binContents corresponds to cosmicTimeLists. For each time in cosmicTimeLists, binContents is the number of photons detected at that time. timeHgValues is a histogram of the number of photons in each time interval frameSum is a two dimensional numpy array of the number of photons detected by each pixel interval is the interval of data to be masked out pps is photons per second, calculated every ppsStride bins. """ self.logger.info("findCosmics: begin stride=%d threshold=%d populationMax=%d nSigma=%d writeCosmicMask=%s"%(stride,threshold,populationMax,nSigma,writeCosmicMask)) exptime = self.endTime-self.beginTime nBins = int(np.round(self.file.ticksPerSec*exptime+1)) bins = np.arange(0, nBins, 1) timeHgValues,frameSum = self.getTimeHgAndFrameSum(self.beginTime,self.endTime) remainder = len(timeHgValues)%ppsStride if remainder > 0: temp = timeHgValues[:-remainder] else: temp = timeHgValues ppsTime = (ppsStride*self.file.tickDuration) pps = np.sum(temp.reshape(-1, ppsStride), axis=1)/ppsTime self.logger.info("findCosmics: call populationFromTimeHgValues") pfthgv = Cosmic.populationFromTimeHgValues\ (timeHgValues,populationMax,stride,threshold) #now build up all of the intervals in seconds self.logger.info("findCosmics: build up intervals: nCosmicTime=%d"%len(pfthgv['cosmicTimeList'])) i = interval() iCount = 0 secondsPerTick = self.file.tickDuration for cosmicTime in pfthgv['cosmicTimeList']: #t0 = max(0,self.beginTime+(cosmicTime-50)/1.e6) #t1 = min(self.endTime,self.beginTime+(cosmicTime+50)/1.e6) #intTime = t1-t0 t0 = self.beginTime+cosmicTime*secondsPerTick dt = stride*secondsPerTick t1 = t0+dt left = max(self.beginTime, t0-nSigma*dt) right = min(self.endTime, t1+2*nSigma*dt) i = i | interval[left,right] self.logger.debug("findCosmics: iCount=%d t0=%f t1=%f left=%f right=%f"%(iCount,t0,t1,left,right)) iCount+=1 tMasked = Cosmic.countMaskedBins(i) ppmMasked = 1000000*tMasked/(self.endTime-self.beginTime) retval = {} retval['timeHgValues'] = timeHgValues retval['populationHg'] = pfthgv['populationHg'] retval['cosmicTimeList'] = pfthgv['cosmicTimeList'] retval['binContents'] = pfthgv['binContents'] retval['frameSum'] = frameSum retval['interval'] = i retval['ppmMasked'] = ppmMasked retval['pps'] = pps retval['ppsTime'] = ppsTime if writeCosmicMask: cfn = self.fn.cosmicMask() self.logger.info("findCosmics: write masks to =%s"%cfn) ObsFile.writeCosmicIntervalToFile(i, self.file.ticksPerSec, cfn,self.beginTime, self.endTime, stride, threshold, nSigma, populationMax) self.logger.info("findCosmics: end with ppm masked=%d"%ppmMasked) return retval
NumFrames = 31 #nFiles = 13 #j0926 #nFiles=25 #crab nFiles = 1 #try with only 1 file curves = np.zeros((nFiles,NumFrames),dtype=float) for k in xrange(nFiles): #FileName = '/home/srmeeker/scratch/standards/crabNight2_fit_%s.npz'%(fileNum) FileName = '/home/srmeeker/scratch/standards/crabNight1_fit_%s.npz'%(fileNum) print FileName t = np.load(FileName) energyBinWidth = 0.1 wvlStart = 3000 wvlStop = 13000 wvlBinEdges = ObsFile.makeWvlBins(energyBinWidth,wvlStart,wvlStop) nWvlBins = len(wvlBinEdges)-1 binWidths = np.empty(nWvlBins) for i in xrange(nWvlBins): binWidths[i] = wvlBinEdges[i+1]-wvlBinEdges[i] #print binWidths params = t['params'] wvls = t['wvls'] amps = params[:,1] widths = params[:,4] xpos = params[:,2] ypos = params[:,3] #print len(wvls) #print len(binWidths)
sunsetDate = '20121208' utcDate = '20121209' # Specify which wavelength calibration file to use. calTimestamp = '20121209-131132' # Create wavelength and flat cal file names wvlCalFilename = FileName(run=run,date=sunsetDate,tstamp=calTimestamp).calSoln() flatCalFilename = FileName(run=run,date=sunsetDate,tstamp=calTimestamp).flatSoln() # No twilights taken on December 8, using December 7 twilights to do flat cal instead. flatCalFilename = '/Scratch/flatCalSolnFiles/20121207/flatsol_20121207.h5' # Run standard ObsFile functions. # Create ObsFile instance. tic = time() print 'Loading obs file and performing calibrations ...' obsFn = FileName(run=run,date=sunsetDate,tstamp=obsTimestamp).obs() ob = ObsFile(obsFn) # Load roach time delay corrections. ob.loadTimeAdjustmentFile(FileName(run=run).timeAdjustments()) # Search for time mask for given observation file. If the time mask does not exist, create it. index1 = obsFn.find('_') hotPixFn = '/Scratch/timeMasks/timeMask' + obsFn[index1:] if not os.path.exists(hotPixFn): hp.findHotPixels(obsFn,hotPixFn) print "Flux file pixel mask saved to %s"%(hotPixFn) # Load time mask, wavelength calibration, and flat calibration and set wavelenth cutoffs. ob.loadHotPixCalFile(hotPixFn,switchOnMask=True) ob.loadWvlCalFile(wvlCalFilename) ob.loadFlatCalFile(flatCalFilename) ob.setWvlCutoffs(3000,5000) print 'Total load time: ' + str(time()-tic) + 's'
sunsetDate = sunsetDates[iSeq] for position in ObjPosFile: if iSeq + 1 == position[0]: print "finding aperture and sky masks" guessX = position[1] guessY = position[2] apertureMask = circleAperture(guessX, guessY, radius1) bigMask = circleAperture(guessX, guessY, radius2) skyMask = bigMask - apertureMask # print skyMask[0:20][5:25] for i, ts in enumerate(timestampList): print "loading", ts obsFn = FileName(run=run, date=sunsetDate, tstamp=ts).obs() ob = ObsFile(obsFn) ob.loadTimeAdjustmentFile(FileName(run=run).timeAdjustments()) index1 = obsFn.find("_") hotPixFn = "/Scratch/timeMasks/timeMask" + obsFn[index1:] if not os.path.exists(hotPixFn): hp.findHotPixels(obsFn, hotPixFn) print "Flux file pixel mask saved to %s" % (hotPixFn) ob.loadHotPixCalFile(hotPixFn, switchOnMask=True) ob.loadWvlCalFile(wfn) ob.loadFlatCalFile(ffn) ob.setWvlCutoffs(wvlLowerCutoff, wvlUpperCutoff) bad_solution_mask = np.zeros((46, 44)) bad_count = 0 for y in range(46): for x in range(44):
#cosmic = Cosmic(fn, endTime='exptime') cosmic = Cosmic(fn, beginTime=0) fc = cosmic.findCosmics(stride=stride, threshold=threshold, populationMax=populationMax, nSigma=nSigma) if frameSum == 'none': frameSum = fc['frameSum'] else: frameSum += fc['frameSum'] outfile = open("cosmicTimeList-"+seq+".pkl", "wb") pickle.dump(fc['cosmicTimeList'],outfile) pickle.dump(fc['binContents'],outfile) outfile.close() cfn = "cosmicMax-%s.h5"%seq ObsFile.writeCosmicIntervalToFile(fc['interval'],1.0e6, cfn) populationHg = fc['populationHg'] yPlot = populationHg[0].astype(np.float) ySum += yPlot norm = yPlot.sum() yPlot /= norm yPlot[yPlot==0] = 1e-3/norm xPlot = 0.5*(populationHg[1][1:]+populationHg[1][:-1]) plt.clf() plt.plot(xPlot,yPlot,'-') plt.yscale('log') plt.ylim(ymin=0.5/norm) plt.xlim(1,populationMax) plt.xscale('log') #poisson = [] #xValues = populationHg[1][1:]-0.5
def main(): obsSequence1=""" 035332 035834 040336 040838 041341 041843 042346 042848 043351 043853 044355 044857 045359 045902 """ obsSequence2=""" 050404 050907 051409 051912 052414 052917 053419 053922 """ obsSequence3=""" 054926 055428 """ pulseLabel = 1 #1 for interpulse, 2 for main pulse verbose = True run = 'PAL2012' path = '/Scratch/dataProcessing/crabData2/' nIdxToCheck = 81 nBins = 250 outFilePath = path+'indPulseProfiles_3sigma_P{}_KS.h5'.format(pulseLabel) wvlBinEdges = ObsFile.makeWvlBins(wvlStart=4000,wvlStop=11000) wvlBinWidths = np.diff(wvlBinEdges) nWvlBins = len(wvlBinWidths) peakIdx=167#the index of the phaseBin at the main pulse peak obsSequences = [obsSequence1,obsSequence2,obsSequence3] #obsSequences = [obsSequence1] wvlCals = ['063518','063518','063518'] flatCals = ['20121211','20121211','20121211'] fluxCalDates = ['20121206','20121206','20121206'] fluxCals = ['20121207-072055','20121207-072055','20121207-072055'] obsUtcDates = ['20121212','20121212','20121212'] obsFileNames = [] obsFileNameTimestamps = [] wvlFileNames = [] flatFileNames = [] fluxFileNames = [] timeMaskFileNames = [] plFileNames = [] skyFileNames = [] for iSeq in range(len(obsSequences)): obsSequence = obsSequences[iSeq] obsSequence = obsSequence.strip().split() obsFileNameTimestamps.append(obsSequence) obsUtcDate = obsUtcDates[iSeq] sunsetDate = str(int(obsUtcDate)-1) obsSequence = [obsUtcDates[iSeq]+'-'+ts for ts in obsSequence] plFileNames.append([FileName(run=run,date=sunsetDate,tstamp=ts).crabList() for ts in obsSequence]) skyFileNames.append([FileName(run=run,date=sunsetDate,tstamp=ts).crabSkyList() for ts in obsSequence]) np.set_printoptions(precision=11,threshold=np.nan) labels=np.array('iBTOA pulseNumber BTOA Noise_Offset Noise_RMS Max Mean Index TestMax TestMean TestIndex'.split()) table = np.loadtxt(path+'giantPulseList_P{}_3sigma_indices.txt'.format(pulseLabel),skiprows=1,usecols=range(len(labels))) peakDetectionMask = table[:,np.argmax('Max'==labels)]!=0 table = table[peakDetectionMask]#cut out test_P2 (false) detections dimMask = np.ones(len(table)) #dimMask[13292:22401]=0 dimMask = dimMask==1 radioStrength = table[:,5] allGiantPulseNumbers = table[:,1] if pulseLabel == 2: radioStrengthCutoff = 0.175 elif pulseLabel == 1: radioStrengthCutoff = 0.01 radioCutoffMask = radioStrength >= radioStrengthCutoff strongMask = np.logical_and(radioCutoffMask,dimMask) table = table[strongMask] giantDict = dict() for iLabel,label in enumerate(labels): giantDict[label] = table[:,np.argmax(label==labels)] noiseStrengthLabel = 'TestMax' #count number of detections in the test range and the P2 peak range nNoiseDetections = np.sum(giantDict[noiseStrengthLabel]!=0) print nNoiseDetections,'noise detections' nPeakDetections = np.sum(giantDict['Max']!=0) print nPeakDetections,'peak detections' giantPulseNumbers = giantDict['pulseNumber'] radioMax = giantDict['Max'] radioMean = giantDict['Mean'] radioDetectedIndices = giantDict['Index'] nGRP = len(giantPulseNumbers) if verbose: print 'Number of GRPs',nGRP counts = np.zeros((nGRP,nIdxToCheck)) skyCounts = np.zeros((nGRP,nIdxToCheck)) idxOffsets = np.array(np.linspace(-(nIdxToCheck//2),nIdxToCheck//2,nIdxToCheck),dtype=np.int) nIdxOffsets = len(idxOffsets) histStart = 0. histEnd = 1. pulsarPeriod = 33e-3 #s, approximately indProfiles = np.zeros((nGRP,nIdxOffsets,nBins)) skyIndProfiles = np.zeros((nGRP,nIdxOffsets,nBins)) fullSpectra = np.zeros((nIdxOffsets,nWvlBins),dtype=np.double) skyFullSpectra = np.zeros((nIdxOffsets,nWvlBins),dtype=np.double) peakSpectra = np.zeros((nIdxOffsets,nWvlBins),dtype=np.double) skyPeakSpectra = np.zeros((nIdxOffsets,nWvlBins),dtype=np.double) plList = [PhotList(fn) for seq in plFileNames for fn in seq] skyList = [PhotList(fn) for seq in skyFileNames for fn in seq] plMins = [] plMaxs = [] for iPL,pl in enumerate(plList): minPulseNumber = pl.photTable.cols.pulseNumber[pl.photTable.colindexes['pulseNumber'][0]] maxPulseNumber = pl.photTable.cols.pulseNumber[pl.photTable.colindexes['pulseNumber'][-1]] print pl.fileName,minPulseNumber,maxPulseNumber plMins.append(minPulseNumber) plMaxs.append(maxPulseNumber) plMins = np.array(plMins) plMaxs = np.array(plMaxs) pulseNumberTable = np.array([gpn+idxOffsets for gpn in giantPulseNumbers]) giantPulseNumberMask = np.zeros(np.shape(pulseNumberTable)) validWvlCutoff = 11000 #angstroms if verbose: print 'filling giant pulse number mask' for iGiantPN,giantPN in enumerate(allGiantPulseNumbers): if verbose and iGiantPN % 500 == 0: print 'mask',iGiantPN,'of',len(allGiantPulseNumbers) giantMatches = (pulseNumberTable == giantPN) giantPulseNumberMask = np.logical_or(giantPulseNumberMask,giantMatches) outFile = tables.openFile(outFilePath,mode='w') nLivePixels = [] for iPL,pl in enumerate(plList): pixels = np.unique(pl.photTable.cols.xyPix[:]) print pixels nPixels = len(pixels) nLivePixels.append(nPixels) nLivePixels = np.array(nLivePixels) nSkyLivePixels = [] for iPL,pl in enumerate(skyList): pixels = np.unique(pl.photTable.cols.xyPix[:]) print pixels nPixels = len(pixels) nSkyLivePixels.append(nPixels) nSkyLivePixels = np.array(nSkyLivePixels) pulseNumberList = np.unique(pulseNumberTable.ravel()) nPulseNumbers = len(pulseNumberList) pulseNumberListMask = np.ones(nPulseNumbers) floatAtom = tables.Float64Atom() uint8Atom = tables.UInt8Atom() nExpectedRows=1e7 #phaseArrays = [outFile.createEArray(outFile.root,'phases{:03d}'.format(iIdxOffset),floatAtom,(0,),title='phases at pulse number {} w.r.t. GRP'.format(idxOffset),expectedrows=nExpectedRows) for iIdxOffset,idxOffset in enumerate(idxOffsets)] #skyPhaseArrays = [outFile.createEArray(outFile.root,'skyPhases{:03d}'.format(iIdxOffset),floatAtom,(0,),title='phases at pulse number {} w.r.t. GRP in sky'.format(idxOffset),expectedrows=nExpectedRows) for iIdxOffset,idxOffset in enumerate(idxOffsets)] #wavelengthArrays = [outFile.createEArray(outFile.root,'wavelengths{:03d}'.format(iIdxOffset),floatAtom,(0,),title='wavelengths at pulse number {} w.r.t. GRP'.format(idxOffset),expectedrows=nExpectedRows) for iIdxOffset,idxOffset in enumerate(idxOffsets)] #skyWavelengthArrays = [outFile.createEArray(outFile.root,'skyWavelengths{:03d}'.format(iIdxOffset),floatAtom,(0,),title='wavelengths at pulse number {} w.r.t. GRP in sky'.format(idxOffset),expectedrows=nExpectedRows) for iIdxOffset,idxOffset in enumerate(idxOffsets)] grpPeakWavelengthArrays = outFile.createVLArray(outFile.root,'grpWavelengths',floatAtom,'photon wavelength list for GRPs at main peak',tables.Filters(complevel=1)) nongrpPeakWavelengthArrays = outFile.createVLArray(outFile.root,'nongrpWavelengths',floatAtom,'photon wavelength list for nonGRPs at main peak',tables.Filters(complevel=1)) for iGiantPN,giantPN in enumerate(giantPulseNumbers): if verbose and iGiantPN % 100 == 0: print iGiantPN iPL = np.searchsorted(plMaxs,giantPN) if iPL >= len(plMins): if verbose: print iGiantPN,'GRP not found in optical' continue if plMins[iPL] > giantPN: if verbose: print iGiantPN,'GRP not found in optical' continue if plMins[iPL] >= giantPN+idxOffsets[0] or plMaxs[iPL] <= giantPN+idxOffsets[-1]: if verbose: print iGiantPN,'optical pulses surrounding GRP not found' continue pl = plList[iPL] skyPL = skyList[iPL] #grab all photons in the pulseNumber range covered by all idxOffsets for this GRP pulseSelectionIndices = pl.photTable.getWhereList('({} <= pulseNumber) & (pulseNumber <= {})'.format(giantPN+idxOffsets[0],giantPN+idxOffsets[-1])) skyPulseSelectionIndices = skyPL.photTable.getWhereList('({} <= pulseNumber) & (pulseNumber <= {})'.format(giantPN+idxOffsets[0],giantPN+idxOffsets[-1])) photonsInPulseSelection = pl.photTable.readCoordinates(pulseSelectionIndices) skyPhotonsInPulseSelection = skyPL.photTable.readCoordinates(skyPulseSelectionIndices) nPulsesInSelection = len(np.unique(photonsInPulseSelection['pulseNumber'])) nSkyPulsesInSelection = len(np.unique(skyPhotonsInPulseSelection['pulseNumber'])) if nPulsesInSelection < nIdxOffsets or nSkyPulsesInSelection < nIdxOffsets: if verbose: print 'only ',nPulsesInSelection,' pulses for ',iGiantPN,giantPN continue startIdx = 0 nPixels = 1.*nLivePixels[iPL] nSkyPixels = 1.*nSkyLivePixels[iPL] nongrpPeakWvls = np.array([]) for iIdxOffset,idxOffset in enumerate(idxOffsets): pulseNumber = giantPN+idxOffset if giantPulseNumberMask[iGiantPN,iIdxOffset] == False or idxOffset==0: photons = photonsInPulseSelection[photonsInPulseSelection['pulseNumber']==pulseNumber] skyPhotons = skyPhotonsInPulseSelection[skyPhotonsInPulseSelection['pulseNumber']==pulseNumber] phases = photons['phase'] wavelengths = photons['wavelength'] skyPhases = skyPhotons['phase'] skyWavelengths = skyPhotons['wavelength'] count = 1.*len(photons)/nPixels skyCount = 1.*len(skyPhotons)/nSkyPixels counts[iGiantPN,iIdxOffset] = count skyCounts[iGiantPN,iIdxOffset] = skyCount profile,phaseBinEdges = np.histogram(phases,bins=nBins,range=(histStart,histEnd)) skyProfile,phaseBinEdges = np.histogram(skyPhases,bins=nBins,range=(histStart,histEnd)) indProfiles[iGiantPN,iIdxOffset] = profile/nPixels skyIndProfiles[iGiantPN,iIdxOffset] = skyProfile/nSkyPixels spectrum,_ = np.histogram(wavelengths,bins=wvlBinEdges) spectrum = 1.0*spectrum/(nPixels*wvlBinWidths)#convert to counts per pixel per angstrom fullSpectra[iIdxOffset] += spectrum skySpectrum,_ = np.histogram(skyWavelengths,bins=wvlBinEdges) skySpectrum = 1.0*skySpectrum/(nSkyPixels*wvlBinWidths)#convert to counts per pixel per angstrom skyFullSpectra[iIdxOffset] += skySpectrum phasesBinned = np.digitize(phases,phaseBinEdges)-1 peakPhaseMask = np.logical_or(phasesBinned==(peakIdx-1),phasesBinned==peakIdx) peakPhaseMask = np.logical_or(peakPhaseMask,phasesBinned==(peakIdx+1)) peakWvls = wavelengths[peakPhaseMask] if idxOffset == 0: grpPeakWavelengthArrays.append(peakWvls) else: nongrpPeakWvls = np.append(nongrpPeakWvls,peakWvls) peakSpectrum,_ = np.histogram(peakWvls,bins=wvlBinEdges) peakSpectrum = 1.0*peakSpectrum/(nPixels*wvlBinWidths)#convert to counts per pixel per angstrom peakSpectra[iIdxOffset] += peakSpectrum skyPhasesBinned = np.digitize(skyPhases,phaseBinEdges)-1 skyPeakPhaseMask = np.logical_or(skyPhasesBinned==(peakIdx-1),skyPhasesBinned==peakIdx) skyPeakPhaseMask = np.logical_or(skyPeakPhaseMask,skyPhasesBinned==(peakIdx+1)) skyPeakWvls = skyWavelengths[skyPeakPhaseMask] skyPeakSpectrum,_ = np.histogram(skyPeakWvls,bins=wvlBinEdges) skyPeakSpectrum = 1.0*skyPeakSpectrum/(nSkyPixels*wvlBinWidths)#convert to counts per pixel per angstrom skyPeakSpectra[iIdxOffset] += skyPeakSpectrum # phaseArrays[iIdxOffset].append(phases) # skyPhaseArrays[iIdxOffset].append(skyPhases) # wavelengthArrays[iIdxOffset].append(photons['wavelength']) # skyWavelengthArrays[iIdxOffset].append(skyPhotons['wavelength']) nongrpPeakWavelengthArrays.append(nongrpPeakWvls) if verbose: print 'done searching' outFile.createArray(outFile.root,'counts',counts) outFile.createArray(outFile.root,'skyCounts',skyCounts) outFile.createArray(outFile.root,'idxOffsets',idxOffsets) outFile.createArray(outFile.root,'radioMax',radioMax) outFile.createArray(outFile.root,'radioMean',radioMean) outFile.createArray(outFile.root,'indProfiles',indProfiles) outFile.createArray(outFile.root,'skyIndProfiles',skyIndProfiles) outFile.createArray(outFile.root,'phaseBinEdges',phaseBinEdges) outFile.createArray(outFile.root,'giantPulseNumbers',giantPulseNumbers) outFile.createArray(outFile.root,'giantPulseNumberMask',giantPulseNumberMask) outFile.createArray(outFile.root,'pulseNumberTable',pulseNumberTable) outFile.createArray(outFile.root,'radioIndices',radioDetectedIndices) outFile.createArray(outFile.root,'nPixels',nLivePixels) outFile.createArray(outFile.root,'nSkyPixels',nSkyLivePixels) outFile.createArray(outFile.root,'fullSpectra',fullSpectra) outFile.createArray(outFile.root,'skyFullSpectra',skyFullSpectra) outFile.createArray(outFile.root,'peakSpectra',peakSpectra) outFile.createArray(outFile.root,'skyPeakSpectra',skyPeakSpectra) outFile.createArray(outFile.root,'wvlBinEdges',wvlBinEdges) outFile.flush() outFile.close() if verbose: print 'done saving'
def __init__(self,paramFile): """ opens flat file,sets wavelength binnning parameters, and calculates flat factors for the file """ self.params = readDict() self.params.read_from_file(paramFile) run = self.params['run'] sunsetDate = self.params['sunsetDate'] flatTstamp = self.params['flatTstamp'] wvlSunsetDate = self.params['wvlSunsetDate'] wvlTimestamp = self.params['wvlTimestamp'] obsSequence = self.params['obsSequence'] needTimeAdjust = self.params['needTimeAdjust'] self.deadtime = self.params['deadtime'] #from firmware pulse detection self.intTime = self.params['intTime'] self.timeSpacingCut = self.params['timeSpacingCut'] self.nSigmaClip = self.params['nSigmaClip'] self.nNearest = self.params['nNearest'] obsFNs = [FileName(run=run,date=sunsetDate,tstamp=obsTstamp) for obsTstamp in obsSequence] self.obsFileNames = [fn.obs() for fn in obsFNs] self.obsList = [ObsFile(obsFileName) for obsFileName in self.obsFileNames] timeMaskFileNames = [fn.timeMask() for fn in obsFNs] timeAdjustFileName = FileName(run=run).timeAdjustments() print len(self.obsFileNames), 'flat files to co-add' self.flatCalFileName = FileName(run=run,date=sunsetDate,tstamp=flatTstamp).illumSoln() if wvlSunsetDate != '': wvlCalFileName = FileName(run=run,date=wvlSunsetDate,tstamp=wvlTimestamp).calSoln() for iObs,obs in enumerate(self.obsList): if wvlSunsetDate != '': obs.loadWvlCalFile(wvlCalFileName) else: obs.loadBestWvlCalFile() if needTimeAdjust: obs.loadTimeAdjustmentFile(timeAdjustFileName) timeMaskFileName = timeMaskFileNames[iObs] print timeMaskFileName #Temporary step, remove old hotpix file #if os.path.exists(timeMaskFileName): # os.remove(timeMaskFileName) if not os.path.exists(timeMaskFileName): print 'Running hotpix for ',obs hp.findHotPixels(self.obsFileNames[iObs],timeMaskFileName,fwhm=np.inf,useLocalStdDev=True) print "Flux file pixel mask saved to %s"%(timeMaskFileName) obs.loadHotPixCalFile(timeMaskFileName) self.wvlFlags = self.obsList[0].wvlFlagTable self.nRow = self.obsList[0].nRow self.nCol = self.obsList[0].nCol print 'files opened' #self.wvlBinWidth = params['wvlBinWidth'] #angstroms self.energyBinWidth = self.params['energyBinWidth'] #eV self.wvlStart = self.params['wvlStart'] #angstroms self.wvlStop = self.params['wvlStop'] #angstroms self.wvlBinEdges = ObsFile.makeWvlBins(self.energyBinWidth,self.wvlStart,self.wvlStop) self.intTime = self.params['intTime'] self.countRateCutoff = self.params['countRateCutoff'] self.fractionOfChunksToTrim = self.params['fractionOfChunksToTrim'] #wvlBinEdges includes both lower and upper limits, so number of bins is 1 less than number of edges self.nWvlBins = len(self.wvlBinEdges)-1
filt = sys.argv[1] else: filt='V' # All examples shown here will use data from the W Uma binary, 1SWASP J0002, found here: fileName = '/ScienceData/PAL2014/20140923/obs_20140924-080031.h5' # We'll select a pixel in the middle of the target for our examples col = 18 row = 16 # first, load the data into an ObsFile object obs = ObsFile(fileName) print "Loaded obsFile", fileName # if we tried to simply load a filter now, it would fail as we haven't defined our spectrum's binning. # Uncomment the following to see the error you would get. ''' obs.loadFilter() ''' # Wavelength bins can be provided during the filter loading, but the easiest way is to # just load the flat calibration first, as that sets everything to the binning used for # flat cal. This file already has all its calibrations associated # with it in /Scratch/calLookup/lookup.h5. If a file doesn't have it's data written into # this table the following will not work and calibrations must be loaded manually.
class FluxCal: def __init__(self,paramFile,plots=False,verbose=False): """ Opens flux file, prepares standard spectrum, and calculates flux factors for the file. Method is provided in param file. If 'relative' is selected, an obs file with standard star defocused over the entire array is expected, with accompanying sky file to do sky subtraction. If any other method is provided, 'absolute' will be done by default, wherein a point source is assumed to be present. The obs file is then broken into spectral frames with photometry (psf or aper) performed on each frame to generate the ARCONS observed spectrum. """ self.verbose=verbose self.plots = plots self.params = readDict() self.params.read_from_file(paramFile) run = self.params['run'] sunsetDate = self.params['fluxSunsetLocalDate'] self.fluxTstamp = self.params['fluxTimestamp'] skyTstamp = self.params['skyTimestamp'] wvlSunsetDate = self.params['wvlCalSunsetLocalDate'] wvlTimestamp = self.params['wvlCalTimestamp'] flatCalFileName = self.params['flatCalFileName'] needTimeAdjust = self.params['needTimeAdjust'] self.deadtime = float(self.params['deadtime']) #from firmware pulse detection self.timeSpacingCut = self.params['timeSpacingCut'] bLoadBeammap = self.params.get('bLoadBeammap',False) self.method = self.params['method'] self.objectName = self.params['object'] self.r = float(self.params['energyResolution']) self.photometry = self.params['photometry'] self.centroidRow = self.params['centroidRow'] self.centroidCol = self.params['centroidCol'] self.aperture = self.params['apertureRad'] self.annulusInner = self.params['annulusInner'] self.annulusOuter = self.params['annulusOuter'] self.collectingArea = self.params['collectingArea'] self.startTime = self.params['startTime'] self.intTime = self.params['integrationTime'] fluxFN = FileName(run=run,date=sunsetDate,tstamp=self.fluxTstamp) self.fluxFileName = fluxFN.obs() self.fluxFile = ObsFile(self.fluxFileName) if self.plots: self.plotSavePath = os.environ['MKID_PROC_PATH']+os.sep+'fluxCalSolnFiles'+os.sep+run+os.sep+sunsetDate+os.sep+'plots'+os.sep if not os.path.exists(self.plotSavePath): os.mkdir(self.plotSavePath) if self.verbose: print "Created directory %s"%self.plotSavePath obsFNs = [fluxFN] self.obsList = [self.fluxFile] if self.startTime in ['',None]: self.startTime=0 if self.intTime in ['',None]: self.intTime=-1 if self.method=="relative": try: print "performing Relative Flux Calibration" skyFN = FileName(run=run,date=sunsetDate,tstamp=skyTstamp) self.skyFileName = skyFN.obs() self.skyFile = ObsFile(self.skyFileName) obsFNs.append(skyFN) self.obsList.append(self.skyFile) except: print "For relative flux calibration a sky file must be provided in param file" self.__del__() else: self.method='absolute' print "performing Absolute Flux Calibration" if self.photometry not in ['aperture','PSF']: self.photometry='PSF' #default to PSF fitting if no valid photometry selected timeMaskFileNames = [fn.timeMask() for fn in obsFNs] timeAdjustFileName = FileName(run=run).timeAdjustments() #make filename for output fluxCalSoln file self.fluxCalFileName = FileName(run=run,date=sunsetDate,tstamp=self.fluxTstamp).fluxSoln() print "Creating flux cal: %s"%self.fluxCalFileName if wvlSunsetDate != '': wvlCalFileName = FileName(run=run,date=wvlSunsetDate,tstamp=wvlTimestamp).calSoln() if flatCalFileName =='': flatCalFileName=FileName(obsFile=self.fluxFile).flatSoln() #load cal files for flux file and, if necessary, sky file for iObs,obs in enumerate(self.obsList): if bLoadBeammap: print 'loading beammap',os.environ['MKID_BEAMMAP_PATH'] obs.loadBeammapFile(os.environ['MKID_BEAMMAP_PATH']) if wvlSunsetDate != '': obs.loadWvlCalFile(wvlCalFileName) else: obs.loadBestWvlCalFile() obs.loadFlatCalFile(flatCalFileName) obs.setWvlCutoffs(-1,-1) if needTimeAdjust: obs.loadTimeAdjustmentFile(timeAdjustFileName) timeMaskFileName = timeMaskFileNames[iObs] print timeMaskFileName if not os.path.exists(timeMaskFileName): print 'Running hotpix for ',obs hp.findHotPixels(obsFile=obs,outputFileName=timeMaskFileName,fwhm=np.inf,useLocalStdDev=True) print "Flux cal/sky file pixel mask saved to %s"%(timeMaskFileName) obs.loadHotPixCalFile(timeMaskFileName) if self.verbose: print "Loaded hot pixel file %s"%timeMaskFileName #get flat cal binning information since flux cal will need to match it self.wvlBinEdges = self.fluxFile.flatCalFile.root.flatcal.wavelengthBins.read() self.nWvlBins = self.fluxFile.flatWeights.shape[2] self.binWidths = np.empty((self.nWvlBins),dtype=float) self.binCenters = np.empty((self.nWvlBins),dtype=float) for i in xrange(self.nWvlBins): self.binWidths[i] = self.wvlBinEdges[i+1]-self.wvlBinEdges[i] self.binCenters[i] = (self.wvlBinEdges[i]+(self.binWidths[i]/2.0)) if self.method=='relative': print "Extracting ARCONS flux and sky spectra" self.loadRelativeSpectrum() print "Flux Spectrum loaded" self.loadSkySpectrum() print "Sky Spectrum loaded" elif self.method=='absolute': print "Extracting ARCONS point source spectrum" self.loadAbsoluteSpectrum() print "Loading standard spectrum" try: self.loadStdSpectrum(self.objectName) except KeyError: print "Invalid spectrum object name" self.__del__() sys.exit() print "Generating sensitivity curve" self.calculateFactors() print "Sensitivity Curve calculated" print "Writing fluxCal to file %s"%self.fluxCalFileName self.writeFactors(self.fluxCalFileName) if self.plots: self.makePlots() print "Done" def __del__(self): try: self.fluxFile.close() self.calFile.close() except AttributeError:#fluxFile was never defined pass def getDeadTimeCorrection(self, obs): #WRONG RIGHT NOW. NEEDS TO HAVE RAW COUNTS SUMMED, NOT CUBE WHICH EXCLUDES NOISE TAIL if self.verbose: print "Making raw cube to get dead time correction" cubeDict = obs.getSpectralCube(firstSec=self.startTime, integrationTime=self.intTime, weighted=False) cube= np.array(cubeDict['cube'], dtype=np.double) wvlBinEdges= cubeDict['wvlBinEdges'] effIntTime= cubeDict['effIntTime'] if self.verbose: print "median effective integration time = ", np.median(effIntTime) nWvlBins=len(wvlBinEdges)-1 if self.verbose: print "cube shape ", np.shape(cube) if self.verbose: print "effIntTime shape ", np.shape(effIntTime) #add third dimension to effIntTime for broadcasting effIntTime = np.reshape(effIntTime,np.shape(effIntTime)+(1,)) #put cube into counts/s in each pixel cube /= effIntTime #CALCULATE DEADTIME CORRECTION #NEED TOTAL COUNTS PER SECOND FOR EACH PIXEL TO DO PROPERLY #ASSUMES SAME CORRECTION FACTOR APPLIED FOR EACH WAVELENGTH, MEANING NO WL DEPENDANCE ON DEAD TIME EFFECT DTCorr = np.zeros((np.shape(cube)[0],np.shape(cube)[1]),dtype=float) for f in range(0,np.shape(cube)[2]): #if self.verbose: print cube[:,:,f] #if self.verbose: print '-----------------------' DTCorr += cube[:,:,f] #if self.verbose: print DTCorr #if self.verbose: print '\n=====================\n' #Correct for firmware dead time (100us in 2012 ARCONS firmware) DTCorrNew=DTCorr/(1-DTCorr*self.deadtime) CorrFactors = DTCorrNew/DTCorr #This is what the frames need to be multiplied by to get their true values if self.verbose: print "Dead time correction factors: ", CorrFactors #add third dimension to CorrFactors for broadcasting CorrFactors = np.reshape(CorrFactors,np.shape(CorrFactors)+(1,)) return CorrFactors def loadAbsoluteSpectrum(self): ''' extract the ARCONS measured spectrum of the spectrophotometric standard by breaking data into spectral cube and performing photometry (aper or psf) on each spectral frame ''' if self.verbose:print "Making spectral cube" cubeDict = self.fluxFile.getSpectralCube(firstSec=self.startTime, integrationTime=self.intTime, weighted=True, fluxWeighted=False) cube= np.array(cubeDict['cube'], dtype=np.double) effIntTime= cubeDict['effIntTime'] if self.verbose: print "median effective integration time in flux file cube = ", np.median(effIntTime) if self.verbose: print "cube shape ", np.shape(cube) if self.verbose: print "effIntTime shape ", np.shape(effIntTime) #add third dimension to effIntTime for broadcasting effIntTime = np.reshape(effIntTime,np.shape(effIntTime)+(1,)) #put cube into counts/s in each pixel cube /= effIntTime #get dead time correction factors DTCorr = self.getDeadTimeCorrection(self.fluxFile) cube*=DTCorr #cube now in units of counts/s and corrected for dead time if self.plots and not 'figureHeader' in sys.modules: if self.verbose: print "Saving spectral frames as movie..." movieCube = np.zeros((self.nWvlBins,np.shape(cube)[0],np.shape(cube)[1]),dtype=float) for i in xrange(self.nWvlBins): movieCube[i,:,:] = cube[:,:,i] makeMovie(movieCube,frameTitles=self.binCenters,cbar=True,outName=self.plotSavePath+'FluxCal_Cube_%s.gif'%(self.objectName), normMin=0, normMax=50) if self.verbose: print "Movie saved in %s"%self.plotSavePath LCplot=False #light curve pop-ups not compatible with FLuxCal plotting 2/18/15 #if self.photometry=='PSF': LCplot = False LC = LightCurve.LightCurve(verbose=self.verbose, showPlot=LCplot) self.fluxSpectrum=np.empty((self.nWvlBins),dtype=float) self.skySpectrum=np.zeros((self.nWvlBins),dtype=float) for i in xrange(self.nWvlBins): frame = cube[:,:,i] if self.verbose: print "%s photometry on frame %i of cube, central wvl = %f Angstroms"%(self.photometry,i,self.binCenters[i]) if self.photometry == 'aperture': fDict = LC.performPhotometry(self.photometry,frame,[[self.centroidCol,self.centroidRow]],expTime=None,aper_radius = self.aperture, annulus_inner = self.annulusInner, annulus_outer = self.annulusOuter, interpolation="linear") self.fluxSpectrum[i] = fDict['flux'] self.skySpectrum[i] = fDict['skyFlux'] print "Sky estimate = ", fDict['skyFlux'] else: fDict = LC.performPhotometry(self.photometry,frame,[[self.centroidCol,self.centroidRow]],expTime=None,aper_radius = self.aperture) self.fluxSpectrum[i] = fDict['flux'] self.fluxSpectrum=self.fluxSpectrum/self.binWidths/self.collectingArea #spectrum now in counts/s/Angs/cm^2 self.skySpectrum=self.skySpectrum/self.binWidths/self.collectingArea return self.fluxSpectrum, self.skySpectrum def loadRelativeSpectrum(self): self.fluxSpectra = [[[] for i in xrange(self.nCol)] for j in xrange(self.nRow)] self.fluxEffTime = [[[] for i in xrange(self.nCol)] for j in xrange(self.nRow)] for iRow in xrange(self.nRow): for iCol in xrange(self.nCol): count = self.fluxFile.getPixelCount(iRow,iCol) fluxDict = self.fluxFile.getPixelSpectrum(iRow,iCol,weighted=True,firstSec=0,integrationTime=-1) self.fluxSpectra[iRow][iCol],self.fluxEffTime[iRow][iCol] = fluxDict['spectrum'],fluxDict['effIntTime'] self.fluxSpectra = np.array(self.fluxSpectra) self.fluxEffTime = np.array(self.fluxEffTime) DTCorr = self.getDeadTimeCorrection(self.fluxFile) #print "Bin widths = ",self.binWidths self.fluxSpectra = self.fluxSpectra/self.binWidths/self.fluxEffTime*DTCorr self.fluxSpectrum = self.calculateMedian(self.fluxSpectra) #find median of subtracted spectra across whole array return self.fluxSpectrum def loadSkySpectrum(self): self.skySpectra = [[[] for i in xrange(self.nCol)] for j in xrange(self.nRow)] self.skyEffTime = [[[] for i in xrange(self.nCol)] for j in xrange(self.nRow)] for iRow in xrange(self.nRow): for iCol in xrange(self.nCol): count = self.skyFile.getPixelCount(iRow,iCol) skyDict = self.skyFile.getPixelSpectrum(iRow,iCol,weighted=True,firstSec=0,integrationTime=-1) self.skySpectra[iRow][iCol],self.skyEffTime[iRow][iCol] = skyDict['spectrum'],skyDict['effIntTime'] self.skySpectra = np.array(self.skySpectra) self.skyEffTime = np.array(self.skyEffTime) DTCorr = self.getDeadTimeCorrection(self.skyFile) self.skySpectra = self.skySpectra/self.binWidths/self.skyEffTime*DTCorr self.skySpectrum = self.calculateMedian(self.skySpectra) #find median of subtracted spectra across whole array return self.skySpectrum def loadStdSpectrum(self, objectName="G158-100"): #import the known spectrum of the calibrator and rebin to the histogram parameters given #must be imported into array with dtype float so division later does not have error std = MKIDStd.MKIDStd() a = std.load(objectName) a = std.countsToErgs(a) #convert std spectrum to ergs/s/Angs/cm^2 for BB fitting and cleaning self.stdWvls = np.array(a[:,0]) self.stdFlux = np.array(a[:,1]) #std object spectrum in ergs/s/Angs/cm^2 if self.plots: #create figure for plotting standard spectrum modifications self.stdFig = plt.figure() self.stdAx = self.stdFig.add_subplot(111) plt.xlim(4000,11000) plt.plot(self.stdWvls,self.stdFlux*1E15,linewidth=1,color='grey',alpha=0.75) convX_rev,convY_rev = self.cleanSpectrum(self.stdWvls,self.stdFlux) convX = convX_rev[::-1] #convolved spectrum comes back sorted backwards, from long wvls to low which screws up rebinning convY = convY_rev[::-1] #rebin cleaned spectrum to flat cal's wvlBinEdges newa = rebin(convX,convY,self.wvlBinEdges) rebinnedWvl = np.array(newa[:,0]) rebinnedFlux = np.array(newa[:,1]) if self.plots: #plot final resampled spectrum plt.plot(convX,convY*1E15,color='blue') plt.step(rebinnedWvl,rebinnedFlux*1E15,color = 'black',where='mid') plt.legend(['%s Spectrum'%self.objectName,'Blackbody Fit','Gaussian Convolved Spectrum','Rebinned Spectrum'],'upper right', numpoints=1) plt.xlabel(ur"Wavelength (\r{A})") plt.ylabel(ur"Flux (10$^{-15}$ ergs s$^{-1}$ cm$^{-2}$ \r{A}$^{-1}$)") plt.ylim(1,5) plt.savefig(self.plotSavePath+'FluxCal_StdSpectrum_%s.eps'%self.objectName,format='eps') #convert standard spectrum back into counts/s/angstrom/cm^2 newa = std.ergsToCounts(newa) self.binnedSpectrum = np.array(newa[:,1]) def cleanSpectrum(self,x,y): ##=============== BB Fit to extend spectrum beyond 11000 Angstroms ================== fraction = 1.0/3.0 nirX = np.arange(int(x[(1.0-fraction)*len(x)]),20000) T, nirY = fitBlackbody(x,y,fraction=fraction,newWvls=nirX,tempGuess=5600) if self.plots: plt.plot(nirX,nirY*1E15,linestyle='--',linewidth=2, color="black",alpha=0.5) extendedWvl = np.concatenate((x,nirX[nirX>max(x)])) extendedFlux = np.concatenate((y,nirY[nirX>max(x)])) ##======= Gaussian convolution to smooth std spectrum to MKIDs median resolution ======== newX, newY = gaussianConvolution(extendedWvl,extendedFlux,xEnMin=0.005,xEnMax=6.0,xdE=0.001,fluxUnits = "lambda",r=self.r,plots=False) return newX, newY def calculateFactors(self): """ Calculate the sensitivity spectrum: the weighting factors that correct the flat calibrated spectra to the real spectra For relative calibration: First subtract sky spectrum from ARCONS observed spectrum. Then take median of this spectrum as it should be identical across the array, assuming the flat cal has done its job. Then divide this into the known spectrum of the object. For absolute calibration: self.fluxSpectra already has sky subtraction included. Simply divide this spectrum into the known standard spectrum. """ self.subtractedSpectrum = self.fluxSpectrum - self.skySpectrum self.subtractedSpectrum = np.array(self.subtractedSpectrum,dtype=float) #cast as floats so division does not fail later if self.method=='relative': normWvl = 5500 #Angstroms. Choose an arbitrary wvl to normalize the relative correction at ind = np.where(self.wvlBinEdges >= normWvl)[0][0]-1 self.subtractedSpectrum = self.subtractedSpectrum/(self.subtractedSpectrum[ind]) #normalize self.binnedSpectrum = self.binnedSpectrum/(self.binnedSpectrum[ind]) #normalize treated Std spectrum while we are at it #Calculate FluxCal factors self.fluxFactors = self.binnedSpectrum/self.subtractedSpectrum #self.fluxFlags = np.zeros(np.shape(self.fluxFactors),dtype='int') self.fluxFlags = np.empty(np.shape(self.fluxFactors),dtype='int') self.fluxFlags.fill(pipelineFlags.fluxCal['good']) #Initialise flag array filled with 'good' flags. JvE 5/1/2013. #set factors that will cause trouble to 1 #self.fluxFlags[self.fluxFactors == np.inf] = 1 self.fluxFlags[self.fluxFactors == np.inf] = pipelineFlags.fluxCal['infWeight'] #Modified to use flag dictionary - JvE 5/1/2013 self.fluxFactors[self.fluxFactors == np.inf]=1.0 self.fluxFlags[np.isnan(self.fluxFactors)] = pipelineFlags.fluxCal['nanWeight'] #Modified to use flag dictionary - JvE 5/1/2013 self.fluxFactors[np.isnan(self.fluxFactors)]=1.0 self.fluxFlags[self.fluxFactors <= 0]=pipelineFlags.fluxCal['LEzeroWeight'] #Modified to use flag dictionary - JvE 5/1/2013 self.fluxFactors[self.fluxFactors <= 0]=1.0 def calculateMedian(self, spectra): spectra2d = np.reshape(spectra,[self.nRow*self.nCol,self.nWvlBins]) wvlMedian = np.empty(self.nWvlBins,dtype=float) for iWvl in xrange(self.nWvlBins): spectrum = spectra2d[:,iWvl] goodSpectrum = spectrum[spectrum != 0]#dead pixels need to be taken out before calculating medians wvlMedian[iWvl] = np.median(goodSpectrum) return wvlMedian def makePlots(self): """ Output all debugging plots of ARCONS sky and object spectra, known calibrator spectrum, and sensitivity curve """ scratchDir = os.getenv('MKID_PROC_PATH') fluxDir = self.plotSavePath fluxCalBase = 'FluxCal_%s'%self.objectName plotFileName = fluxCalBase+".pdf" fullFluxPlotFileName = os.path.join(fluxDir,plotFileName) #uncomment to make some plots for the paper. Proper formatting Will also require figureheader to be imported and for movie making to be turned off self.paperFig = plt.figure() self.paperAx = self.paperFig.add_subplot(111) plt.xlim(4000,11000) plt.plot(self.binCenters,self.fluxFactors,linewidth=3,color='black') plt.xlabel(ur"Wavelength (\r{A})") plt.ylabel(ur"Spectral Calibration Curve") plt.ylim(0,150) plt.savefig(self.plotSavePath+'FluxCal_Sensitivity_%s.eps'%self.objectName,format='eps') #save throughput as a .npz file that other code uses when making paper plots np.savez(self.plotSavePath+'%s_%s_throughput.npz'%(self.objectName.strip(),self.fluxTstamp),throughput=1.0/self.fluxFactors,wvls=self.binCenters) pp = PdfPages(fullFluxPlotFileName) #plt.rcParams['font.size'] = 2 wvls = self.binCenters plt.figure() ax1 = plt.subplot(111) ax1.set_title('ARCONS median flat cal\'d flux in counts') plt.plot(wvls,self.fluxSpectrum) pp.savefig() plt.figure() ax2 = plt.subplot(111) ax2.set_title('ARCONS median flat cal\'d sky in counts') plt.plot(wvls,self.skySpectrum) pp.savefig() plt.figure() ax3 = plt.subplot(111) ax3.set_title('Flux data minus sky in counts') plt.plot(wvls,self.subtractedSpectrum) pp.savefig() plt.figure() ax4 = plt.subplot(111) ax4.set_title('Std Spectrum of %s'%(self.objectName)) plt.plot(self.stdWvls,self.stdFlux) pp.savefig() plt.figure() ax5 = plt.subplot(111) ax5.set_title('Binned Std Spectrum') plt.plot(wvls,self.binnedSpectrum) pp.savefig() plt.figure() ax6 = plt.subplot(111) ax6.set_title('Median Sensitivity Spectrum') ax6.set_xlim((3000,13000)) #ax6.set_ylim((0,5)) plt.plot(wvls,self.fluxFactors) pp.savefig() plt.figure() ax7 = plt.subplot(111) ax7.set_title('1/Sensitivity (Throughput)') ax7.set_xlim((4000,11000)) plt.plot(wvls,1.0/self.fluxFactors) pp.savefig() plt.figure() ax8 = plt.subplot(111) ax8.set_title('Flux Cal\'d ARCONS Spectrum of Std') plt.plot(wvls,self.fluxFactors*self.subtractedSpectrum) pp.savefig() pp.close() print "Saved Flux Cal plots to %s"%(fullFluxPlotFileName) def writeFactors(self,fluxCalFileName): """ Write flux cal weights to h5 file """ if os.path.isabs(fluxCalFileName) == True: fullFluxCalFileName = fluxCalFileName else: scratchDir = os.getenv('MKID_PROC_PATH') fluxDir = os.path.join(scratchDir,'fluxCalSolnFiles') fullFluxCalFileName = os.path.join(fluxDir,fluxCalFileName) try: fluxCalFile = tables.openFile(fullFluxCalFileName,mode='w') except: print 'Error: Couldn\'t create flux cal file, ',fullFluxCalFileName return calgroup = fluxCalFile.createGroup(fluxCalFile.root,'fluxcal','Table of flux calibration weights by wavelength') caltable = tables.Array(calgroup,'weights',object=self.fluxFactors,title='Flux calibration Weights indexed by wavelengthBin') flagtable = tables.Array(calgroup,'flags',object=self.fluxFlags,title='Flux cal flags indexed by wavelengthBin. 0 is Good') bintable = tables.Array(calgroup,'wavelengthBins',object=self.wvlBinEdges,title='Wavelength bin edges corresponding to third dimension of weights array') fluxCalFile.flush() fluxCalFile.close() print "Finished Flux Cal, written to %s"%(fullFluxCalFileName) def cleanSpectrum_old(self,x,y,objectName): ''' function to take high resolution spectrum of standard star, extend IR coverage with an exponential tail, then rebin down to ARCONS resolution. This function has since been deprecated with the current cleanSpectrum which uses a BB fit to extend IR coverage, and does the rebinning using a gaussian convolution. This is left in for reference. ''' #locations and widths of absorption features in Angstroms #features = [3890,3970,4099,4340,4860,6564,6883,7619] #widths = [50,50,50,50,50,50,50,50] #for i in xrange(len(features)): # #check for absorption feature in std spectrum # ind = np.where((x<(features[i]+15)) & (x>(features[i]-15)))[0] # if len(ind)!=0: # ind = ind[len(ind)/2] # #if feature is found (flux is higher on both sides of the specified wavelength where the feature should be) # if y[ind]<y[ind+1] and y[ind]<y[ind-1]: # #cut out width[i] around feature[i] # inds = np.where((x >= features[i]+widths[i]) | (x <= features[i]-widths[i])) # x = x[inds] # y = y[inds] #fit a tail to the end of the spectrum to interpolate out to desired wavelength in angstroms fraction = 3.0/4.0 newx = np.arange(int(x[fraction*len(x)]),20000) slopeguess = (np.log(y[-1])-np.log(y[fraction*len(x)]))/(x[-1]-x[fraction*len(x)]) print "Guess at exponential slope is %f"%(slopeguess) guess_a, guess_b, guess_c = float(y[fraction*len(x)]), x[fraction*len(x)], slopeguess guess = [guess_a, guess_b, guess_c] fitx = x[fraction*len(x):] fity = y[fraction*len(x):] exp_decay = lambda fx, A, x0, t: A * np.exp((fx-x0) * t) params, cov = curve_fit(exp_decay, fitx, fity, p0=guess, maxfev=2000) A, x0, t= params print "A = %s\nx0 = %s\nt = %s\n"%(A, x0, t) best_fit = lambda fx: A * np.exp((fx-x0)*t) calcx = np.array(newx,dtype=float) newy = best_fit(calcx) #func = interpolate.splrep(x[fration*len(x):],y[fraction*len(x):],s=smooth) #newx = np.arange(int(x[fraction*len(x)]),self.wvlBinEdges[-1]) #newy = interpolate.splev(newx,func) wl = np.concatenate((x,newx[newx>max(x)])) flux = np.concatenate((y,newy[newx>max(x)])) #new method, rebin data to grid of wavelengths generated from a grid of evenly spaced energy bins #R=7.0 at 4500 #R=E/dE -> dE = R/E dE = 0.3936 #eV start = 1000 #Angs stop = 20000 #Angs enBins = ObsFile.makeWvlBins(dE,start,stop) rebinned = rebin(wl,flux,enBins) re_wl = rebinned[:,0] re_flux = rebinned[:,1] #plt.plot(re_wl,re_flux,color='r') re_wl = re_wl[np.isnan(re_flux)==False] re_flux = re_flux[np.isnan(re_flux)==False] start1 = self.wvlBinEdges[0] stop1 = self.wvlBinEdges[-1] #regrid downsampled data new_wl = np.arange(start1,stop1) #print re_wl #print re_flux #print new_wl #weight=1.0/(re_flux)**(2/1.00) print len(re_flux) weight = np.ones(len(re_flux)) #decrease weights near peak ind = np.where(re_flux == max(re_flux))[0] weight[ind] = 0.3 for p in [1,2,3]: if p==1: wt = 0.3 elif p==2: wt = 0.6 elif p==3: wt = 0.7 try: weight[ind+p] = wt except IndexError: pass try: if ind-p >= 0: weight[ind-p] = wt except IndexError: pass weight[-4:] = 1.0 #weight = [0.7,1,0.3,0.3,0.5,0.7,1,1,1] #print len(weight) #weight = re_flux/min(re_flux) #weight = 1.0/weight #weight = weight/max(weight) #print weight f = interpolate.splrep(re_wl,re_flux,w=weight,k=3,s=max(re_flux)**1.71) new_flux = interpolate.splev(new_wl,f,der=0) return new_wl, new_flux
def main(): """ params = [] paramfile = sys.argv[1] f = open(paramfile,'r') for line in f: params.append(line) f.close() datadir = params[0].split('=')[1].strip() flatdir = params[1].split('=')[1].strip() fluxdir = params[2].split('=')[1].strip() wvldir = params[3].split('=')[1].strip() obsfile = params[4].split('=')[1].strip() skyfile = params[5].split('=')[1].strip() flatfile = params[6].split('=')[1].strip() fluxfile = params[7].split('=')[1].strip() wvlfile = params[8].split('=')[1].strip() objectName = params[9].split('=')[1].strip() fluxCalObject = params[10].split('=')[1].strip() obsFileName = os.path.join(datadir, obsfile) skyFileName = os.path.join(datadir, skyfile) wvlCalFileName = os.path.join(wvldir, wvlfile) flatCalFileName = os.path.join(flatdir, flatfile) fluxCalFileName = os.path.join(fluxdir, fluxfile) """ if len(sys.argv) >2: fileNum = str(sys.argv[2]) else: fileNum = '0' #science object parameter file params = [] paramfile = sys.argv[1] f = open(paramfile,'r') for line in f: params.append(line) f.close() datadir = params[0].split('=')[1].strip() flatdir = params[1].split('=')[1].strip() wvldir = params[2].split('=')[1].strip() obsfile = params[3].split('=')[1].strip() skyfile = params[4].split('=')[1].strip() flatfile = params[5].split('=')[1].strip() wvlfile = params[6].split('=')[1].strip() objectName = params[9].split('=')[1].strip() wvldir = "/Scratch/waveCalSolnFiles/oldbox_numbers/20121206" if len(params)>10: xpix = int(params[10].split('=')[1].strip()) ypix = int(params[11].split('=')[1].strip()) apertureRadius = int(params[12].split('=')[1].strip()) startTime = int(params[13].split('=')[1].strip()) intTime =int(params[14].split('=')[1].strip()) obsFileName = os.path.join(datadir, obsfile) skyFileName = os.path.join(datadir, skyfile) wvlCalFileName = os.path.join(wvldir, wvlfile) flatCalFileName = os.path.join(flatdir, flatfile) obs = ObsFile(obsFileName) obs.loadWvlCalFile(wvlCalFileName) obs.loadFlatCalFile(flatCalFileName) print "analyzing file %s"%(obsFileName) print "loaded data file and calibrations\n---------------------\n" nRow = obs.nRow nCol = obs.nCol obsTime = obs.getFromHeader("exptime") #wvlBinEdges,obsSpectra = loadSpectra(obs,nCol,nRow) #nWvlBins=len(wvlBinEdges)-1 #print np.shape(obsSpectra) #print nRow #print nCol #print nWvlBins #load/generate hot pixel mask file HotPixFile = getTimeMaskFileName(obsFileName) if not os.path.exists(HotPixFile): hp.findHotPixels(obsFileName,HotPixFile) print "Flux file pixel mask saved to %s"%(HotPixFile) obs.loadHotPixCalFile(HotPixFile) print "Hot pixel mask loaded %s"%(HotPixFile) ####### #EVERYTHING BEFORE HERE IS STANDARD FILE/CALFILE LOADING startWvl = 3000 #stopWvl = 7000 #for V-band stopWvl = 9000 #for R-band print "Making spectral cube" #for pg0220 first sec should be 80 since object is moving around before this #for pg0220A first sec should be 70, integration time is 140 #for landolt 9542 first sec should be 20, int time is -1 cubeDict = obs.getSpectralCube(firstSec=startTime, integrationTime=intTime, wvlStart = startWvl, wvlStop = stopWvl, wvlBinEdges = [startWvl,stopWvl], weighted=False) cube= np.array(cubeDict['cube'], dtype=np.double) wvlBinEdges= cubeDict['wvlBinEdges'] effIntTime= cubeDict['effIntTime'] print "median effective integration time = ", np.median(effIntTime) nWvlBins=len(wvlBinEdges)-1 print "cube shape ", np.shape(cube) print "effIntTime shape ", np.shape(effIntTime) #add third dimension to effIntTime for broadcasting effIntTime = np.reshape(effIntTime,np.shape(effIntTime)+(1,)) cube /= effIntTime #put cube into counts/s #calculate midpoints of wvl bins for plotting wvls = np.empty((nWvlBins),dtype=float) for n in xrange(nWvlBins): binsize=wvlBinEdges[n+1]-wvlBinEdges[n] wvls[n] = (wvlBinEdges[n]+(binsize/2.0)) print "wvls ",wvls #reshape cube for makeMovie movieCube = np.zeros((nWvlBins,np.shape(cube)[0],np.shape(cube)[1]),dtype=float) for i in xrange(nWvlBins): movieCube[i,:,:] = cube[:,:,i] #show individual frames as they are made to debug #plt.matshow(movieCube[i],vmin = 0, vmax = 100) #plt.show() print "movieCube shape ", np.shape(movieCube) print "wvls shape ", np.shape(wvls) #print cube #print "--------------------------" #print movieCube print "adding frames with wvl below ", stopWvl finalframe = np.zeros((1,np.shape(movieCube)[1],np.shape(movieCube)[2])) for f in xrange(len(wvls[wvls<stopWvl])): print wvls[f] finalframe[0]+=movieCube[f] plt.matshow(movieCube[f],vmin=0,vmax = 40) plt.show() movieCube = finalframe np.savez('%s_%s.npz'%(objectName,fileNum),stack=movieCube,wvls=wvls) print "Saved frame to .npz file" plt.matshow(movieCube[0],vmin=0,vmax = 40) plt.show()
def __init__(self,paramFile,plots=False,verbose=False): """ Opens flux file, prepares standard spectrum, and calculates flux factors for the file. Method is provided in param file. If 'relative' is selected, an obs file with standard star defocused over the entire array is expected, with accompanying sky file to do sky subtraction. If any other method is provided, 'absolute' will be done by default, wherein a point source is assumed to be present. The obs file is then broken into spectral frames with photometry (psf or aper) performed on each frame to generate the ARCONS observed spectrum. """ self.verbose=verbose self.plots = plots self.params = readDict() self.params.read_from_file(paramFile) run = self.params['run'] sunsetDate = self.params['fluxSunsetLocalDate'] self.fluxTstamp = self.params['fluxTimestamp'] skyTstamp = self.params['skyTimestamp'] wvlSunsetDate = self.params['wvlCalSunsetLocalDate'] wvlTimestamp = self.params['wvlCalTimestamp'] flatCalFileName = self.params['flatCalFileName'] needTimeAdjust = self.params['needTimeAdjust'] self.deadtime = float(self.params['deadtime']) #from firmware pulse detection self.timeSpacingCut = self.params['timeSpacingCut'] bLoadBeammap = self.params.get('bLoadBeammap',False) self.method = self.params['method'] self.objectName = self.params['object'] self.r = float(self.params['energyResolution']) self.photometry = self.params['photometry'] self.centroidRow = self.params['centroidRow'] self.centroidCol = self.params['centroidCol'] self.aperture = self.params['apertureRad'] self.annulusInner = self.params['annulusInner'] self.annulusOuter = self.params['annulusOuter'] self.collectingArea = self.params['collectingArea'] self.startTime = self.params['startTime'] self.intTime = self.params['integrationTime'] fluxFN = FileName(run=run,date=sunsetDate,tstamp=self.fluxTstamp) self.fluxFileName = fluxFN.obs() self.fluxFile = ObsFile(self.fluxFileName) if self.plots: self.plotSavePath = os.environ['MKID_PROC_PATH']+os.sep+'fluxCalSolnFiles'+os.sep+run+os.sep+sunsetDate+os.sep+'plots'+os.sep if not os.path.exists(self.plotSavePath): os.mkdir(self.plotSavePath) if self.verbose: print "Created directory %s"%self.plotSavePath obsFNs = [fluxFN] self.obsList = [self.fluxFile] if self.startTime in ['',None]: self.startTime=0 if self.intTime in ['',None]: self.intTime=-1 if self.method=="relative": try: print "performing Relative Flux Calibration" skyFN = FileName(run=run,date=sunsetDate,tstamp=skyTstamp) self.skyFileName = skyFN.obs() self.skyFile = ObsFile(self.skyFileName) obsFNs.append(skyFN) self.obsList.append(self.skyFile) except: print "For relative flux calibration a sky file must be provided in param file" self.__del__() else: self.method='absolute' print "performing Absolute Flux Calibration" if self.photometry not in ['aperture','PSF']: self.photometry='PSF' #default to PSF fitting if no valid photometry selected timeMaskFileNames = [fn.timeMask() for fn in obsFNs] timeAdjustFileName = FileName(run=run).timeAdjustments() #make filename for output fluxCalSoln file self.fluxCalFileName = FileName(run=run,date=sunsetDate,tstamp=self.fluxTstamp).fluxSoln() print "Creating flux cal: %s"%self.fluxCalFileName if wvlSunsetDate != '': wvlCalFileName = FileName(run=run,date=wvlSunsetDate,tstamp=wvlTimestamp).calSoln() if flatCalFileName =='': flatCalFileName=FileName(obsFile=self.fluxFile).flatSoln() #load cal files for flux file and, if necessary, sky file for iObs,obs in enumerate(self.obsList): if bLoadBeammap: print 'loading beammap',os.environ['MKID_BEAMMAP_PATH'] obs.loadBeammapFile(os.environ['MKID_BEAMMAP_PATH']) if wvlSunsetDate != '': obs.loadWvlCalFile(wvlCalFileName) else: obs.loadBestWvlCalFile() obs.loadFlatCalFile(flatCalFileName) obs.setWvlCutoffs(-1,-1) if needTimeAdjust: obs.loadTimeAdjustmentFile(timeAdjustFileName) timeMaskFileName = timeMaskFileNames[iObs] print timeMaskFileName if not os.path.exists(timeMaskFileName): print 'Running hotpix for ',obs hp.findHotPixels(obsFile=obs,outputFileName=timeMaskFileName,fwhm=np.inf,useLocalStdDev=True) print "Flux cal/sky file pixel mask saved to %s"%(timeMaskFileName) obs.loadHotPixCalFile(timeMaskFileName) if self.verbose: print "Loaded hot pixel file %s"%timeMaskFileName #get flat cal binning information since flux cal will need to match it self.wvlBinEdges = self.fluxFile.flatCalFile.root.flatcal.wavelengthBins.read() self.nWvlBins = self.fluxFile.flatWeights.shape[2] self.binWidths = np.empty((self.nWvlBins),dtype=float) self.binCenters = np.empty((self.nWvlBins),dtype=float) for i in xrange(self.nWvlBins): self.binWidths[i] = self.wvlBinEdges[i+1]-self.wvlBinEdges[i] self.binCenters[i] = (self.wvlBinEdges[i]+(self.binWidths[i]/2.0)) if self.method=='relative': print "Extracting ARCONS flux and sky spectra" self.loadRelativeSpectrum() print "Flux Spectrum loaded" self.loadSkySpectrum() print "Sky Spectrum loaded" elif self.method=='absolute': print "Extracting ARCONS point source spectrum" self.loadAbsoluteSpectrum() print "Loading standard spectrum" try: self.loadStdSpectrum(self.objectName) except KeyError: print "Invalid spectrum object name" self.__del__() sys.exit() print "Generating sensitivity curve" self.calculateFactors() print "Sensitivity Curve calculated" print "Writing fluxCal to file %s"%self.fluxCalFileName self.writeFactors(self.fluxCalFileName) if self.plots: self.makePlots() print "Done"
for seq in seqs: NumFiles.append(len(seq)) NumFiles = sum(NumFiles) print (NumFiles)*expTime/integrationTime,'frames to make' for iSeq in range(len(seqs)): timestampList = timestampLists[iSeq] print timestampList wfn = wvlCalFilenames[iSeq] ffn = flatCalFilenames[iSeq] sunsetDate = sunsetDates[iSeq] for i,ts in enumerate(timestampList): print 'loading',ts obsFn = FileName(run=run,date=sunsetDate,tstamp=ts).obs() ob = ObsFile(obsFn) ob.loadTimeAdjustmentFile(FileName(run=run).timeAdjustments()) index1 = obsFn.find('_') hotPixFn = '/Scratch/timeMasks/timeMask' + obsFn[index1:] if not os.path.exists(hotPixFn): hp.findHotPixels(obsFn,hotPixFn) print "Flux file pixel mask saved to %s"%(hotPixFn) ob.loadHotPixCalFile(hotPixFn,switchOnMask=True) ob.loadWvlCalFile(wfn) ob.loadFlatCalFile(ffn) ob.setWvlCutoffs(wvlLowerCutoff,wvlUpperCutoff) bad_solution_mask=np.zeros((46,44)) bad_count=0; for y in range(46): for x in range(44):
stride = 10 threshold = 100 nAboveThreshold = 0 npList = [] sigList = [] run = 'PAL2012' sundownDate = '20121211' obsDate = '20121212' for seq in seq5: inFile = open("cosmicTimeList-%s.pkl"%(seq),"rb") cosmicTimeList = pickle.load(inFile) binContents = pickle.load(inFile) cfn = "cosmicMax-%s.h5"%seq intervals = ObsFile.readCosmicIntervalFromFile(cfn) for interval in intervals: print "interval=",interval fn = FileName(run, sundownDate,obsDate+"-"+seq) obsFile = ObsFile(fn.obs()) obsFile.loadTimeAdjustmentFile(fn.timeAdjustments()) i0=interval[0] i1=interval[1] intervalTime = i1-i0 dt = intervalTime/2 beginTime = max(0,i0-0.000200) endTime = beginTime + 0.001 integrationTime = endTime-beginTime nBins = int(np.round(obsFile.ticksPerSec*(endTime-beginTime)+1)) timeHgValues = np.zeros(nBins, dtype=np.int64) ymax = sys.float_info.max/100.0
def cleanSpectrum(x,y,objectName, wvlBinEdges): #locations and widths of absorption features in Angstroms #features = [3890,3970,4099,4340,4860,6564,6883,7619] #widths = [50,50,50,50,50,50,50,50] #for i in xrange(len(features)): # #check for absorption feature in std spectrum # ind = np.where((x<(features[i]+15)) & (x>(features[i]-15)))[0] # if len(ind)!=0: # ind = ind[len(ind)/2] # #if feature is found (flux is higher on both sides of the specified wavelength where the feature should be) # if y[ind]<y[ind+1] and y[ind]<y[ind-1]: # #cut out width[i] around feature[i] # inds = np.where((x >= features[i]+widths[i]) | (x <= features[i]-widths[i])) # x = x[inds] # y = y[inds] #fit a tail to the end of the spectrum to interpolate out to desired wavelength in angstroms fraction = 2.1/3 newx = np.arange(int(x[fraction*len(x)]),20000) slopeguess = (np.log(y[-1])-np.log(y[fraction*len(x)]))/(x[-1]-x[fraction*len(x)]) print "Guess at exponential slope is %f"%(slopeguess) guess_a, guess_b, guess_c = float(y[fraction*len(x)]), x[fraction*len(x)], slopeguess guess = [guess_a, guess_b, guess_c] fitx = x[fraction*len(x):] fity = y[fraction*len(x):] exp_decay = lambda fx, A, x0, t: A * np.exp((fx-x0) * t) params, cov = curve_fit(exp_decay, fitx, fity, p0=guess, maxfev=2000) A, x0, t= params print "A = %s\nx0 = %s\nt = %s\n"%(A, x0, t) best_fit = lambda fx: A * np.exp((fx-x0)*t) calcx = np.array(newx,dtype=float) newy = best_fit(calcx) #func = interpolate.splrep(x[fration*len(x):],y[fraction*len(x):],s=smooth) #newx = np.arange(int(x[fraction*len(x)]),self.wvlBinEdges[-1]) #newy = interpolate.splev(newx,func) wl = np.concatenate((x,newx[newx>max(x)])) flux = np.concatenate((y,newy[newx>max(x)])) #new method, rebin data to grid of wavelengths generated from a grid of evenly spaced energy bins #R=7.0 at 4500 #R=E/dE -> dE = R/E dE = 0.3936 #eV start = 1000 #Angs stop = 25000 #Angs enBins = ObsFile.makeWvlBins(dE,start,stop) rebinned = rebin(wl,flux,enBins) re_wl = rebinned[:,0] re_flux = rebinned[:,1] #plt.plot(re_wl,re_flux,color='r') re_wl = re_wl[np.isnan(re_flux)==False] re_flux = re_flux[np.isnan(re_flux)==False] start1 = wvlBinEdges[0] stop1 = wvlBinEdges[-1] #regrid downsampled data new_wl = np.arange(start1,stop1) #print re_wl #print re_flux #print new_wl #weight=1.0/(re_flux)**(2/1.00) print len(re_flux) weight = np.ones(len(re_flux)) #decrease weights near peak ind = np.where(re_flux == max(re_flux))[0] weight[ind] = 0.3 for p in [1,2,3]: if p==1: wt = 0.3 elif p==2: wt = 0.6 elif p==3: wt = 0.7 try: weight[ind+p] = wt except IndexError: pass try: if ind-p >= 0: weight[ind-p] = wt except IndexError: pass #change weights to set how tightly fit must match data points #weight[-4:] = 1.0 weight = [0.7,0.7,0.7,0.7,0.7,0.7,0.7,0.7,0.7] #print len(weight) #weight = re_flux/min(re_flux) #weight = 1.0/weight #weight = weight/max(weight) print weight f = interpolate.splrep(re_wl,re_flux,w=weight,k=3,s=max(re_flux)**200) new_flux = interpolate.splev(new_wl,f,der=0) return new_wl, new_flux
class Cosmic: def __init__(self, fn, beginTime=0, endTime='exptime', nBinsPerSec=10, flashMergeTime=1.0, applyCosmicMask = False, loggingLevel=logging.CRITICAL, loggingHandler=logging.StreamHandler()): """ Opens fileName in MKID_RAW_PATH, sets roachList endTime is exclusive """ self.logger = logging.getLogger("cosmic") self.logger.setLevel(loggingLevel) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') loggingHandler.setFormatter(formatter) self.logger.addHandler(loggingHandler) self.logger.info("Cosmic: begin init for obsFile=%s"%fn.obs()) self.fn = fn self.fileName = fn.obs(); self.file = ObsFile(self.fileName) # apply Matt's time fix timeAdjustments = self.fn.timeAdjustments() if os.path.exists(timeAdjustments): self.file.loadTimeAdjustmentFile(timeAdjustments) # apply Julian's time masks timeMaskFile = self.fn.timeMask(); if os.path.exists(timeMaskFile): self.file.loadHotPixCalFile(timeMaskFile,switchOnMask=True) # apply standard mask if applyCosmicMask: self.file.loadStandardCosmicMask() self._setRoachList() self._setAllSecs() self.exptime = self.file.getFromHeader('exptime') if endTime =='exptime': self.endTime = float(self.exptime) else: self.endTime = float(endTime) if ( (self.endTime > self.exptime) or (endTime < 0)): raise RuntimeError("bad endTime: endTime=%s exptime=%s" % \ (str(endTime),str(self.exptime))) self.beginTime = float(beginTime) self.timeHgs = "none" self.nBinsPerSec = nBinsPerSec self.flashMergeTime = flashMergeTime self.times = \ np.arange(self.beginTime, self.endTime, 1.0/self.nBinsPerSec) # for measuring flashes, indexed by roach name self.rMean = {} # mean from meanclip self.rSigma = {} # sigma from meanclip self.rNSurvived = {} # number of survivors from meanclip self.rNormed = {} # (value-mean)/sigma self.flashInterval = {} self.logger.info("Cosmic: end init: beginTime=%s endTime=%s"%(str(self.beginTime),str(self.endTime))) def __del__(self): """ Close any open files """ # print "now in Cosmic.__del__ for ",self.fileName try: del self.file except: pass def _setRoachList(self): self.roachList = [] for row in self.file.beamImage: for name in row: roachName = name.split("/")[1] if roachName not in self.roachList: self.roachList.append(roachName) self.roachList.sort() def _setAllSecs(self): nRow = self.file.nRow nCol = self.file.nCol self.allSecs = \ dict( ((i,j),None) for i in range(nRow) for j in range(nCol)) for iRow in np.arange(nRow): for iCol in np.arange(nCol): self.allSecs[iRow,iCol] = \ self.file.file.getNode(self.file.beamImage[iRow][iCol]) def nPhoton(self, beginTime=0, endTime='expTime'): """ trivial example of counting the number of photons in a file """ nPhoton = 0 for iRow in range(self.file.nRow): for iCol in range(self.file.nCol): for iSec in range(self.beginTime, self.endTime): sec = self.allSecs[iRow,iCol][iSec] nPhoton += len(sec) return nPhoton def findFlashes(self, clipsig=3.0, maxiter=5,\ converge_num=0.05, verbose=0, flashsig=6): """ find flashes by looking at the time histograms. Calculate the mean,sigma using meanclip and the parameters clipsig, maxiter, converge_num A time bin has a flash if the normalized signal (measured-mean)/sigma is larger than flashsig. """ # make the blank data structures if self.timeHgs == "none": self.makeTimeHgs() self.flashInterval["all"] = [] # find the flashes in each roach for roach in self.roachList: self.rMean[roach],self.rSigma[roach],self.rNSurvived[roach] = \ meanclip.meanclip(\ np.array(self.timeHgs[roach]), clipsig, maxiter, converge_num,\ verbose) self.rNormed[roach] = \ (self.timeHgs[roach]-self.rMean[roach])/self.rSigma[roach] self.flashInterval[roach] = interval() prev = 0 a = self.rNormed[roach] for i in range(len(a)): this = a[i] > flashsig if (this != prev): if (this): iBegin = i else: self.flashInterval[roach] = \ self.flashInterval[roach] | interval[iBegin,i] prev = this if (prev): self.flashInterval[roach] = \ self.flashInterval[roach] | interval[iBegin,i] # union of all flashes self.flashInterval["all"] = interval() for roach in self.roachList: self.flashInterval["all"] = \ self.flashInterval["all"] | self.flashInterval[roach] # look for gaps smaller than self.flashMergeTime and plug them dMax = self.nBinsPerSec*self.flashMergeTime extrema = self.flashInterval["all"].extrema for i in range(len(extrema)/2-1): i0 = extrema[2*i+1][0] i1 = extrema[2*(i+1)][0] if (i1-i0) <= dMax: t0 = self.beginTime + float(i0)/self.nBinsPerSec t1 = self.beginTime + float(i1)/self.nBinsPerSec self.flashInterval["all"] = \ self.flashInterval["all"] | interval[i0,i1] # convert to ticks since the beginning of the data file rlAll = list(self.roachList) rlAll.append("all") ticksPerSecond = int(1.0/self.file.tickDuration) offset = self.beginTime*ticksPerSecond scale = 1.0/(self.file.tickDuration*self.nBinsPerSec) for roach in rlAll: self.flashInterval[roach] = offset+scale*self.flashInterval[roach] def writeFlashesToHdf5(self,overwrite=1): """ write intervals with flashes to the timeMask file """ # get the output file name, and make the directory if you need to cmFileName = self.fn.cosmicMask() (cmDir,name) = os.path.split(cmFileName) if not os.path.exists(cmDir): os.makedirs(cmDir) # write parameters used to find flashes h5f = tables.openFile(cmFileName, 'w') fnode = filenode.newNode(h5f, where='/', name='timeMaskHdr') fnode.attrs.beginTime = self.beginTime fnode.attrs.endTime = self.endTime fnode.attrs.nBinsPerSec = self.nBinsPerSec fnode.attrs.flashMergeTime = self.flashMergeTime fnode.close(); # write the times where flashes are located tbl = h5f.createTable('/','timeMask',TimeMask.TimeMask,"Time Mask") rlAll = list(self.roachList) rlAll.append("all") for roach in rlAll: extrema = self.flashInterval[roach].extrema for i in range(len(extrema)/2): row = tbl.row row['tBegin'] = int(extrema[2*i][0]) row['tEnd'] = int(extrema[2*i+1][0]) if (roach == "all"): reason = "Merged Flash" else: reason = "Flash in %s" % roach row['reason'] = TimeMask.timeMaskReason[reason] row.append() tbl.flush() tbl.close() h5f.close() def makeTimeHgs(self): """ Fill in the timeHgs variable This is a dictionary, indexed by the roach name, of the time histograms """ self.timeHgs = {} for iSec in range(self.beginTime, self.endTime): self.logger.info("in makeTimeHgs iSec=%4d / %4d" % (iSec,self.endTime)) hgsThisSec = {} for iRow in range(self.file.nRow): for iCol in range(self.file.nCol): sec = self.allSecs[iRow,iCol][iSec] if len(sec) > 0: times = sec & self.file.timestampMask hg,edges = \ np.histogram(times,bins=self.nBinsPerSec, \ range=(0,1.0/self.file.tickDuration)) roachName = \ self.file.beamImage[iRow][iCol].split("/")[1] if not hgsThisSec.has_key(roachName): hgsThisSec[roachName] = \ np.zeros(self.nBinsPerSec,dtype=np.int64) hgsThisSec[roachName] += hg for roachName in hgsThisSec.keys(): if not self.timeHgs.has_key(roachName): self.timeHgs[roachName] = [] self.timeHgs[roachName] += list(hgsThisSec[roachName]) def plotTimeHgs(self): """ Plot the time HGS in plt structure, with legend """ plt.clf() plt.figure(1) keys = self.timeHgs.keys() keys.sort() plt.subplot(211) for roachName in keys: hg = self.timeHgs[roachName] plt.plot(self.times, hg,label=roachName) plt.legend() dt = 1.0/self.nBinsPerSec plt.ylabel("photons/%.2f sec" % dt) plt.title("Cosmic timeHgs "+ self.fileName) plt.subplot(212) for roachName in keys: plt.plot(self.times, \ self.rNormed[roachName],label=roachName) plt.xlabel("time (sec)") plt.ylim(-23,30) dt = 1.0/self.nBinsPerSec plt.ylabel("normalized photons/%.2f sec" % dt) y = -5 x0 = self.beginTime + 0.1*(self.endTime-self.beginTime) xmax = plt.xlim()[1] rlAll = list(self.roachList) rlAll.append("all") for roach in rlAll: print "plot for roach=",roach plt.plot([x0,xmax],[y,y], linestyle=":", color="gray") plt.text(x0, y, roach, fontsize=8, va="center") extrema = self.flashInterval[roach].extrema for i in range(len(extrema)/2): t0 = (extrema[2*i][0] - 0.5)*self.file.tickDuration t1 = (extrema[2*i+1][0] - 0.5)*self.file.tickDuration plt.plot([t0,t1],[y,y],'r', linewidth=4) y -= 2 def findCosmics(self, stride=10, threshold=100, populationMax=2000, nSigma=5, writeCosmicMask=False, ppsStride=10000): """ Find cosmics ray suspects. Histogram the number of photons recorded at each timeStamp. When the number of photons in a group of stride timeStamps is greater than threshold in second iSec, add (iSec,timeStamp) to cosmicTimeLists. Also keep track of the histogram of the number of photons per stride timeStamps. return a dictionary of 'populationHg', 'cosmicTimeLists', 'binContents', 'timeHgValues', 'interval', 'frameSum', and 'pps' populationHg is a histogram of the number of photons in each time bin. This is a poisson distribution with a long tail due to cosmic events cosmicTimeLists is a numpy array of all the sequences that are suspects for cosmic rays binContents corresponds to cosmicTimeLists. For each time in cosmicTimeLists, binContents is the number of photons detected at that time. timeHgValues is a histogram of the number of photons in each time interval frameSum is a two dimensional numpy array of the number of photons detected by each pixel interval is the interval of data to be masked out pps is photons per second, calculated every ppsStride bins. """ self.logger.info("findCosmics: begin stride=%d threshold=%d populationMax=%d nSigma=%d writeCosmicMask=%s"%(stride,threshold,populationMax,nSigma,writeCosmicMask)) exptime = self.endTime-self.beginTime nBins = int(np.round(self.file.ticksPerSec*exptime+1)) bins = np.arange(0, nBins, 1) timeHgValues,frameSum = self.getTimeHgAndFrameSum(self.beginTime,self.endTime) remainder = len(timeHgValues)%ppsStride if remainder > 0: temp = timeHgValues[:-remainder] else: temp = timeHgValues ppsTime = (ppsStride*self.file.tickDuration) pps = np.sum(temp.reshape(-1, ppsStride), axis=1)/ppsTime self.logger.info("findCosmics: call populationFromTimeHgValues") pfthgv = Cosmic.populationFromTimeHgValues\ (timeHgValues,populationMax,stride,threshold) #now build up all of the intervals in seconds self.logger.info("findCosmics: build up intervals: nCosmicTime=%d"%len(pfthgv['cosmicTimeList'])) i = interval() iCount = 0 secondsPerTick = self.file.tickDuration for cosmicTime in pfthgv['cosmicTimeList']: #t0 = max(0,self.beginTime+(cosmicTime-50)/1.e6) #t1 = min(self.endTime,self.beginTime+(cosmicTime+50)/1.e6) #intTime = t1-t0 t0 = self.beginTime+cosmicTime*secondsPerTick dt = stride*secondsPerTick t1 = t0+dt left = max(self.beginTime, t0-nSigma*dt) right = min(self.endTime, t1+2*nSigma*dt) i = i | interval[left,right] self.logger.debug("findCosmics: iCount=%d t0=%f t1=%f left=%f right=%f"%(iCount,t0,t1,left,right)) iCount+=1 tMasked = Cosmic.countMaskedBins(i) ppmMasked = 1000000*tMasked/(self.endTime-self.beginTime) retval = {} retval['timeHgValues'] = timeHgValues retval['populationHg'] = pfthgv['populationHg'] retval['cosmicTimeList'] = pfthgv['cosmicTimeList'] retval['binContents'] = pfthgv['binContents'] retval['frameSum'] = frameSum retval['interval'] = i retval['ppmMasked'] = ppmMasked retval['pps'] = pps retval['ppsTime'] = ppsTime if writeCosmicMask: cfn = self.fn.cosmicMask() self.logger.info("findCosmics: write masks to =%s"%cfn) ObsFile.writeCosmicIntervalToFile(i, self.file.ticksPerSec, cfn,self.beginTime, self.endTime, stride, threshold, nSigma, populationMax) self.logger.info("findCosmics: end with ppm masked=%d"%ppmMasked) return retval def getTimeHgAndFrameSum(self, beginTime, endTime): integrationTime = endTime - beginTime nBins = int(np.round(self.file.ticksPerSec*integrationTime+1)) timeHgValues = np.zeros(nBins, dtype=np.int64) frameSum = np.zeros((self.file.nRow,self.file.nCol)) self.logger.info("get all time stamps for integrationTime=%f"%integrationTime) for iRow in range(self.file.nRow): #print "Cosmic.findCosmics: iRow=",iRow for iCol in range(self.file.nCol): # getTimedPacketList is slow. Use getPackets instead. #gtpl = self.file.getTimedPacketList(iRow,iCol,beginTime, # integrationTime) gtpl = self.file.getPackets(iRow,iCol, beginTime,integrationTime) timestamps = gtpl['timestamps'] if timestamps.size > 0: timestamps = \ (timestamps - beginTime)*self.file.ticksPerSec # per Matt S. suggestion 2013-07-09 ts32 = np.round(timestamps).astype(np.uint32) tsBinner.tsBinner32(ts32, timeHgValues) frameSum[iRow,iCol] += ts32.size return timeHgValues,frameSum @staticmethod def countMaskedBins(maskInterval): retval = 0 for x in maskInterval: retval += x[1]-x[0] return retval @staticmethod def populationFromTimeHgValues(timeHgValues,populationMax,stride,threshold): """ Rebin the timgHgValues histogram by combining stride bins. If stride > 1, then bin a second time after shifting by stride/2 Create populationHg, a histogram of the number of photons in the large bins. Also, create (and then sort) a list cosmicTimeList of the start of bins (in original time units) of overpopulated bins that have more than threshold number of photons. return a dictionary containing populationHg and cosmicTimeList """ popRange = (-0.5,populationMax-0.5) if stride==1: populationHg = np.histogram(\ timeHgValues, populationMax, range=popRange) cosmicTimeList = np.where(timeHgValues > threshold)[0] binContents = np.extract(timeHgValues > threshold, timeHgValues) else: # rebin the timeHgValues before counting the populations length = timeHgValues.size remainder = length%stride if remainder == 0: end = length else: end = -remainder timeHgValuesTrimmed = timeHgValues[0:end] timeHgValuesRebinned0 = np.reshape( timeHgValuesTrimmed, [length/stride, stride]).sum(axis=1) populationHg0 = np.histogram( timeHgValuesRebinned0, populationMax, range=popRange) cosmicTimeList0 = stride*np.where(\ timeHgValuesRebinned0 > threshold)[0] binContents0 = np.extract(timeHgValuesRebinned0 > threshold, timeHgValuesRebinned0) timeHgValuesRebinned1 = np.reshape( timeHgValuesTrimmed[stride/2:-stride/2], [(length-stride)/stride, stride]).sum(axis=1) populationHg1 = np.histogram(\ timeHgValuesRebinned1, populationMax, range=popRange) cosmicTimeList1 = (stride/2)+stride*np.where(\ timeHgValuesRebinned1 > threshold)[0] binContents1 = np.extract(timeHgValuesRebinned1 > threshold, timeHgValuesRebinned1) populationHg = (populationHg0[0]+populationHg1[0],\ populationHg0[1]) cosmicTimeList = np.concatenate((cosmicTimeList0,cosmicTimeList1)) binContents = np.concatenate((binContents0, binContents1)) args = np.argsort(cosmicTimeList) cosmicTimeList = cosmicTimeList[args] binContents = binContents[args] cosmicTimeList.sort() retval = {} retval['populationHg'] = populationHg retval['cosmicTimeList'] = cosmicTimeList retval['binContents'] = binContents return retval def makeMovies(self,beginTick, endTick, backgroundFrame, accumulate=False): tick0 = np.uint64(beginTick) tick1 = np.uint64(endTick) for iRow in range(cosmic.file.nRow): for iCol in range(cosmic.file.nCol): gtpl = self.getTimedPacketList(iRow,iCol,sec0,1) timestamps = gtpl['timestamps'] timestamps *= cosmic.file.ticksPerSec ts32 = timestamps.astype(np.uint32) for ts in ts32: tindex = ts-t0 try: listOfPixelsToMark[tindex].append((iRow,iCol)) except IndexError: pass for tick in range(t0,t1): frames.append(frameSum) title = makeTitle(tick,t0,t1) titles.append(title) mfn0 = "m-%s-%s-%s-%s-%010d-%010d-i.gif"%(run,sundownDate,obsDate,seq,t0,t1) utils.makeMovie(frames, titles, outName=mfn0, delay=0.1, colormap=mpl.cm.gray, listOfPixelsToMark=listOfPixelsToMark, pixelMarkColor='red') for i in range(len(listOfPixelsToMark)-1): listOfPixelsToMark[i+1].extend(listOfPixelsToMark[i]) mfn1 = "m-%s-%s-%s-%s-%010d-%010d-a.gif"%(run,sundownDate,obsDate,seq,t0,t1) utils.makeMovie(frames, titles, outName=mfn1, delay=0.1, colormap=mpl.cm.gray, listOfPixelsToMark=listOfPixelsToMark, pixelMarkColor='green') def fitDecayTime(self,t0Sec,lengthSec=200,plotFileName='none'): print "hello from fitDecayTime" timedPacketList = self.file.getTimedPacketList( iRow, iCol, sec0, lengthSec) def fitExpon(self, t0, t1): """ Fit an exponential to all photons from time t0 to time t1 t0 and t1 are in ticks, 1e6 ticks per second return a dictionary of: timeStamps,fitParams,chi2 """ firstSec = int(t0/1e6) # in seconds integrationTime = 1+int((t1-t0)/1e6) # in seconds nBins = integrationTime*1e6 # number of microseconds; one bin per microsecond timeHgValues = np.zeros(nBins, dtype=np.int64) print "firstSec=",firstSec," integrationTime=",integrationTime for iRow in range(self.file.nRow): for iCol in range(self.file.nCol): timedPacketList = self.file.getTimedPacketList( iRow, iCol, firstSec=firstSec, integrationTime=integrationTime) timeStamps = timedPacketList['timestamps'] if (len(timeStamps) > 0): # covert the time values to microseconds, and # make it the type np.uint64 # round per Matt S. suggestion 2013-07-09 #ts64 = (timeStamps).astype(np.uint64) ts32round = np.round(timeStamps).astype(np.uint32) tsBinner.tsBinner(ts32round, timeHgValues) temp = 1e6*(timeStamps-firstSec) for i in range(len(timeStamps)): ts32 = ((timeStamps-firstSec)*1e6).astype(np.uint32) # add these timestamps to the histogram timeHgValues remain0 = int(t0%1e6) remain1 = int(t1%1e6) timeHgValues = timeHgValues[remain0:remain1] x = np.arange(len(timeHgValues)) y = timeHgValues xArray = np.arange(0, dtype=np.int64) yArray = np.arange(0, dtype=np.int64) for i in range(len(x)): if y[i] > 2: xArray = np.append(xArray,i) yArray = np.append(yArray,y[i]) ySigma = np.sqrt(yArray) mean = (x*y).sum()/float(y.sum()) bExponGuess = 1/mean aExponGuess = bExponGuess*timeHgValues.sum() cExponGuess = 0 dExponGuess = 0 pExponGuess = [aExponGuess, bExponGuess, cExponGuess, dExponGuess] bGaussGuess = mean avgx2 = (x*x*y).sum()/float(y.sum()) cGaussGuess = np.sqrt(avgx2-bGaussGuess*bGaussGuess) aGaussGuess = (timeHgValues.sum()/(cGaussGuess*np.sqrt(2*np.pi))) pGaussGuess = [aGaussGuess, bGaussGuess, cGaussGuess] xLimit = [bGaussGuess-4*cGaussGuess, bGaussGuess+4*cGaussGuess] retval = {'timeHgValues':timeHgValues, 'pExponFit':pExponGuess, 'pGaussFit':pGaussGuess, 'xLimit':xLimit, 'cGaussGuess':cGaussGuess, 'timeStamps':timeStamps} return retval @staticmethod def intervalTime(intervals): """ return the time (in seconds) masked by the intervals """ time = 0 for interval in intervals: time += interval[1]-interval[0] return time @staticmethod def funcExpon(x, a, b, c, d): retval = a*np.exp(-b*(x-d)) + c retval[x < d] = 0 return retval @staticmethod def funcGauss(x, a, b, c): return a*np.exp(-(x-b)**2/(2.*c**2))